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ABSTRACT

We propose a regularization-basedmethod for the complex-
valued synthetic aperture radar (SAR) image formation prob-
lem. The method can produce images with higher resolu-
tion than that supported by the measured data, as well as
images with reduced variability of reflectivity magnitudes
within homogeneous regions and preserved region bound-
aries. This is achieved by the inclusion of prior informa-
tion in the regularized data inversion process through non-
quadratic potential functions. For this task, we demonstrate
the use of a variety of potential functions in our framework.
The technique effectively deals with the random-phase na-
ture of the underlying SAR reflectivities. For an efficient
numerical solution, we extend half-quadratic regularization
methods to this complex-valued problem. We demonstrate
the performance of the method on real SAR data.

1. INTRODUCTION

Synthetic aperture radar (SAR) is a sensor which synthe-
sizes high-resolution terrain maps using data gathered from
multiple observation angles. Data are collected by a radar
traversing a flight path and pointing in the direction of a
ground patch to be imaged. The all-weather nature, poten-
tially high resolution, and large area coverage rates of the
phenomenology have lead to its increased use in surveil-
lance, as well as growing interest in automated processing
techniques, wherein features extracted from the formed im-
agery are used for automatic object detection and recogni-
tion.

The conventional technique for the formation of this im-
agery is the polar format algorithm [1]. This approach,
while straightforward, has certain shortcomings. First, the
resolution of the formed images is limited by the SAR sys-
tem bandwidth. This complicates point scatterer localiza-
tion for automated recognition tasks. In addition, the images
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suffer from speckle, which complicates region segmentation
for shape-based recognition.

To alleviate these problems, we develop a new technique
for SAR image formation, which can produce both super-
resolution images and reduced-speckle, edge-preserved im-
ages within the same framework. The method is based on
the incorporation of prior information regarding the features
of interest together with an explicit model relating the SAR
observations to the underlying scene in a regularized image
reconstruction framework. Our method is an extension of
real-valued image reconstruction methods to the complex-
valued, random-phase SAR problem. Prior information re-
garding the underlying scene or features of interest are cap-
tured through a set of non-quadratic constraints, which leads
to potentially costly optimization problems. We develop
an efficient iterative method for solving the resulting prob-
lems by extending half-quadratic optimization methods. We
demonstrate the performance of the method on real SAR
scenes.

2. IMAGE RECONSTRUCTION METHOD

2.1. Overview

We start from the following assumed discrete model for the
SAR observation process:

y = Tf + w (1)

wherey represents projectional SAR observations,f is the
unknown sampled reflectivity image,w is additive measure-
ment noise, all column stacked as vectors, andT is a complex-
valued tomographic SAR observation matrix [2, 3]. In this
framework, the objective of SAR image reconstruction is
to obtain an estimate off based on the datay. The con-
ventional SAR polar format image formation algorithm can
roughly be interpreted in this framework as the application
of the adjoint to the data:̂f = THy.

In contrast, we formulate the SAR image reconstruction
problem as an optimization problem of the following form:

f̂ = arg min
f

[
‖y − Tf‖22 + Ψ(f)

]
(2)



whereΨ(f) is a function fromCN to R+ ∪ {0}. The first
term in the right-hand-side expression in (2) is a data fidelity
term. The second term is a constraint reflecting the prior
information we would like to impose. The reconstruction
naturally depends on the kind of constraint used, hence the
choice ofΨ(f) is critical.

2.2. Choice ofΨ(f)

A simple and common choice in many conventional regu-
larization schemes is to setΨ(f) to be a quadratic function
of f (or its derivatives), which leads to Tikhonov regulariza-
tion. In a variety of imaging problems, it has been observed
that this choice may suppress useful features in the image,
such as edges. Furthermore, since the image reconstruction
in this case essentially amounts to linear processing of the
data, resolution improvements cannot be achieved.

Recently, alternative, non-quadratic constraints have been
proposed for increasing the resolution in spectral analysis
[4, 5], as well as for edge-preserving smoothing in real-
valued image restoration and reconstruction problems [6–
10]. In our work, we extend the use of such feature-preserving
prior models to the problem of complex-valued SAR imag-
ing.

We aim to use such prior models in a single framework
for two types of objectives: increasing the resolution, and
decreasing the variability within homogeneous regions with-
out suppressing region boundaries. Consequently, we will
have a separate term for each objective inΨ(f). In particu-
lar, we chooseΨ(f) as follows:

Ψ(f) = λ2
1

∑
i

ψ (|(f)i|) + λ2
2

∑
i

ψ ((D|f |)i) . (3)

Here,λ1 andλ2 are scalar parameters,D is a discrete 2-D
derivative operator and(·)i denotes theith element of a vec-
tor. The role of the first term in (3) is to put an energy-type
constraint on the solution, and this term should be chosen in
such a way to suppress artifacts and increase the resolvabil-
ity of scatterers. The second term is a piecewise smooth-
ness penalty which should be chosen in such a way that it
provides the required smoothing while preserving the edges
and hence the shapes of the objects.1 The relative magni-
tudes ofλ1 andλ2 reflect the emphasis on superresolution
imaging and edge-preserving smoothing respectively.

Smoothness penalties used in real-valued imaging prob-
lems are usually based onDf . For the SAR imaging prob-
lem however, we need to impose smoothness on themagni-
tudesof the complex-valued, random-phase fieldf , there-
fore our constraint is in terms ofD|f |. Note that the non-
linearity introduced by this SAR-based constraint can create

1Our method does not require the potential functionsψ used for the two
terms in (3) to be identical, however we use identical potential functions
for simplicity here.

