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ABSTRACT

We present the application of a recently-developed region-enhanced synthetic aperture radar (SAR) image re-
construction technique to the problem of passive radar imaging. One goal in passive radar imaging is to form
images of aircraft using signals transmitted by commercial radio and television stations, which then get reflected
from the objects of interest. This involves reconstructing an image from sparse samples of its Fourier transform.
Due to the sparse nature of the aperture, a conventional image formation approach based on direct Fourier
transformation results in quite dramatic artifacts in the image, as compared to the case of active SAR imaging.
The region-enhanced image formation method we consider appears to significantly reduce such artifacts, and
preserve the features of the imaged object. Furthermore, this approach exhibits robustness to measurement
noise. We demonstrate our results using data based on electromagnetic simulations.

Keywords: Passive radar, multistatic radar, sparse-aperture imaging, image reconstruction, feature-enhanced
imaging.

1. INTRODUCTION

Traditional synthetic aperture radar (SAR) systems transmit waveforms and deduce information about targets
by measuring and analyzing the reflected signals. The active nature of such radars can be problematic in military
scenarios since the transmission reveals both the existence and the location of the transmitter. An alternative
approach is to exploit “illuminators of opportunity” such as commercial television and AM/FM radio broadcasts.
Such passive approaches offer numerous advantages. The overall system cost may be cheaper, since a transmitter
is no longer needed. Commercial transmitters are typically much higher in elevation than the prevailing terrain,
yielding coverage of low altitude targets. Most importantly, such a system may remain covert, yielding increased
survivability and robustness against deliberate directional interference. Such passive multistatic radar systems
have been developed to detect and track aircraft. If one could additionally form images from such data, that
would be useful in identifying the observed aircraft through image-based target recognition.

We should note that television and FM radio broadcasts operate at wavelengths that are much larger than
those typically employed in active radar systems. For instance, an X-band radar might operate at 10 GHz,
whereas a passive radar system operates in the VHF and UHF bands (55-885 MHz). From an imaging viewpoint,
lower frequencies result in reduced cross-range resolution; hence, to achieve high-resolution images, the target
needs to be tracked for some length of time to obtain data over a wide range of angles. Another consequence is
that low-frequency images contain extended features, and are not well-modeled by a small number of scattering
centers.

Forming images of aircraft using passive radar systems involves reconstructing an image from sparse samples
of its Fourier transform.1, 2 The sampling pattern in a particular data collection scenario depends on the locations
of the transmitters and the receiver, as well as the flight path of the object to be imaged; hence it is highly variable.
Conventional Fourier transform-based imaging essentially sets the unavailable (due to the sparse aperture) data
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samples to zeros. This results in various artifacts in the formed image, the severity of which depends on the
specifics of the data collection scenario.

Motivated by the limitations of direct Fourier transform-based imaging in the context of passive radar,
an alternative idea of using a deconvolution technique borrowed from radio astronomy (namely the CLEAN
algorithm3, 4) has been explored in Ref. 1. However, the results of the study in Ref. 1 suggest that the CLEAN
algorithm does not outperform direct Fourier reconstruction for passive radar imaging, due to the following
reasons. Deconvolution techniques such as the CLEAN algorithm, work best on images which are well-modeled
as a set of distinct point scatterers. Hence, such algorithms are well-suited to high-frequency imaging of man-made
targets, as the current on the scatterer surface tends to collect at particular points. When using low frequencies
of interest in passive radar, the images are more spatially-distributed. In addition, the complex-valued, and
potentially random-phase5 nature of radar imaging also presents a complication for CLEAN.

To address these challenges, we adapt and use a recently-developed, optimization-based radar imaging
method. This approach uses an explicit model of the particular data collection scenario. This model-based as-
pect provides significant reduction in the types of artifacts observed in conventional imaging. More importantly,
the optimization framework contains non-quadratic constraints for region-based feature enhancement, which in
turn results in accurate reconstruction of spatially-extended features. Finally, this approach explicitly deals with
the complex-valued and potentially random-phase nature of radar signals. We present experimental results on
data obtained through electromagnetic simulations via the Fast Illinois Solver Code (FISC), demonstrating the
effectiveness of the proposed approach for passive radar imaging.

