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ABSTRACT

We propose a new method for superresolution, feature-enhanced reconstruction of high range-resolution (HRR)
radar profiles. We pose the problem of the formation of the HRR profiles from phase history data as an opti-
mization problem. Resolution and feature enhancements are achieved by imposing non-quadratic regularizing
constraints on the solution of the optimization problem. We present experimental results on synthetic and
measured data, and compare the proposed method to currently available techniques. This analysis shows the
ability of the proposed method to preserve high-resolution features such as the locations and amplitudes of the
dominant scatterers in the HRR profile. This suggests that the technique may potentially help improve the
performance of HRR target recognition systems.

Keywords: High range-resolution radar, feature extraction, signal reconstruction, non-quadratic optimization,
superresolution.

1. INTRODUCTION

There has recently been considerable interest in using high range-resolution (HRR) radar for automatic tar-
get recognition (ATR).1–6 The success of ATR depends on the resolution and accuracy of the target range
features in the HRR profiles. Conventionally, HRR profiles are formed from the phase history data through
a Fourier transform-based operation, which has a resolution limited by the radar bandwidth. Recently, high-
resolution techniques have been proposed and successfully used for forming HRR profiles, and for extracting
range features.5–10

We propose a different perspective for achieving superresolution HRR profile formation and feature extrac-
tion. We formulate the problem in a variational framework, where we minimize a regularized objective function
for finding an estimate of the range profile. The key is to use appropriate non-quadratic regularizing function-
als, such as �p-norms. This leads to a sparsity constraint on the reconstructed profile, and helps preserve the
dominant target scatterers, while suppressing noise and clutter.

For the solution of the optimization problem posed in our framework, we use a computationally efficient
Quasi-Newton scheme. We demonstrate the effectiveness of the proposed approach using examples from the
University Research Initiative Synthetic Dataset (URISD),11 and from the Moving and Stationary Target
Acquisition and Recognition (MSTAR) public target data set.12 We compare our technique to a number of
methods proposed for HRR profile formation and feature extraction. The results of this study demonstrate the
superresolution and accurate feature extraction capabilities of the proposed method. The approach may be of
benefit for feature-based and template-based HRR ATR systems.
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2. PRELIMINARIES

2.1. Context and Scope of Our Work

Conventional moving target indication (MTI) radars aim to detect, locate and track moving targets. The
primary goal of HRR radars is to provide more detailed information about the observed object in order to
achieve target recognition as well, while still using short dwell times. An HRR radar uses high-bandwidth
pulses so that it achieves a sufficiently high resolution to profile a target. The information contained in the
profile is the magnitude of the radar scattering as a function of range, along the line of sight of the radar.

There has recently been much interest in using HRR profiles for recognition of moving targets, and both
template-based,2–4 and feature-based1 approaches to the problem have been proposed. In order for such
recognition systems to be successful, the HRR profiles need to exhibit the characteristic features of the targets.
Our work addresses the problem of forming HRR profiles from the observed phase history data such that
important target range features are preserved, and can accurately be extracted from the HRR profile. An HRR
system needs to deal with a variety of other issues prior to the target range feature extraction step, such as
clutter suppression, Doppler frequency estimation, and target phase history estimation.8 These important tasks
are beyond the scope of this paper, and we concentrate on HRR profile formation and range feature extraction.

2.2. Motivation for Superresolution Processing

The primary difficulty associated with the HRR sensor for ATR is that the HRR signatures exhibit a high degree
of variability. Yet, characteristic, robust features are required for successful recognition. In Ref. 1 locations and
amplitudes of the dominant peaks in the HRR profile have been proposed as such features. Superresolution
processing techniques for HRR profiles can help in the accurate extraction of such features, and there has been
some recent work in this direction. In particular, in Refs. 7–10, a relaxation-based algorithm has been used
for superresolution target feature extraction, whereas in Refs. 5, 6, the synthetic aperture radar (SAR) imaging
technique of Ref. 13 has been used for forming HRR profiles. Furthermore, the study in Refs. 5, 6 has also
demonstrated that superresolution techniques can improve HRR ATR performance. With these motivations, we
propose a non-quadratic regularization-based superresolution signal reconstruction technique for the formation
of HRR profiles.

