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ABSTRACT

We propose a method for edge-preserving regularized
reconstruction in coherent imaging systems. In our frame-
work, image formation from measured data is achieved through
the minimization of a cost function, which includes non-
quadratic regularizing constraints for suppressing noise ar-
tifacts, while preserving the object boundaries in the recon-
struction. The cost function we use effectively deals with
the complex-valued and random-phase nature of the scat-
tered field, which is inherent in many coherent systems.
We solve the challenging optimization problems posed in
our framework by a novel extension of half-quadratic regu-
larization methods. We present experimental results from
three coherent imaging applications: digital holography,
synthetic aperture radar, and medical ultrasound. The pro-
posed technique produces images where coherent speckle ar-
tifacts are effectively suppressed, and boundaries between
different regions in the scene are preserved.

1. INTRODUCTION

This paper addresses image reconstruction problems in co-
herent imaging. Coherent imaging is based on recording
spatial and/or temporal variations in both the intensity of
a scattered field and its phase. Many microwave, opti-
cal, and acoustic sensing applications use coherent imaging,
and particular modalities include synthetic aperture radar
(SAR), holography, laser imaging, sonar, and medical ul-
trasound, among others. In both coherent and incoherent
imaging tasks, reconstruction of an image from observed
data is often an ill-posed inverse problem. Solution of such
inverse problems can be achieved through regularization
methods, which turn the problem into a well-posed one,
and prevent the amplification of measurement noise dur-
ing the reconstruction process. However, one limitation of
straightforward regularization methods, such as Tikhonov
regularization, is the suppression of important features in
the resulting imagery, such as edges. Recently this issue
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has been successfully addressed by edge-preserving regular-
ization techniques in incoherent imaging applications, such
as restoration of blurred and noisy optical images [1], and
reconstruction in X-ray tomography [2].

Coherent image reconstruction poses additional chal-
lenges that do not appear in incoherent imaging. First, the
signals involved are in general complex-valued. Further-
more, in many problems, including SAR and holography of
diffuse objects, the phase of the scattered field is a highly
random quantity.1 This leads to two complications. First,
due to constructive and destructive interference of scatter-
ers within a resolution cell, conventional coherent images
suffer from speckle artifacts.2 Second, due to complex-
valued, and random-phase nature of the fields, straightfor-
ward application of image reconstruction methods, origi-
nally designed for incoherent imaging may not produce ac-
curate reconstructions, as we experimentally demonstrate
in Section 5.

To address these challenges, we propose an edge-preserving
regularization method specifically for coherent imaging tasks.
Our approach involves the minimization of an objective
function, which contains �p-norm-based non-quadratic reg-
ularization constraints to impose smoothness on the mag-
nitudes of the reconstructed complex-valued field reflectivi-
ties. To solve such optimization problems, we provide a for-
mal extension of half-quadratic regularization techniques [4]
to complex-valued, random-phase fields. This constitutes
the major technical contribution of this work. We demon-
strate the performance of the resulting method on examples
from a number of coherent imaging applications.

2. OVERVIEW OF THE PROPOSED METHOD

We start from the following assumed discrete model for the
coherent observation process:

y = Tf + w (1)

1This property is known to enable high-quality reconstruc-
tions from limited Fourier-offset data in coherent imaging [3]. For
this reason, Fourier transform holograms are often constructed
using a diffuser to impart essentially random phase to each point
in the original scene before recording.

2Speckle appears when the surface being imaged has rough-
ness at the scale of the illuminating wavelength.
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where y denotes the data measured by the sensor and pos-
sibly pre-processed (e.g. demodulated), f is the unknown
sampled image, and w is additive measurement noise, all
column-stacked as vectors. T is a matrix that models the
relationship between the underlying field and the measured
data. For example, T may be a band-limited, possibly
frequency-offset Fourier transform operator, where the physics
of the problem, sensor parameters, and the observation ge-
ometry determine the exact structure. Another example for
T, used in tomographic imaging modalities is projection-
type operators, such as the Radon transform. In some ap-
plications, e.g. in inverse scattering, the observation pro-
cess cannot be accurately modeled by a linear relationship,
as in (1). While we address only the linear case in this
paper, the ideas we present are potentially useful in non-
linear problems as well, and the method can be generalized
to such cases.

Given the observation model in (1), the objective is to
obtain a reconstruction of f , based on the data y. Con-
ventional image formation techniques vary depending on
the particular modality, and include algorithms based on
filtered backprojection and inverse Fourier transformation,
among others.

In our approach, we find the reconstructed image f̂ as
the minimizer of the following cost function:

J0(f) = ‖y − Tf‖2
2 + λ‖D|f |‖p

p (2)

where ‖ · ‖p denotes the �p-norm, D is a discrete approx-
imation to the 2-D spatial derivative operator (gradient),
|f | denotes the vector of magnitudes of the complex-valued
vector f , and λ, p < 2 are scalar parameters. The first
term in (2) is a data fidelity term, while the second term
is a regularizing smoothness constraint, reflecting the prior
knowledge we impose about the field. Note that the formu-
lation of (2) starts from the observed sensor data y, and is
not simply a post-processing of a formed image.