2. DATA COLLECTION IN PASSIVE RADAR

In multistatic passive radar, the transmitters and the receiver are separated. The “look angle” is then determined
by the bisector of the angle formed by the receiver-target-transmitter triangle.6 The location and support of the
data observed in the spatial frequency domain depends on the frequency and bandwidth of the transmitted
signals, as well as the look angles. Unlike the case in active radar systems where one uses high-bandwidth
signals, in passive radar based on radio and television signals, one is limited to much lower bandwidths. At each
observation instant, we might think of each transmitter-receiver pair providing essentially “one point” in the 2-D
frequency spectrum. Multiple television and radio stations must be exploited to obtain the frequency diversity
needed for reasonable-quality imaging. In addition, the aircraft must be tracked and data collected over time to
obtain angular diversity, with each transmitter-receiver pair providing data on an arc in 2-D Fourier space.

In active synthetic aperture radar, one conventional image formation technique is the polar format algorithm
based on an interpolation of the data to a rectangular grid, followed by a Fourier transformation. We can
consider a similar approach as the “conventional” method for imaging in passive radar. In active monostatic
radar imaging, the data in the spatial frequency domain usually lie in a regular annular region. The regularity of
this region then leads to a sinc-like point spread function when the image is formed using a Fourier transform. On
the other hand, in multistatic passive radar, the “sampling pattern” in the spatial frequency domain is much more
irregular for a number of reasons. First of all, since the transmitted signals are narrowband, each transmitter-
receiver pair provides a “point” rather than a “slice” of data. Secondly, to obtain reasonable azimuth resolution,
data are collected over a wider range of observation angles. Thirdly, the look angles of different transmitter-
receiver pairs lead to coverage in different areas of the spectrum. In a related fashion, where the data lie in the
spectrum depends on the flight path of the object being imaged. As a result, when we form images using direct
Fourier inversion, the imaging artifacts that we encounter are more severe than the case in active radar systems.
Furthermore, the nature of the artifacts cannot be determined just based on the system design, since the flight
path of the aircraft has a role as well.

3. REGION-ENHANCED IMAGING

Based on the issues outlined in the previous section, we propose a different approach for passive radar imaging.
There are two main ingredients of this approach that make it especially suited for passive radar applications.
First, it is model-based, meaning that it explicitly uses a mathematical model of the particular observation
process. As a result, it has a chance of preventing the types of artifacts that are caused by direct Fourier



inversion. Second, it facilitates the incorporation of prior information or constraints about the nature of the
scenes being imaged. This is important, since passive radar imaging is inherently an ill-posed problem. In
particular, we focus on the prior information that in the low frequencies of interest in passive radar, the scenes
contain spatially-extended structures, corresponding to the actual contours of real aircraft. As a result, we
incorporate constraint for preserving and enhancing region-based features, such as object contours.

The approach we use for passive radar imaging is based on the feature-enhanced image formation framework
of Ref. 7, which is built upon non-quadratic optimization. This approach has previously been used in active
synthetic aperture radar imaging. In this section, we provide a brief overview of feature-enhanced imaging. Let
us start from the following assumed discrete model for the observation process:

g = Tf + w (1)

where g denotes the observed passive radar data, f is the unknown sampled reflectivity image, w is additive
measurement noise, all column-stacked as vectors, and T is a complex-valued observation matrix. The data can
be in the spatial frequency domain, in which case T would be an appropriate Fourier transform-type operator cor-
responding to the particular sampling pattern determined by the flight path of the target. Alternatively through
a Fourier transform, one can bring the data into the spatial domain, and then use the resulting transformed
observations as the input to the algorithm. In this case T would be the point spread function corresponding to
the particular data collection scenario. In our experiments we use the latter setup.