3. SUPERRESOLUTION RECONSTRUCTION OF HRR PROFILES BY
NON-QUADRATIC OPTIMIZATION

3.1. Overview

The problem we address is the inverse problem of obtaining a complex HRR profile from the received, pre-
processed HRR phase history signal. To this end, let x be the sampled HRR profile, and y be the noisy sampled
phase history data. Then, we have the following observation model:

y = Fx + w (1)

where w is measurement noise, and F is a high-resolution to low-resolution Fourier transform operator. This
definition of F reflects the belief that the underlying object (hence its profile) possesses high-frequency features
that are not captured by the resolution supported by the data. The conventional way to reconstruct the HRR
profile is through an inverse Fourier transform, which, in this framework can be represented by x̂CONV = FHy,
with appropriate normalization. In contrast, we formulate the HRR profile reconstruction problem as the
following optimization problem:

x̂ = arg min
x

J0(x) (2)

where we choose J0(x) to be an objective function of the following form:

J0(x) = ‖y − Fx‖2
2 + λ‖x‖p

p (3)



where p < 2 and λ are scalar parameters, and ‖ · ‖p denotes the �p-norm. The first term in the above objective
function is a data fidelity term. The second term is a regularizing constraint whose role is to suppress artifacts
and increase the resolvability of the scatterers in the HRR profile.

Such regularized signal reconstruction methods, based on �p-norms with p < 2 as in Eq. (3), or based on other
non-quadratic potential functions, have been shown to provide superresolution results.14 These methods have
found use in applications such as nuclear magnetic resonance (NMR) spectroscopy,15 astronomical imaging,16

synthetic aperture radar (SAR) imaging,17 and recently, source localization with passive sensor arrays.18 These
approaches achieve superresolution by exploiting the expected sparse structure of the unknown signals through
the non-quadratic regularizing constraints.

We end this section by pointing out the relationship between our technique for superresolution HRR profile
reconstruction and the field of adaptive signal representation.19–21 Adaptive signal representation addresses
the problem of finding optimal representations of signals as combination of elements from an overcomplete
dictionary. Such techniques have been used for feature extraction from HRR profiles.21 One adaptive signal
representation technique, called basis pursuit denoising,20 finds an optimal representation by minimizing an
objective function of the same mathematical form as Eq. (3) with p = 1. Hence, we can interpret a special case
of our signal reconstruction method as one of finding the optimal basis pursuit denoised representation of the
observed HRR data, in terms of the complex exponential dictionary elements.

3.2. Algorithm

We now describe a numerical solution of the optimization problem posed in Eqs. (2) and (3). In order to
avoid problems due to non-differentiability of the �p-norm around the origin when p ≤ 1, we use a smooth
approximation to the �p-norm in Eq. (3). This leads to the following slightly modified cost function to be used
in practice for numerical purposes:

J(x) = ‖y − Fx‖2
2 + λ

M∑
i=1

(|xi|2 + ε)p/2 (4)

where ε ≥ 0 is a small constant, xi denotes the i-th element of the vector x, and M is the length of the vector x.
We minimize J(x) by a Quasi-Newton method:

x̂(n+1) = x̂(n) − γ
[
H

(
x̂(n)

)]−1

∇J(x̂(n)) (5)

where n denotes the iteration number, γ is the step size, ∇J(·) is the gradient of the cost function, and H(·) is
the Hessian approximation, defined as:

H(x) � 2FHF + λ · diag
{

p

(|xi|2 + ε)1−p/2

}
. (6)

Here diag{·} is a diagonal matrix whose i-th diagonal element is given by the expression inside the brackets.
After substituting Eq. (6) into Eq. (5) and rearranging, we obtain our iterative algorithm:

H
(
x̂(n)

)
x̂(n+1) = 2FHy (7)

where we have used a step size of γ = 1. We run the iteration in Eq. (7) until ‖x̂(n+1) − x̂(n)‖2/‖x̂(n)‖2 < δ,
where δ > 0 is a small constant.



