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Abstract

We present an evaluation of the impact of a recently proposed synthetic aperture radar (SAR) imaging

technique on feature enhancement and automatic target recognition (ATR) performance. This image

formation technique is based on non-quadratic optimization, and the images it produces appear to exhibit

enhanced features. In the first part of this paper, we quantify such feature enhancement through a

number of criteria. The findings of our analysis indicate that the new feature-enhanced SAR image

formation method provides images with higher resolution of scatterers, and better separability of different

regions as compared to conventional SAR images. In the second part of this paper, we provide an ATR-

based evaluation. We run recognition experiments using conventional and feature-enhanced SAR images of

military targets, with three different classifiers. The first classifier is template-based. The second classifier

makes a decision through a likelihood test, based on Gaussian models for reflectivities. The third classifier

is based on extracted locations of the dominant target scatterers. The experimental results demonstrate

that the new feature-enhanced SAR imaging method can improve the recognition performance, especially

in scenarios involving reduced data quality or quantity.
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I. Introduction

Automatic target recognition (ATR) methods based on synthetic aperture radar (SAR)

imagery depend implicitly or explicitly on certain features of the objects in the recon-

structed images [3–6]. Robust feature extraction or exploitation can be difficult when

based on SAR images formed by conventional methods, such as the polar format algo-

rithm [7]. One challenge is that the resolution of the formed images is limited by the SAR

system bandwidth, which complicates point scatterer localization. In addition, conven-

tional SAR images suffer from speckle [8, 9], which complicates region segmentation for

shape-based recognition.

Recently, we have developed a new technique for SAR image formation based on non-

quadratic regularization [10]. This method produces images which appear to enhance

point-based features (e.g. scatterer locations), and region-based features (e.g. object shapes,

boundaries). Such features have been explicitly used for ATR [5, 11–16]. In particular,

both scatterer locations and object shapes have played a central role in feature-based

classification algorithms developed recently as part of the Moving and Stationary Target
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Acquisition and Recognition (MSTAR) program [5,15]. Similarly, the work in [11] contains

a physics-based scattering center model for SAR ATR, which has later been used for ATR

performance prediction as well [14]. Scatterer locations and amplitudes have also been

used for recognition of occluded objects in SAR images [12, 13]. The work in [16] uses

region-based features, in particular extracted object boundaries, for ATR. This body of

work suggests that the features which (qualitatively) appear to be enhanced by the SAR

imaging technique of [10] play an important role in ATR. Therefore it is of interest to

analyze the images produced by this technique in terms of such feature enhancement, and

also in terms of the effect of their use in ATR systems.

In this paper, we present a quantitative evaluation of the imagery produced by the

feature-enhanced SAR imaging technique of [10]. Our analysis consists of two parts. The

first part is a feature-based evaluation, where the goal is to determine whether the images

produced by the new method lead to increased accuracy or robustness in feature extraction.

The second part of our analysis is aimed at quantifying the impact of feature-enhanced

imaging on ATR performance.

For the first part of our analysis, we propose a number of criteria for feature-based

evaluation of the reconstructed SAR images. Most of these criteria have been used in the

literature before for evaluating other SAR imaging techniques [17, 18], and a number of

them are new. In particular, the criteria we use regarding point-based features are target-

to-clutter ratio [17], main-lobe width [17], peak matching accuracy, and average associated

peak distance. The criteria we use for region-based features are speckle suppression [17],

segmentation accuracy, and statistical separability of different regions in the scene from

one another [18]. We run experiments on the MSTAR public target data set [19] to com-

pare feature-enhanced SAR images to conventional images in terms of these quantitative

measures. The results of this study show that emphasizing point-based features through

the new image formation method yields images with higher resolution and better domi-

nant scatterer localization than conventional images. Our experiments indicate that the

method is able to produce accurate superresolution reconstructions from considerably re-

duced amounts of data. Emphasizing region-based features on the other hand, results

in enhanced anomaly and speckle suppression in homogeneous regions, which results in
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easier-to-segment images.

We would like to clarify the meaning of “superresolution” in the context of our study.

Current superresolution techniques, including the one evaluated in this paper, make strong

assumptions about the nature of the targets of interest (i.e. that these objects are well-

represented by a collection of discrete point scatterers). These techniques do not provide

a higher imaging resolution uniformly over all scenes. Therefore, such techniques might

yield a “higher resolution” than conventional images only in the sense of more accurate

representation of point-based features. Our evaluation is based on this perspective.