The objective of image reconstruction is to obtain an estimate of f based on the data g in Eqn. (1). The
conventional image formation algorithm can roughly be interpreted in this framework as the application of the
adjoint to the data: f̂CONV = THg. In contrast, feature-enhanced image reconstruction is achieved by solving
an optimization problem of the following form:

f̂ = arg min
f

{‖g − Tf‖2
2 + λ1‖f‖p

p + λ2‖∇|f |‖p
p

}
(2)

where ‖ · ‖p denotes the �p-norm (p ≤ 1), ∇ is a 2-D derivative operator, |f | denotes the vector of magnitudes of
the complex-valued vector f , and λ1, λ2 are scalar parameters. The first term in the objective function of Eqn. (2)
is a data fidelity term. The second and third terms incorporate prior information regarding both the behavior of
the field f , and the nature of the features of interest in the resulting reconstructions. The optimization problem
in Eqn. (2) can be solved by using an efficient iterative algorithm,7 based on half-quadratic regularization.8

Each of the last two terms in Eqn. (2) is aimed at enhancing a particular type of feature that is of importance
for radar images. In particular, the term ‖f‖p

p is an energy-type constraint on the solution, and aims to suppress
artifacts and increase the resolvability of point scatterers. The ‖∇|f |‖p

p term on the other hand, aims to reduce
variability in homogeneous regions, while preserving and enhancing region boundaries. The relative magnitudes
of λ1 and λ2 determine the emphasis on such point-based versus region-based features. Therefore, this framework
lets us reconstruct images with two different flavors: using a relatively large λ1 yields point-enhanced imagery,
and using a relatively large λ2 yields region-enhanced imagery. In the context of passive radar imaging, our
primary focus is to preserve and enhance the shapes of spatially-distributed objects. Hence we emphasize the
use of the region-enhancement terms here.

4. EXPERIMENTS

4.1. Electromagnetic Simulation using FISC

Asymptotic codes such as XPATCH9 do not work well for aircraft-sized targets at the low frequencies of interest
in passive radar systems. Hence, the simulations in the remaining sections invoke the Fast Illinois Solver Code
(FISC), which solves Maxwell’s equations via the method of moments. FISC is extremely particular about the
quality of CAD models it needs. In particular, FISC requires that each edge of each triangular facet exactly match
the edge of some other triangular facet. The model must contain no internal or intersecting parts. Unfortunately,
such models are rare; in particular, readily available models which are perfectly adequate for XPATCH are often
not suitable for FISC.



(a) (b)

Figure 1. Reference passive radar images reconstructed from “full” datasets using direct Fourier reconstruction. The
images are 256 × 256. (a) VFY-218. (b) Falcon 20.

Each experiment in this paper is conducted on two different targets: a VFY-218, and a Dassault Falcon 20.
A FISC compatible model of the VFY-218 comes standard as part of the SAIC Champaign XPATCH/FISC
distribution. For the Falcon 20, we started from a FISC-compatible model of a Falcon 100. The Falcon 20 is
essentially a larger version of the Falcon 100, so we used an approximate Falcon 20 model (as done in Ref. 1) by
scaling the Falcon 100 model.

Given such models, we construct Fourier datasets through FISC runs. The support of the data in the spatial
frequency domain will in general be limited by the observation geometry and system parameters. However, in
order to establish an “upper bound” on the expected imaging performance, let us first observe the images we
would obtain if we had a “full” dataset. To this end, let us use the Fourier data corresponding to 211.25 MHz
(NTSC television channel 13) and incident and observed angles over the full 360 degree viewing circle. Such data
would cover a disk in the spatial frequency domain.1 The magnitudes of the radar images of the two targets,
created by inverse Fourier transforming such data are shown in Fig. 1. Of course, such rich data sets would be
unavailable in practice. However for us, these reconstructions will serve as the “reference scenes” with which to
compare the results of our experiments in the following sections, based on realistic data collection scenarios.