4. EXPERIMENTAL RESULTS

In the following subsections, we present experimental results based on simple synthetic data, XPATCH-simulated22

HRR data,11 and HRR data extracted from stationary real SAR images.12 These data sets have previously
been used in a number of studies involving HRR profile formation and HRR ATR.2–6 We compare the results of
our method to those obtained by Capon’s method23 and RELAX,24 as well as conventional Fourier-transform-
based reconstructions. Capon’s method and RELAX have played central roles in a number of recent techniques
including those in Ref. 6 and Ref. 8, respectively. We discuss the potential benefits and problems associated
with each approach.

4.1. Synthetic Data Reconstructions
First, we demonstrate the superresolution capability of our method on the reconstruction of a simple synthetic
HRR profile composed of six scatterers, the magnitude of which is shown in Figure 1(a). This synthetic profile is
much simpler than a real HRR profile since it disregards the existence of clutter and minor scatterers, however
it is useful for demonstrating the behavior of the technique, and for analyzing the accuracy of the reconstructed
scatterer locations based on the known truth. In our first example, the phase history data supports a resolution
of 4 times worse than that of the original signal. The resolution loss is evident in the conventional, Fourier-
transform-based reconstruction of Figure 1(b), where the leftmost two peaks of the original signal have been
merged into one. Figure 1(c) shows the reconstruction obtained by Capon’s method, where the leftmost two
peaks have barely been resolved. Next, we present the result of applying RELAX. The output of RELAX
is scatterer locations and the associated complex reflectivities. We provide RELAX with the true number of
scatterers. In practice this number needs to be determined by using e.g. the generalized Akaike information
criterion.24 To visualize the features extracted by RELAX as a profile, we plot the estimated magnitudes of
the reflectivities versus the scatterer locations in Figure 1(d). RELAX can resolve all the scatterers, although
their locations are not exactly true, and the amplitudes of the scatterers relative to each other are not preserved
(consider the leftmost two peaks). Finally, Figure 1(e) contains the result of the method proposed in this paper,
with p = 0.1. All the scatterers are resolved, and the relative amplitude structure of the scatterers appears
to be better preserved as compared to RELAX. As we have mentioned previously, locations of the dominant
scatterers is an important feature for HRR profiles. In Table 1, we display the scatterer locations (in terms of
range bins) extracted by various methods. For RELAX, these locations are an output of the technique. For
the other methods, we find these locations by finding the peaks in the reconstructed HRR profile. The peaks
are taken to be the points where the discrete spatial derivative of the reflectivity magnitude changes sign from
positive to negative. Once the peaks are found, we order them based on their magnitudes, and pick the largest
six of them. The results in Table 1 indicate that, for this particular example, Capon’s method and our method
find the locations perfectly, while RELAX exhibits some location errors. If we use the sum of the absolute
location errors as an error criterion, RELAX has an error of 5 range bins.

In our second example, we consider a scenario where the data support a resolution that is 5.3 times worse
than the original signal. As shown in Figures 2(b) and 2(c), both the conventional method, and Capon’s
method have difficulty resolving the scatterers in this case. RELAX and our technique provide more reasonable
results as illustrated in Figures 2(d) and 2(e) in terms of resolvability. The relative amplitude structure of the
original signal is better preserved by our approach as compared to RELAX. As shown in Table 2, RELAX has
a localization error of 6 range bins, whereas our method can still determine the locations of all the scatterers
exactly.