In the second part of our analysis, we present an evaluation of the impact of feature-

enhanced SAR imaging on ATR performance. There has been some recent work performing

ATR-based evaluations of a number of new SAR image formation techniques. In partic-

ular, the high-definition imaging (HDI) technique of [17] has been evaluated in [20]; and

a number techniques (including HDI, and those described in [21]) have been evaluated

in [22], through the use of a template-based classifier [23,24]. In both of these studies, the

new SAR imaging methods have been found to improve the classification performance,

as compared to conventional imaging. In our work, we use the MSTAR public target

data set, and three different classifiers, to make decisions about the target type given

conventional or feature-enhanced images, and compare the results for these two types of

images. The first classifier is based on template-matching, which is a conventional ap-

proach for SAR ATR [23, 24]. The second classifier is based on conditionally Gaussian

models for reflectivities, and performs classification through a likelihood test [25]. The

third classifier is a feature-based one, and performs classification by measuring how well

the dominant scatterer locations extracted from images formed from reduced-resolution

data match the true scatterer locations for each hypothesized target. We present the recog-

nition results in the form of classifier confusion matrices. These experiments demonstrate

that feature-enhanced SAR imaging can offer higher probability of correct classification

than conventional imaging.

In Section II, we provide a brief overview of the feature-enhanced SAR imaging technique

we evaluate in this paper. Section III contains the descriptions of the feature-based criteria

to be used in the first part of our analysis. In Section IV, we describe the classifiers we use
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in the second part of our analysis for ATR-based evaluation. Sections V and VI contain the

experimental results corresponding to the first and second parts of our analysis respectively.

Finally, we conclude in Section VII.

II. SAR Imaging based on Non-Quadratic Optimization

In this section, we provide a brief overview of feature-enhanced SAR image formation

based on non-quadratic optimization. The details of the technique can be found in [10].

Let us start from the following assumed discrete model for the SAR observation process:

g = Tf + w (1)

where g denotes the SAR observations (phase histories or range profiles), f is the unknown

sampled reflectivity image, w is additive measurement noise, all column-stacked as vectors,

and T is a complex-valued SAR observation matrix. If phase history data are used, T is

a 2-D Fourier-type operator [26], and if range profile data are used, T is a complex-valued

projection-type operator. In this framework, the objective of SAR image reconstruction is

to obtain an estimate of f based on the data g. The conventional SAR polar format image

formation algorithm [7] can roughly be interpreted in this framework as the application of

the adjoint to the data: f̂CONV = THg.

In contrast, feature-enhanced SAR image reconstruction is achieved by solving an opti-

mization problem of the following form:

f̂ = arg min
f

[
‖g − Tf‖2

2 + λ1‖f‖p
p + λ2‖D|f |‖p

p

]
(2)

where ‖ · ‖p denotes the �p-norm (p ≤ 1), D is a 2-D derivative operator, |f | denotes the

vector of magnitudes of the complex-valued vector f , and λ1, λ2 are scalar parameters.

The first term in the objective function of (2) is a data fidelity term. The second and

third terms incorporate prior information regarding both the behavior of the field f , and

the nature of the features of interest in the resulting reconstructions. The optimization

problem in (2) can be solved by using an efficient iterative algorithm proposed in [10],

based on half-quadratic regularization [27]. Use of non-quadratic constraints, such as the

second and third terms in (2), has recently become popular, e.g. in image restoration [28],

due to the ability of these constraints to prevent suppression of useful features in the image.
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(a) (b)

Fig. 1. (a) Conventional SAR image. (b) The corresponding point-enhanced, superresolution SAR image.

Taken from [10].

The objective function in (2) extends the use of such constraints to the complex-valued

SAR image reconstruction problem.

Each of the last two terms in (2) is aimed at enhancing a particular type of feature that

is of importance for SAR ATR. In particular, the term ‖f‖p
p is an energy-type constraint

on the solution, and aims to suppress artifacts and increase the resolvability of point

scatterers. The ‖D|f |‖p
p term on the other hand, aims to reduce variability in homogeneous

regions. The relative magnitudes of λ1 and λ2 determine the emphasis on such point-based

versus region-based features. Therefore, this framework lets us reconstruct images with

two different flavors: using a relatively large λ1 yields point-enhanced imagery, and using

a relatively large λ2 yields region-enhanced imagery. For point-enhanced imaging, when

the observation model T maps a high-resolution field to lower-resolution data, we call

this superresolution imaging, since in this case we attempt to reconstruct the field at a

finer pixel-spacing than Rayleigh resolution. When this is not the case, we use the term

non-superresolution imaging. We refer to any image produced by this technique as a

feature-enhanced image. Figures 1 and 2 contain samples of point-enhanced and region-

enhanced images.