4.2. Experimental Setup

Fig. 2 shows the locations of the VHF television stations and the FM radio stations in the Washington DC area
assumed in our simulations. The center of the coordinate system, where our hypothetical receiver is located, is the
Lockheed Martin Mission Systems facility in Gaithersburg, MD. Five hypothetical flight paths are shown. The
left column of Fig. 3 shows the Fourier “sampling patterns” resulting from this particular transmitter/receiver
geometry and for each of the five flight paths. The sampling pattern indicates the support of the observed data
in the spatial frequency domain for a particular flight path. Hence the observed data for each flight path consists
of a specific subset of the data used for reconstructing the images of Fig. 1, whose contents are determined
by the corresponding sampling pattern. The middle and right columns in Fig. 3 show the magnitude of the
corresponding point spread functions (PSFs) given by the inverse Fourier transform of the sampling patterns.
The middle column shows magnitude on a linear scale, while the right column shows magnitude on a logarithmic
scale in order to elucidate low-level detail in the sidelobes. Note that these sampling patterns, or equivalently
PSFs, are used in specifying the observation matrix T in Eqn. (1). In the next section, we present results based
on data associated with each of these flight paths.

4.3. Results

Let us first consider the flight path corresponding to the sampling pattern in the bottom row in Fig. 3. The
corresponding “conventional” image of the VFY-218, obtained by direct Fourier transformation of the data, is
shown in the top row of Fig. 4(a). Points in the spatial frequency domain where observations are unavailable
are set to zero. This is equivalent to convolving the reference image in Fig. 1(a) with the PSF in the bottom
row of Fig. 3. As compared to the “reference” image of Figure 1(a), the direct Fourier reconstruction in the
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Figure 2. Data collection geometry. VHF TV stations are represented with a +; FM radio stations with a ×, and the
receiver with a circle. The lines represent five hypothetical flight paths.

top row of Fig. 4(a) contains severe imaging artifacts, resulting in suppression of some of the characteristic
features of the imaged object. In this example we have not added any noise to the measurements. Hence in
the context of the observation model in Eqn. (1), we do not have any measurement noise. As a result, one can
consider applying the pseudoinverse of the observation matrix, namely T†, to the data to obtain a reconstruction
f̂PINV = T†g. The pseudoinverse reconstruction obtained in this manner is shown in the top row of Fig. 4(b).
The region-enhanced reconstruction (with p = 1) is shown in the top row of Fig. 4(c). Both the pseudoinverse and
the region-enhanced reconstructions provide reasonable results in this noise-free case, with the region-enhanced
reconstruction providing somewhat better suppression of sidelobe artifacts. It is well-known that pseudoinverse
solutions are very sensitive to noise, especially when the observation model results in an ill-conditioned matrix.
The bottom row of Fig. 4 shows the direct Fourier, the pseudoinverse, and the region-enhanced reconstructions,
when we have a small amount of measurement noise. The pseudoinverse solution breaks down in this case, and is
in general useless in practical scenarios where observation noise is inevitable. The region-enhanced reconstruction
exhibits robustness to noise, and preserves the characteristic features and shape of the VFY-218, despite the
noisy sparse-aperture observations.

Let us now consider all the flight paths in Fig. 3. In Fig. 5, we show the reconstructions for the VFY-218. In
this example, we have a small amount of measurement noise, resulting in a signal-to-noise ratio (SNR) of 30 dB.
Fig. 5(a) and Fig. 5(b) contain the direct Fourier, and the region-enhanced images, respectively. There is a row-
to-row correspondence between Fig. 3 and Fig. 5, in terms of the flight paths. We observe that region-enhanced
imaging produces reconstructions that preserve the features of the reference image of Fig. 1(a) in a much reliable
way than direct Fourier imaging. In all of our experiments, we use p = 1 in Eqn. (2) for region-enhanced imaging.