So far we have considered high signal-to-noise ratio (SNR) examples. Our next results are based on a similar
scenario to that of Figure 2, but in this case we add a considerable amount of white Gaussian noise to the phase
history data so that the SNR is 14 dB. The results are presented in Figure 3. As compared to the high-SNR
case, Capon’s method exhibits some loss in resolving power. Our method has a localization error of 2 range
bins, while RELAX has an error of 6 range bins.

4.2. URISD Reconstructions
We now present results using the University Research Initiative Synthetic Dataset (URISD).11 The URISD
provides a collection of simulated range profiles and the associated phase histories, produced by the HRR



True peak locations Capon’s RELAX Proposed
120 120 119 120
122 122 121 122
140 140 140 140
143 143 144 143
178 178 177 178
182 182 183 182

Table 1: Scatterer locations extracted by various methods for the example in Figure 1.

True peak locations Capon’s RELAX Proposed
120 121 118 120
122 140 121 122
140 157 141 140
143 165 144 143
178 178 178 178
182 182 183 182

Table 2: Scatterer locations extracted by various methods for the example in Figure 2.

simulator XPATCH.22 The URISD includes data for four ground vehicles (two tank models, school bus, fire
truck) over three frequency bands (UHF, L, X). In the example we present here, we have used the X-band data
which has a central frequency of 10 GHz, and a bandwidth of 1.4775 GHz. This implies a resolution of around
0.1 m. We have used conventionally reconstructed 0.1 m resolution profiles as the “reference” profiles. In our
experiments, we have used limited data, supporting a resolution of 0.4 m to test various methods.

Figure 4(a) shows the reference profile for a fire truck at 0◦ orientation. The conventional reconstruction
from reduced resolution data is shown in Figure 4(b). Note that the two dominant peaks around range bin
110, and the two dominant peaks around range bin 150 in the reference profile are merged into single peaks
in the conventional reconstruction. As illustrated in Figure 4(c), Capon’s method produces an HRR profile
where the main lobes around the peaks are reduced (relative to the conventional reconstruction), however the
pairs of dominant scatterers are still not resolved. For RELAX, we take the total number of scatterers to be 9.
Figure 4(d) shows the RELAX result, which seems to have a better performance in terms of resolving the
dominant scatterers. However some of the dominant scatterers are too much suppressed, and this might be a
problem if the relative amplitude structure of the scatterers is of use for further processing. Furthermore, this
might result in the missing of some of the dominant scatterers, especially if the assumed number of scatterers
is not large enough. For example, if we assumed 6 scatterers in this example, RELAX would miss one of the
two dominant scatterers around range bin 150.

We present two flavors of our technique in this example. First, as we did for the synthetic examples, we
concentrate on extracting location features, and produce a reconstruction with p = 0.1, shown in Figure 4(e).
This resolves the dominant scatterers, yields a similar performance to RELAX in terms of peak location accuracy,
and appears to preserve the relative amplitude structure. This strategy makes sense for feature-based further
processing, however there is also interest in using template-based techniques for HRR ATR,2–6 where the entire
profile serves as a feature. In this context, decision-making is done by comparing profiles at a certain resolution
to templates, in terms of a similarity measure such as the mean-squared error (MSE). In our framework, we
can produce reconstructions that might be useful in such a setting, while still providing reasonable resolution,
by adjusting the parameter p. In Figure 4(f), we show the result of our method with p = 1. We believe
this reconstruction is visually more “similar” to the reference profile of Figure 4(a) than any of the other
reconstructions. We can quantify the similarity by computing the MSE between the reference profile and
various reconstructed profiles. The MSEs are 33.5 · 10−3 for the conventional method, 18.8 · 10−3 for RELAX,
6.29 · 10−3 for our method with p = 0.1, and 4.77 · 10−3 for our method with p = 1. This suggests that the
proposed technique can be tailored to the nature of further processing.



True peak locations Capon’s RELAX Proposed
120 9 118 120
122 96 121 122
140 121 141 140
143 141 144 144
178 179 178 178
182 183 183 183

Table 3: Scatterer locations extracted by various methods for the example in Figure 3.