III. Feature-based Criteria for Evaluation of Image Quality

In this section, we propose quantitative criteria for evaluating the images produced by

the SAR image formation technique developed in [10], and outlined in Section II.
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(a) (b)

Fig. 2. (a) Conventional SAR image. (b) The corresponding region-enhanced SAR image. Taken

from [10].

A. Evaluation Criteria for Point-Enhanced Images

The criteria we describe in this section for evaluating point-based features are target-

to-clutter ratio, mainlobe width, peak matching accuracy, and average associated peak

distance. The first two of these criteria have been used for evaluating SAR imaging

methods before [17]. The last two criteria are more powerful, and are aimed at measuring

how accurately dominant scatterer features are preserved in the face of reduced amounts of

data, hence these criteria are particularly useful for testing the superresolution properties

of an image formation method.

A.1 Target-to-Clutter Ratio

As a measure of accentuation of the target pixels with respect to the background, we

use the target-to-clutter ratio in dB, defined as [17]:

Target−to−clutter ratio = 20 log10

(
max(i,j)∈T (|f̂ij|)

1
NC

∑
(i,j)∈C |f̂ij|

)
(3)

where the pair (i, j) denotes the pixel indices, f̂ is the reconstructed image, f̂ij is the

reconstructed reflectivity at location (i, j), T denotes the target region, C denotes a clutter

patch in the image, and NC denotes the number of pixels in the clutter patch.1

1Throughout the paper we use both a double index notation, f̂ij , and a single index notation, f̂i, to refer to the

elements of f̂ . The two conventions correspond to referring to the elements of a matrix, and to the elements of a
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A.2 Mainlobe Width

As one of the measures of the effective resolution of an image, we use the 3-dB mainlobe

width of the strong scatterers. To obtain an estimate of the mainlobe width, we concentrate

on the target region. In each row and column in the target region of the reconstructed

image, we find the first point near the maximum where the reflectivity magnitude is

more than 3 dB below the maximum value. We then obtain a better estimate of the

3-dB distance by means of a linear interpolation between pixels. Finally, we average

the distances obtained from each row and column in the target region to find an overall

estimate of the 3-dB lobe width for a particular image.

A.3 Peak Matching Accuracy

Locations of dominant point scatterers extracted from a target image are important

characteristics for recognition [11, 12]. Loss of resolution manifests itself by merging and

moving such characteristic points, and this makes the accurate localization of these points

in the scene more difficult. Thus, we evaluate the superresolution properties of a recon-

struction method by measuring how well the dominant scatterers are preserved when we

use reduced-resolution data to form the image.

The procedure we use for measuring peak matching accuracy is as follows. The first

step is to extract the locations of Np brightest scatterers from a reconstructed image. For

this purpose, we first find all the peaks in the scene. The peaks are taken to be the points

where the discrete spatial derivatives of the reflectivity magnitude in both the x and the

y directions change sign from positive to negative. Once the peaks are found, we order

them based on their magnitudes, and pick the largest Np of them. We then evaluate

how well the coordinates of these Np peaks match those of the Np “reference” locations

of the scatterers. The ground truth for these reference positions is usually not available.

One way to obtain the reference peak locations is through the use of 3-D CAD models of

the vehicles together with an electromagnetic signature prediction tool such as XPATCH

[29] to simulate the expected reference scene. A second option is to use conventional

SAR images obtained from higher resolution data as the reference scenes, and extract the

vector obtained by column-stacking the matrix respectively.
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“true” peak locations from such images. Once we have two sets of Np peak locations, we

need to determine how many of the extracted locations “match” a reference location. The

simplest matching criterion would be to count the exact position matches between the two

sets of locations. However, this criterion may be too restrictive. In order to have a more

flexible criterion, we use the feature matching method used in [30]. This method allows a

match declaration between two peaks, if the estimated peak location is within a radius r

of the “reference” peak location. Hence it is more powerful than counting only the exact

matches, with r used as a variable parameter (r = 0 corresponds to counting the exact

matches). A one-to-one association of the peaks is made such that the sum of the squared

distances between the locations of the “reference” peaks and the corresponding matched

peaks from the image is minimized. We can then count the number of matched peaks out

of Np, to see how well the peaks are preserved.