We also observe that the direct Fourier images in the bottom three rows of Fig. 5, while blurry, are clearer
than the images in the top two rows. Looking at the corresponding sampling patterns in Fig. 3, the primary
difference seems to be that the paths corresponding to the top two rows keep the receiver and the transmitters on
the same side of the target, yielding a quasi-monostatic (small bistatic angle) geometry, whereas in the bottom
three rows, the target flies between the receiver and some of the transmitters, yielding large bistatic angles and
wider effective coverage in frequency space. The important point to note is that the nature of the artifacts that
may be caused by direct Fourier imaging depend on the flight path of the target being imaged, hence may not be
easily predicted prior to data collection. On the other hand, in Fig. 5 we observe that region-enhanced images
corresponding to different flight paths are much more similar. In Fig. 6, we show similar results for the Falcon 20,



again with data having an SNR of 30 dB.

Finally, in Figures 7 and 8, we show reconstructions of the VFY-218 and the Falcon 20 respectively, for a
noisier scenario where SNR=10 dB. Region-enhanced imaging appears to produce reasonable results in this case
as well.

5. CONCLUSION

We have explored the use of an optimization-based, region-enhanced image formation technique for the sparse-
aperture passive radar imaging problem. Due to the sparse and irregular pattern of the observations in the spatial
frequency domain, conventional direct Fourier transform-based imaging from passive radar data leads to unsat-
isfactory results, where artifacts are produced and characteristic features of the imaged objects are suppressed.
The region-enhanced imaging approach we use appears to be suited to the passive radar imaging problem for
a number of reasons. First, due to its model-based nature, the types of artifacts caused by conventional imag-
ing are avoided. Second, it leads to the preservation and enhancement of spatially-extended object features.
Third, unlike a number of deconvolution techniques, it can deal with the complex-valued nature of the signals
involved. Our experimental results based on data obtained through electromagnetic simulations demonstrate the
effectiveness and promise of this approach for passive radar imaging.

In this paper, we have assumed that we know the passive radar observation model exactly, which involves
knowledge about not only the transmitters and the receiver, but also about the flight path of the target being
imaged. In practice, information about the target flight path is obtained from a tracking system, and is likely
to contain uncertainties. Therefore, it is important to develop image formation techniques that can deal with
uncertainties in the observation model. This constitutes a challenging direction for future work.
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Figure 3. Left column shows Fourier sampling patterns associated with five different flight paths. Remaining columns
show the magnitude of the PSFs associated with the sampling patterns. The middle column uses a linear scale, while the
right column uses a logarithmic scale to show fine detail. The PSFs are 256 × 256.
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Figure 4. Reconstructions of the VFY-218 based on data restricted to the Fourier sampling pattern shown in the bottom
row of Fig. 3. Top row: noiseless data. Bottom row: noisy data. (a) Direct Fourier reconstruction. (b) Pseudoinverse
reconstruction. (c) Region-enhanced reconstruction (p = 1).
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Figure 5. Reconstructions of the VFY-218 based on data (with SNR = 30 dB) restricted to the Fourier sampling patterns
shown in Fig. 3. (a) Direct Fourier reconstructions. (b) Region-enhanced reconstructions (p = 1).
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Figure 6. Reconstructions of the Falcon 20 based on data (with SNR = 30 dB) restricted to the Fourier sampling patterns
shown in Fig. 3. (a) Direct Fourier reconstructions. (b) Region-enhanced reconstructions (p = 1).
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Figure 7. Reconstructions of the VFY-218 based on data (with SNR = 10 dB) restricted to the Fourier sampling patterns
shown in Fig. 3. (a) Direct Fourier reconstructions. (b) Region-enhanced reconstructions (p = 1).
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Figure 8. Reconstructions of the Falcon 20 based on data (with SNR = 10 dB) restricted to the Fourier sampling patterns
shown in Fig. 3. (a) Direct Fourier reconstructions. (b) Region-enhanced reconstructions (p = 1).