4.3. MSTAR Data Reconstructions

We now show results on data from the Moving and Stationary Target Acquisition and Recognition (MSTAR)
public target data set.12 The MSTAR public target data set provides SAR images of various military vehicles.
The phase history data used in our experiments are obtained from the SAR images by undoing the image
formation process. The MSTAR images have a resolution of around 0.3 m. In our experiments we have used
limited phase history data, supporting a resolution of 1.2 m. The results for a BTR70 vehicle, presented in
Figure 5, are very similar qualitatively and quantitatively to the URISD example presented in Section 4.2. For
RELAX, we set the number of scatterers to 5 in this example.

5. POTENTIAL EXTENSIONS AND TOPICS FOR FUTURE ANALYSIS

The work in this paper is quite preliminary, and we would like to mention a number of issues, potential
extensions, and experimental analyses that might be the subject of future research.

One issue with the proposed method (as with most regularization-based methods) is the choice of parameters
(in our case p and λ). In the work presented here, we have chosen these parameters by subjective assessment,
based on the goals of the processing. In a practical setting, one needs a principled, automatic way to choose
these parameters. This is important for effective use of the framework presented.

We want to mention two potential extensions of the technique. First, the framework is not limited to the
use of �p-norms in the regularizing constraints, and other non-quadratic potential functions can certainly be
used. Second, the framework can be generalized to enhance features other than dominant scatterer locations.
For example, if the length of the target is the feature that will be used in ATR, one may extend the framework
to use a regularizing constraint that will accentuate this type of feature in the HRR profile.

A more detailed performance analysis of the method is needed. Our experiments were on a small number
of profiles, and an evaluation of the technique in terms of feature extraction accuracy on a large data set would
be useful. Another valuable analysis would be the investigation of the impact of our reconstructions on HRR
ATR.

6. CONCLUSIONS

We have demonstrated the use of a non-quadratic regularization technique for superresolution and feature-
enhanced reconstruction of HRR profiles. Our experimental work suggests that the method can produce higher
resolution profiles than Capon’s method, and can extract features with comparable or higher accuracy than
RELAX. The framework is flexible in the sense that, through the choice of a parameter, one can focus on
extraction of range features, or alternatively on the formation of a typical profile at a certain resolution. In an
ATR setting, this flexibility can be used to tailor the technique to the nature of the recognition processing.
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Figure 1. Synthetic HRR profile reconstruction. Data supports a resolution of 4 times worse than that of the original
signal. (a) True profile. (b) Conventional reconstruction. (c) Capon’s method. (d) RELAX. (e) Proposed method with
p = 0.1.
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Figure 2. Synthetic HRR profile reconstruction. Data supports a resolution of 5.3 times worse than that of the original
signal. (a) True profile. (b) Conventional reconstruction. (c) Capon’s method. (d) RELAX. (e) Proposed method with
p = 0.1.
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Figure 3. Synthetic HRR profile reconstruction from low-SNR (14 dB) data. Data supports a resolution of 5.3 times
worse than that of the original signal. (a) True profile. (b) Conventional reconstruction. (c) Capon’s method. (d)
RELAX. (e) Proposed method with p = 0.1.
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Figure 4. HRR profiles of a fire truck from the URISD at 0◦ orientation. Reconstructions use 0.4 m resolution data. (a)
Reference profile at 0.1 m resolution. (b) Conventional reconstruction. (c) Capon’s method. (d) RELAX. (e) Proposed
method with p = 0.1. (f) Proposed method with p = 1.
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Figure 5. HRR profiles of a BTR70 armored personnel carrier from the MSTAR data set. Reconstructions use 1.2 m
resolution data. (a) Reference profile at 0.3 m resolution. (b) Conventional reconstruction. (c) Capon’s method. (d)
RELAX. (e) Proposed method with p = 0.1. (f) Proposed method with p = 1.1.