We apply the above procedure to the conventional images and the feature-enhanced

images reconstructed from the same reduced-resolution data. We compute the number

of matched peaks for a large set of such conventional and feature-enhanced images, and

compare the average number of matched peaks, parameterized by r.

A.4 Average Associated Peak Distance

Another criterion based on peak locations that we use is the average distance between

the two sets of Np matched peak coordinates. To compute this measure, we relax the

matching radius r of Section III-A.3, so that each of the Np peaks from the reconstructed

image is matched to one of the “reference” peaks. We then find the average of the distances

between these associated peaks.

B. Evaluation Criteria for Region-Enhanced Images

In this section, we describe the criteria for evaluating region-based features, namely

speckle suppression, segmentation accuracy, and statistical separability of distinct regions

from one another. The first and third of these criteria have been used for the evaluation

of SAR imaging methods, in [17] and [18], respectively. We use the accuracy of the

segmentations (obtained through the use of a simple segmenter) as a measure of how

easy-to-segment the region-enhanced SAR images are.
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B.1 Speckle Suppression

Speckle complicates intensity-based region description in conventional SAR images. One

criterion that has been used for measuring speckle amplitude is the standard deviation of

a clutter patch in the dB-valued SAR images [17]. We use this measure to quantitatively

compare region-enhanced reconstructions with conventional images in terms of speckle

suppression.

B.2 Segmentation Accuracy

It is of interest to obtain accurate segmentations of SAR images for effective use of

region-based shape features in target recognition. Recently there has been much interest

in the development of segmentation algorithms for conventional SAR images. Region-

enhanced images appear to provide easier-to-segment regions as compared to conventional

SAR images. We demonstrate this property by segmenting region-enhanced reconstruc-

tions to target, shadow and background regions by simple adaptive thresholding, where

the thresholds for a particular image under consideration depend on the statistics of that

image. To determine the thresholds, we find the sample mean µ and the standard devi-

ation σ of the dB-valued pixel magnitudes in the image. Then, we apply the following

decision rule at each pixel:

20 log10(|f̂ij|) < µ − c1σ =⇒ (i, j) ∈ S
µ − c1σ ≤ 20 log10(|f̂ij|) < µ + c2σ =⇒ (i, j) ∈ B

µ + c2σ ≤ 20 log10(|f̂ij|) =⇒ (i, j) ∈ T

where T ,S,B denote the target, shadow and background regions respectively and c1, c2

are two constants that are fixed beforehand. Hence, this is really a “histogram-based”

threshold. From a statistical standpoint, it would make more sense to develop a decision

metric based on the statistics of particular regions. However, our objective here is not

to develop the best decision metric, but rather to show that we can obtain reasonable

segmentations of the region-enhanced images even by simple suboptimal processing.

The above procedure produces a segmented image. Next, we need to evaluate the

accuracy of this segmentation. For such evaluation, we ideally need the ground truth.

Ground truth for this problem consists of the assignment of each location in the scene to
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one of the three sets T ,S,B. Such ground truth information is not readily available in

general, as is the case with the MSTAR data set. However, for this particular data, the Air

Force Research Laboratory (AFRL) has conducted a study which has produced a set of

segmentations performed by humans [31]. In our work, we use these human segmentations

as the ground truth. The measure of accuracy we use is the percentage of pixels in the

automatically segmented image, which are classified correctly (i.e. assigned to the same

set as the “ground truth” assignment of the pixel).

B.3 Statistical Separability of Regions

Segmentation accuracy provides a good flavor of the degree of separability of different

regions from one another in the SAR image. However it does not provide a statistical

measure for the similarity of different regions, T ,S,B. To obtain such a measure, we

first assume that all the (dB-valued) reflectivity magnitudes in a particular region of the

reconstructed SAR target image are drawn from the same Gaussian distribution. We also

assume that these region-based probability density functions are independent of the target

type. We then estimate the mean and variance of such a density for each region, T ,S,B,

using a large set of SAR images. Note that the actual distribution of those elements may

not be perfectly modeled by a Gaussian, but such a simple model is sufficient for our

objective of measuring region separability.