ψ1(x) (x2 + β)p/2

ψ2(x) (x2+β)p/2

1+(x2+β)p/2

ψ3(x) log
(
1 + (x2 + β)p/2

)
Table 1. Families of potential functions used.p is a pa-
rameter determining the shape of the functions.β is a small
smoothing constant.

a more challenging optimization problem than that arising
in real-valued image reconstruction problems based onDf .

Now, let us discuss the choice of the potential func-
tion ψ. In [11], we have used potential functions based on
`1-norms, here we will consider more general priors. The
three particular classes of feature-preserving functionsψ
we will use in this paper are shown in Table 1.2 For all
of these functions,β is a small smoothing parameter, hence
(x2 + β)p/2 ≈ xp. Using such a smooth approximation
to xp prevents numerical complications which may arise in
differentiatingxp around the origin forp ≤ 1.

Note that the use ofψ1 in (3) leads to constraints in
terms of approximatèp-norms [6], where we will consider
values ofp smaller than1. The potential functionψ2 is
based on previous work in [7]. Special cases ofψ2 for p = 1
andp = 2 yield the potential functions used in [8] and [9]
respectively. Finally,ψ3 is a generalized version of the po-
tential function proposed in [10]. Note that these potential
functions can more generally be expressed in terms ofx/∆,
where∆ is a scaling parameter. We will use a fixed∆, and
omit it in our analysis for notational simplicity.

2.3. Numerical Solution

The optimization problem in (2) with the particular choices
of ψ (henceΨ) we have made, does not have a closed-form
solution. For its numerical solution, we will use a quasi-
Newton method with a particular Hessian approximation.
Our method can also be shown to be an extension of the
half-quadratic regularization scheme of [8]. To this end, we
first take the gradient of the expression in (2) with respect
to the real and imaginary parts off . Then, using a compact
notation with complex-valued matrices, we write the result-
ing optimality condition in terms of what resembles a linear
function off :

H̃(f)f = 2THy (4)

where

H̃(f) , 2THT + λ2
1Qk(|f |) + λ2

2ΦH(f)DTQk(D|f |)DΦ(f) (5)

2One might subtract an appropriate constant from each potential func-
tion to setψk(0) = 0 (k = 1, 2, 3), however we have chosen not to do so
in Table 1, to keep the notation simpler.



q1(x) p
(x2+β)1−p/2

q2(x) p

(x2+β)1−p/2[(x2+β)p/2+1]2

q3(x) p

(x2+β)1−p/2[(x2+β)p/2+1]

Table 2. The weighting functions associated with the po-
tential functions.

Qk(z) , diag{qk(zi)}
Φ(f) , diag{exp(−jφ[(f)i])}

Hereφ[(f)i] denotes the phase of the complex number(f)i,
and diag{·} is a diagonal matrix whoseith diagonal element
is given by the expression inside the brackets. The weight-
ing functionsqk(·) (k = 1, 2, 3) depend on the potential
functionsψk, and are shown in Table 2.

To compute the solution, we will use a quasi-Newton-
type algorithm, wherẽH(f) at each step of the algorithm
will serve as the Hessian approximation for the next itera-
tion. This leads to the following iteration for̂f (n+1):

H̃
(
f̂ (n)

)
f̂ (n+1) = (1− γ) H̃

(
f̂ (n)

)
f̂ (n) + γ2THy

(6)

whereγ is the step-size. We terminate the iteration when-
ever thè 2-norm of the difference between consecutive iter-
ates, relative to the norm of the iterate itself, is smaller than
a threshold.

3. EXPERIMENTAL RESULTS

To demonstrate the performance of our image reconstruc-
tion method, we use images from the MIT Lincoln Labora-
tory Advanced Detection Technology Sensor (ADTS) data
set [12]. For all the results presented here, we have chosen
the values ofλ1 andλ2 based on subjective qualitative as-
sessment of the formed imagery. We use∆ = 1 for all the
examples.

First, we will consider edge-preserving image formation
in our framework. For this task, the dominant prior informa-
tion term in (3) should be the smoothness constraint (hence
we need to setλ2 > λ1). Images of a military vehicle ob-
tained by the use of various potential functions, as well as
the conventional method are shown in Figure 1. The im-
ages produced by our scheme exhibit reduced speckle, and
clear object and shadow boundaries which are important for
automated decision making.

Next, we will demonstrate superresolution imaging. For
this task, we setλ2 = 0 in (3). Figure 2 shows images of
the vehicle reconstructed from0.6 m resolution data. Im-
ages formed by our approach exhibit improved resolution,
reduced sidelobes and hence better dominant scatterer lo-
calization than the conventional image. Figure 3 contains

(a) (b)

(c) (d)

Fig. 1. Edge-preserving reconstructions with various poten-
tial functions. (a) Conventional image. (b)ψ1, p = 0.8. (c)
ψ2, p = 0.8. (d)ψ3, p = 0.8.

similar results for an even more reduced resolution level of
1.2 m.

For a quantitative evaluation of this image formation
technique (for a subset of the potential functions used here)
in terms of feature-preserving accuracy, please see [13].

4. CONCLUSIONS

We have developed an enhanced regularized image forma-
tion method for the complex-valued SAR imaging prob-
lem, and demonstrated the use of three classes of feature-
preserving potential functions in our framework. The method
effectively deals with well-known difficulties in SAR such
as resolution loss, sidelobes and speckle, and produces im-
ages which accentuate features important for automated in-
terpretation of SAR imagery.
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