In order to avoid problems due to non-differentiability
of the �p-norm around the origin when p ≤ 1, we use a
smooth approximation to the �p-norm in (2) [1]. This leads
to the following slightly modified cost function to be used
in practice for numerical purposes:

J(f) = ‖y − Tf‖2
2 + λ

M∑
i=1

(|(D|f |)i|2 + ε)p/2 (3)

where ε ≥ 0 is a small constant, (·)i denotes the i-th element
of a vector, and M is the length of the vector D|f |. Note
that J(f) → J0(f) as ε → 0.

Non-quadratic regularizing constraints such as �p-norms
have previously been shown to produce edge-preserving so-
lutions in problems such as image restoration [1] and X-
ray tomography [2], where the signals involved are real-
valued. In contrast, we are interested in coherent systems
such as SAR and holography, where the processed signals
are complex-valued. In many cases of interest, the phase of
the unknown complex-valued field f is highly random, and
uncorrelated with the phase at neighboring pixels. Based
on this observation, regularizing smoothness constraints in
such coherent imaging problems should be applied explicitly

to the magnitudes |f | of the complex-valued reflectivities f .
In our framework, this is achieved through the term D|f |
in (3). This non-linearity in f makes the optimization prob-
lem more challenging than those arising in incoherent imag-
ing applications. In the next section, we propose a novel
extension of half-quadratic regularization methods [4] to
complex-valued, random-phase fields for achieving efficient
and robust numerical solution of the optimization problems
of the form (3), posed in our framework.

3. HALF-QUADRATIC REGULARIZATION
FOR COHERENT IMAGING

The main idea in half-quadratic regularization is to intro-
duce and optimize a new cost function, which has the same
minimum as the original non-quadratic cost function, but
one which can be manipulated with linear algebraic meth-
ods. In incoherent imaging applications, such a new cost
function is obtained by augmenting the original cost func-
tion with an auxiliary vector.

Currently available half-quadratic regularization meth-
ods designed for incoherent imaging cannot handle the more
complicated structure of the optimization problems involved
in coherent imaging. In order to deal with such compli-
cations, we propose using two auxiliary vectors, b and s,
matched to the structure of the problem, to form an aug-
mented cost function K(f ,b, s) which satisfies:

inf
b,s

K(f ,b, s) = J(f). (4)

In particular, we construct K(f ,b, s) in such a way that it
is quadratic in f (hence the name half-quadratic) and easy
to minimize in b and s. Then the minimization of K(f ,b, s)
can be performed through a block coordinate descent ap-
proach.

Now, let us consider our particular cost function J(f)
of (3). We can show that the following augmented cost
function K(f ,b, s) satisfies the relationship (4) for this J(f)
[5]:

K(f ,b, s) = ‖y − Tf‖2
2

+λ
M∑

i=1

[
bi

(|(DSf)i|2 + ε
)

+

(
p

2bi

) p
2−p (

1 − p

2

)]
(5)

where

S = diag{exp(−jsl)}, (6)

with sl being the l-th element of the vector s, and diag{·}
denoting a diagonal matrix whose l-th diagonal element is
given by the expression inside the brackets. Due to (4),
J(f) and K(f ,b, s) share the same minima in f . Note that
K(f ,b, s) is a quadratic function with respect to f .3 We
benefit from the half-quadratic structure through the use of

3We have obviously omitted the recipe for finding a valid
K(f ,b, s) from J(f) here. We just want to point out that, given
any edge-preserving cost function J(f), the augmented cost func-
tion can be found by using convex duality relationships, and we
refer the interested reader to [4].



an iterative block coordinate descent method on K(f ,b, s),

in order to find the field f̂ that also minimizes J(f):

ŝ(n+1) = arg min
s

K(f̂ (n), b̂(n), s) (7)

b̂(n+1) = arg min
b

K(f̂ (n),b, ŝ(n+1)) (8)

f̂ (n+1) = arg min
f

K(f , b̂(n+1), ŝ(n+1)) (9)

where n denotes the iteration number. Using results from
[5], we obtain:

ŝ
(n+1)
i = φ[(f̂ (n))i] (10)

b̂
(n+1)
i =

p

2
[
(DŜ(n+1) f̂ (n))2i + ε

]1−p/2
(11)

[
THT + λ(Ŝ(n+1))HDT diag

{
b̂

(n+1)
i

}
DŜ(n+1)

]
f̂ (n+1)

= THy (12)

where φ[z] denotes the phase of the complex number z. We
can substitute (10) and (11) into (12) to obtain a single it-

erative expression for f̂ (n+1), which would then constitute
the overall iterative algorithm. Note that each iteration
in (12) requires the solution of a set of linear equations

for the unknown f̂ (n+1). We use the conjugate gradient
algorithm for this solution. We run the iteration (12) un-

til ‖f̂ (n+1) − f̂ (n)‖2
2/‖f̂ (n)‖2

2 < δ, where δ > 0 is a small
constant. Convergence properties of algorithms of this type
have been analyzed, and convergence from any initialization
to a local minimum is guaranteed [2, 6].