As a measure of the similarity of two Gaussian densities corresponding to classes (re-

gions) i and j, we use the Bhattacharyya distance dij [18, 32]:

dij =
1

8
(µi − µj)

T

(
Σi + Σj

2

)−1

(µi − µj) +
1

2
ln

(
|Σi+Σj

2
|

|Σi|1/2|Σj|1/2

)
(4)

where µi, µj are the mean vectors and Σi, Σj are the covariance matrices for class i and

class j. Note that, in our case the means and covariances are just scalars. The distance

dij is a common measure of the separability of classes characterized by multi-dimensional

Gaussian distributions and gives an upper bound on the Bayesian error for classification

of two classes. We compute Bhattacharyya distances for each pair of different regions,

T ,S,B, and compare such distances for conventional and region-enhanced images. A

larger Bhattacharyya distance means that the regions are easier to separate from each

other.

July 7, 2003 DRAFT



12

IV. Classifiers used for ATR

In this section, we describe the three classifiers we use for evaluating the impact of

feature-enhanced SAR imaging on the success of ATR. The first of these is a template-

based classifier, which has been used in a series of ATR systems developed by Lincoln

Laboratory [22–24]. The second classifier achieves a decision through a likelihood test on

the observed target images based on Gaussian models for the reflectivities parameterized by

the target class [25]. The third one, a point-feature-based classifier, is based on measuring

how well features (dominant scatter locations) extracted from images reconstructed from

low resolution data match those of the hypothesized target class.

A. Template-based Classifier

The idea in template-based classification is to first measure how well a given test image

matches reference images, called templates, which represent the hypotheses in the problem,

and then declare the test image to be from the class giving the best matching score. A

common metric used for the degree of match is the mean-squared error (MSE) between

the test image, and the template.2

For template-based classification, we need templates of the targets at a reasonable num-

ber of different orientations. Let t(ϑ, a) be such a template (stacked as a vector) for vehicle

type a, at orientation ϑ ∈ [0◦, 360◦), and let f̂dB be a normalized (to have unit �2-norm) test

image (in dB) stacked as a vector. Then the template-based minimum MSE classification

can be done as follows:

âMSE = arg min
a

(
min

ϑ
‖f̂dB − t(ϑ, a)‖2

2

)
. (5)

The classifier in (5) needs a stored set of templates, which can be obtained from training

data. In practice, we usually do not have many training images at exactly the same

orientation. Then, the template for vehicle type a, at orientation ϑk can be constructed

by averaging the training images that have an orientation close to ϑk, as follows:

2Note that MSE-based classifiers are not very robust to target signature variability. There are more sophisticated

classifiers which are more successful in this respect. However, for our analysis, it is sufficient to use any reasonable

classifier to compare the performance of conventional and feature-enhanced images given that particular classifier.

July 7, 2003 DRAFT



13

t(ϑk, a) =
1

Nk

∑
ϑ∈Wk

f̂ rk
dB(ϑ, a) (6)

where Wk denotes the range of angular orientations that are used in training for the

orientation ϑk, Nk is the number of available training images that have an orientation

within this range, and f̂ rk
dB(ϑ, a) is a training image which has an original orientation of

ϑ, and which is rotated ϑk − ϑ degrees, so that it is aligned with other training images

used for the computation of t(ϑk, a). Figures 3, 4, and 5 show such templates for T72

tanks from the MSTAR data set, at 17◦ depression angle3 and various orientations for the

conventional, point-enhanced (non-superresolution), and region-enhanced images. The

orientation ϑ for each image used in the computation of these templates is obtained from

the corresponding MSTAR file header. In the construction of these templates, we have

used ϑk = 5(k − 1) degrees, and Wk = [ϑk − 5, ϑk + 5), where k ∈ {1, 2, ..., 72}.

B. Likelihood-based Classifier

We now describe a likelihood-based classifier, proposed in [25] for SAR ATR. This

approach starts from a statistical signal model, in which the underlying SAR image f(ϑ, a),

where ϑ and a are as defined in Section IV-A, is assumed to be a complex Gaussian vector,

and the observed image f̂ is given by the following observation model:

f̂ = f(ϑ, a) + n (7)

where n is complex Gaussian noise with mean 0 and covariance σ2I. The classifier is based

on a generalized likelihood test as follows:

âGLRT = arg max
a

(
max

ϑ
l(f̂ |ϑ, a)

)
(8)

where l(f̂ |ϑ, a) denotes the logarithm of the likelihood that the test image is of target

type a, at orientation ϑ. Let the signal f(ϑ, a) have mean m(ϑ, a) and covariance Q(ϑ, a).