4. EXTENSIONS

We mention two extensions we have developed [5]. First,
some applications may require preservation of features other
than, or in addition to edges. We have demonstrated such
an extension of our framework for the particular application
of SAR imaging, where we have incorporated additional reg-
ularizing constraints whose role is to localize and superre-
solve scatterers with spatially concentrated energy. Second,
we have extended our formulation and iterative algorithm
to Mumford-Shah-type [7] variational formulations. This
extension enables the use of Mumford-Shah-type cost func-
tions in problems involving complex-valued, random-phase
fields, and non-trivial observation models.

As another simple extension, note that the use of non-
quadratic potential functions other than �p-norms in J(f)
simply requires finding and using the augmented cost func-
tion that corresponds to the particular potential function
used, without affecting the general coordinate-descent-based
algorithmic strategy.

5. EXPERIMENTAL RESULTS

We demonstrate our technique on three imaging applica-
tions: digital holography, SAR, and medical ultrasound.

We choose the hyperparameters that appear in the cost
function J(f) of (3) based on subjective qualitative assess-
ment.

Figure 1 contains the results of the holography experi-
ment. We multiply the intensity of the original scene in Fig-
ure 1(a) at each pixel with a uniformly distributed random
phase factor (uncorrelated from pixel to pixel), and com-
pute a band-limited Fourier hologram. The image in Fig-
ure 1(b) is the magnitude of the conventional reconstruction
from the hologram. This result is dominated by coherent
speckle artifacts. The reconstruction produced by our tech-
nique (p = 1.2) is shown in Figure 1(c). With suppressed
speckle, and preserved edges, our method provides a much
more accurate reconstruction of the original scene. We next
show why some related, but simpler techniques would fail
in this problem. In Figure 1(d), we show the result of an
incoherent edge-preserving reconstruction method. Since
such techniques have been designed for real-valued signals,
they are not able to treat the magnitude and phase com-
ponents properly. This leads to some smoothing effect in
the real and imaginary components of the field, however
a speckle-dominated magnitude image is produced which
shows only minor improvement over the conventional image
of Figure 1(b). In Figure 1(e) we present the result of ap-
plying edge-preserving regularization (anisotropic diffusion)
on the magnitude of the conventionally reconstructed im-
age. Some speckle suppression seems to have been achieved,
however significant amount of detail in the scene has been
lost. This shows the power of our model-based reconstruc-
tion technique in contrast to a post-processing approach for
image enhancement.

For the remaining examples in this section, we present
just images produced by the conventional and the proposed
methods. An additional analysis similar to that carried
out for the digital holography example of Figure 1 yields
qualitatively very similar results.

Figure 2(a) contains a conventional SAR image of three
vehicles in a field containing some trees. Speckle artifacts,
clearly visible in this reconstruction, make e.g. automatic
segmentation of SAR images very challenging. In contrast,
the image produced by our method (p = 0.7) produces re-
gions (vehicle, tree, shadow, background) which appear to
be more easily separable.

Our final example is from medical ultrasound imag-
ing. A conventional image, shown in Figure 3(a), exhibits
speckle artifacts. Our technique (p = 0.7) produces the im-
age in Figure 3(b), where such artifacts are reduced, and
tissue boundaries appear to have been preserved. Evalu-
ating the medical significance of such reconstructions is a
subject currently on our agenda.

6. CONCLUSIONS

We have developed a new approach for image formation in
coherent systems. Our method poses the problem as the
optimization of a cost function in a regularized data in-
version framework. Here, we incorporate edge-preserving
potential functions that take into account the nature of the
signals involved in coherent imaging. The major technical
contribution of this work is the extension of half-quadratic
regularization methods to efficiently solve such optimiza-



(a)

(b) (c)

(d) (e)

Fig. 1. Reconstruction of an image from its band-limited
Fourier hologram. (a) Original scene. (b) Conventional
reconstruction. (c) Proposed method with p = 1.2. (d) Re-
construction by an edge-preserving regularization method
designed for incoherent imaging. (e) Post-processing of the
conventionally reconstructed image by edge-preserving reg-
ularization (anisotropic diffusion).

tion problems formulated for coherent imaging. Our exper-
imental study has shown the effectiveness of this strategy in
obtaining reconstructions that are superior in a number of
ways to conventional coherent images. The improvements
provided by these reconstructions appear to be promising
for visual and automatic interpretation of the underlying
scenes. Our current work involves application of the tech-
nique on a variety of other data sets, and in coherent imag-
ing applications not considered in this paper.
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(a) (b)

Fig. 2. (a) Conventional SAR image of a scene. (b) Recon-
struction produced by the proposed method with p = 0.7.

(a) (b)

Fig. 3. (a) A conventional ultrasound image. (b) Recon-
struction produced by the proposed method with p = 0.7.
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