Then the probability density function p(f̂ |ϑ, a) is Gaussian with the following mean and

covariance:
3Depression angle is the angle between the horizontal plane and the line that connects the radar platform to the

imaged scene.
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Fig. 3. Conventional templates for the T72 target at 17◦ depression angle. Each image shows the template

for a different aspect angle, starting from 0◦ on the top left, and covering all 360◦ with 5◦ increments,

and a 10◦ window for averaging.

E{f̂ |ϑ, a} = m(ϑ, a) (9)

E{[f̂ − m][f̂ − m]H |ϑ, a} = Q(ϑ, a) + σ2I. (10)

Let us define K(ϑ, a) � Q(ϑ, a) + σ2I. Then the log-likelihood is given by:

l(f̂ |ϑ, a) ∝ − log |K(ϑ, a)| − [f̂ − m(ϑ, a)]H (K(ϑ, a))−1 [f̂ − m(ϑ, a)]. (11)

We assume that m(ϑ, a) = 0, ∀{ϑ, a}, as in [25]. This is a reasonable assumption due to

the random phase nature of SAR reflectivities. The second simplifying assumption made

in [25] is that of statistical independence of different pixels in the SAR image, which results

in a diagonal Q(ϑ, a), hence a diagonal K(ϑ, a). This in turn simplifies the computation
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Fig. 4. Point-enhanced templates for the T72 target at 17◦ depression angle. Each image shows the

template for a different aspect angle, starting from 0◦ on the top left, and covering all 360◦ with 5◦

increments, and a 10◦ window for averaging.

of the likelihood to a simple summation:

l(f̂ |ϑ, a) ∝
∑

i

[
− log(Ki,i(ϑ, a)) − |(f̂)i|2

Ki,i(ϑ, a)

]
(12)

where (·)i and (·)i,i denote the i-th element of a vector, and the i-th diagonal element of

a matrix respectively. The classifier in (8) with the likelihood function in (12) requires

the model variances Ki,i(ϑ, a). These variances can be estimated from training data as

follows:
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Fig. 5. Region-enhanced templates for the T72 target at 17◦ depression angle. Each image shows the

template for a different aspect angle, starting from 0◦ on the top left, and covering all 360◦ with 5◦

increments, and a 10◦ window for averaging.

Kii(ϑk, a) =
1

Nk

∑
ϑ∈Wk

∣∣∣(f̂ rk(ϑ, a)
)

i

∣∣∣2 (13)

where (f̂ rk(ϑ, a))i denotes the i-th pixel of an aligned training image, and Nk, Wk are as

defined in Section IV-A. The operation in (13) produces variance “images”, which are, in

spirit, very similar to the template images of Figures 3, 4, and 5. We pick the values of

ϑk and Wk as in Section IV-A.
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C. Point-feature-based Classifier

We now concentrate on the reconstruction problem from reduced-resolution data, and

propose a classifier specifically aimed at evaluating the ability of the point-enhanced, su-

perresolution images to preserve the locations of dominant scatterers in the scene. Similar

peak-based classification schemes have previously been proposed in [12] and [15]. Such

feature-based classification techniques, as opposed to the pixel-based classification schemes

described in Sections IV-A and IV-B, have been an important component of recent research

efforts such as those in DARPA’s MSTAR program [15].

The classifier works as follows. Given a test image, the first step is to extract the

locations of the Np brightest scatterers, which can be done as described in Section III-A.3.

Once the Np dominant peaks are extracted, a one-to-one association is established between

these peaks and the true peak locations for the hypothesis under test. This association is

made such that the sum of the squared distances between the locations of the true peaks

and the corresponding matched peaks from the test image is minimized. Next, an average

of the distances between the associated peak pairs is computed. Note that this distance is

exactly the feature-based evaluation criterion we described in Section III-A.4. This gives

a single number that provides an indication of the similarity of the test image and the

hypothesized class: a smaller number tends to indicate a closer correspondence. The class

assignment is achieved by finding the vehicle type which yields the minimum associated

peak distance over all orientations:

âPEAK = arg min
a

(
min

ϑ

1

Np

‖dPEAK(f̂ , f(ϑ, a))‖1

)
(14)

where dPEAK(·, ·) is a vector of Euclidean distances between associated peak pairs extracted

from the observed test image f̂ , and the reference image f(ϑ, a). Note that the �1-norm

in (14) is just equivalent to a summation of the distances between individual peak pairs.

The classifier in (14) requires the “true” peak locations for each target type, at a reasonable

number of orientations ϑ, extracted from the reference scenes f(ϑ, a). We obtain these

reference peak locations as described in Section III-A.3.

July 7, 2003 DRAFT



18

T72 BMP2 BTR70

Fig. 6. Sample pictures of the three types of vehicles whose SAR images are used in the experiments.

Taken from [15].

V. Experimental Results for Feature Enhancement

In this section, we present the results of our experiments comparing feature-enhanced

SAR images with conventional images in terms of the criteria described in Section III.

A. Experimental Setup

The MSTAR public target data set [19] provides SAR images of various military vehicles.

We use images of T72 tanks, BMP2 tanks, and BTR70 armored personnel carriers from

this data set. Sample pictures of these three types of vehicles are shown in Figure 6.

We use 72 images for each vehicle type, all at 17◦ depression angle, and evenly spaced

(approximately 5◦) in azimuth (aspect angle) to cover 360◦. Figure 7 shows the magnitude

of a sample MSTAR image in dB for each target type.

We obtain the phase history data from the 128 × 128 complex-valued MSTAR images,

by undoing the final steps of MSTAR image formation, as described in, e.g. [33, 34]. In

particular, we first take the 2-D Discrete Fourier Transform (DFT) of the images, then we

remove the zero-padding to obtain 100 × 100 phase history samples. Next we remove the

windowing applied. From the MSTAR file headers, we know that a 35 dB Taylor window

has been used, and we assume that the order of the Taylor window used is n = 4. We

divide the phase history samples by a 2-D Taylor window we thus obtain.

When applying feature-enhanced reconstruction, we choose the feature accentuation

parameters λ1 and λ2 in (2) based on subjective qualitative assessment of one image from

the entire data set, and use those values for all the images for that particular experiment.

In the following sections, we provide the precise values of the parameters used in each

experiment. In order for the parameter values used at different experiments to be relatable,
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T72 (azimuth=100.77◦ ) BMP2 (azimuth=175.19◦) BTR70 (azimuth=94.00◦)

Fig. 7. 128 × 128 sample images from the MSTAR public target data set.

we normalize T such that the magnitude of the diagonal elements of THT is unity in each

experiment. We should note that we have not optimized any of the parameter values

in terms of the evaluation metrics we use, neither have we studied the sensitivity of our

evaluation results to the choice of these parameters.

B. Point-Enhanced Imaging from Full-Resolution Data

In this section, we report the results of our experiments using 100 × 100 phase history

samples to form point-enhanced images. The resolution supported by such data is 0.3 m.

We form “critically-sampled” (i.e. 100 × 100) feature-enhanced images. In order to have

conventional SAR images of identical dimensions for comparison, we form 100×100 Taylor-

windowed Fourier images. Samples of such reconstructions are shown in the top row of

Figure 8. Naturally these are very similar to their oversampled versions in Figure 7.

We form point-enhanced images with p = 0.8, λ1 = 2, and λ2 = 0 in (2). We do not

apply any windowing to the data before processing, since feature-enhanced imaging is able

to suppress sidelobes considerably even with rectangular weighting. However, if desired,

the method can be used with windowing, as it was demonstrated in [34]. The bottom row

in Figure 8 shows the reconstructions obtained. The dominant scatterers appear to be

accentuated as compared to the conventional images in the top row.
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T72 BMP2 BTR70

Fig. 8. 100 × 100 sample images reconstructed from full-resolution (100 × 100) data. Top: conventional.

Bottom: proposed point-enhanced, with p = 0.8, λ1 = 2, λ2 = 0.

B.1 Target-to-Clutter Ratio

We quantify the enhancement of the target pixels in the full-resolution data reconstruc-

tions by means of their target-to-clutter ratio. We compute the target-to-clutter ratio

as defined in (3), by using the bottom 20 rows (2000 pixels) of the reconstructed images

as the clutter region. This region is big enough to give a reliable estimate of the mean

reflectivity magnitude, and is safe to use, since target and shadow appear to be located

outside this region for the entire data set. Table I shows the average target-to-clutter ratio

achieved by the conventional and the point-enhanced reconstructions over the 72 images

for each target type. These results indicate a clear improvement of the target-to-clutter

ratio by point-enhanced imaging.
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Average Target-to-Clutter Ratio T72 BMP2 BTR70

Conventional 31.88 dB 28.92 dB 26.92 dB

Proposed 88.28 dB 85.38 dB 82.62 dB

TABLE I

Average target-to-clutter ratios of images reconstructed from full-resolution data.

T72 BMP2 BTR70

Fig. 9. 100×100 sample images reconstructed from reduced-resolution (50×50) data. Top: conventional.

Bottom: proposed point-enhanced, with p = 0.8, λ1 = 4, λ2 = 0 .

C. Point-Enhanced Superresolution Imaging from Reduced-Resolution Data

In this section, we report the results of experiments on two sets of data: the actual

MSTAR data, and the synthetic point scatterer scenes constructed using the MSTAR

images. The reason for using synthetic examples is to demonstrate the superresolution

properties of point-enhanced imaging in a situation where the ground truth is exactly

known.
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For experiments on actual MSTAR data, we form images from a 50 × 50 subset of the

100×100 phase history samples previously used. This results in a 2-to-1 resolution loss in

the range and cross-range directions. Hence, the resolution supported by such reduced data

is 0.6 m. All the images we present in this section are composed of 100 × 100 pixels. The

top row in Figure 9 shows Taylor weighted Fourier images reconstructed from the reduced-

resolution, 50 × 50 data. The resolution loss in these images is evident when compared

to their high-resolution counterparts in Figure 8. We form point-enhanced images with

p = 0.8, λ1 = 4, and λ2 = 0 in (2), samples of which are shown in the bottom row of

Figure 9.

We now consider the synthetic examples. To generate synthetic scenes, we find the 20

peaks with the largest magnitude in each of the 72 100×100 Taylor-windowed T72 Fourier

images, and form a synthetic scene by placing simulated point-scatterers at the locations

of these peaks, with the original complex reflectivities, and zeros in the rest of the scene.

Hence these synthetic scenes do not contain any clutter. Our goal in using such simple

scenes is to observe the consequence of resolution loss on point scatterers. The impact

of the presence of clutter in real scenes could be observed through our experiments with

actual MSTAR data. An example contour plot of the magnitude of such a synthetic scene

is shown in the left third of Figure 10. We then generate simulated phase histories from

this scene. The reconstructed conventional Taylor-windowed image from 50 × 50 phase

history samples is shown in the top row, middle column of Figure 10. The loss of resolution

is easy to observe. The corresponding point-enhanced image (p = 0.8, λ1 = 2, and λ2 = 0)

is shown in the bottom row, middle column of the same figure. We can visually observe

that most of the scatterers that were merged by the conventional reconstruction are now

resolved. The images in the rightmost column demonstrate similar results for the 25× 25

data case. Although the amount of data we use here is only one sixteenth of the data

required for full resolution, point-enhanced imaging appears to be able to localize most of

the scatterers.

In the remainder of this section, we quantitatively demonstrate the resolution improve-

ment achieved by the real and synthetic images presented here. We do not present the

target-to-clutter ratio results, since they are very similar to the full-resolution target-to-
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Fig. 10. Synthetic T72 image reconstruction example from reduced-resolution data. Left: ground truth.

Middle: results from 50× 50 data. Right: results from 25× 25 data. Top row: conventional. Bottom row:

proposed point-enhanced, with p = 0.8, λ1 = 2, and λ2 = 0.

Average Mainlobe Width T72 BMP2 BTR70

Conventional 0.596 m 0.621 m 0.612 m

Proposed 0.131 m 0.129 m 0.125 m

TABLE II

Average mainlobe widths of MSTAR images reconstructed from reduced-resolution (50 × 50) data.

clutter ratio results of Table I.

C.1 Mainlobe Width

We compute the average 3-dB mainlobe width as described in Section III-A.2. The

results in Table II for 50 × 50 data reconstructions of MSTAR images show that feature-

enhanced imaging is able to reduce the mainlobe width considerably. To put these numbers

in perspective, note that the resolution supported by the data is 0.6 m in this experiment.
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C.2 Peak Matching Accuracy

We now evaluate the preservation of the locations of the dominant peaks in reduced-

resolution data situations, using both real and synthetic data. For the real data examples,

we use the locations of the 20 peaks extracted from the Taylor-windowed images recon-

structed from full-resolution data, as the “reference” locations. Figure 11 provides a visual

flavor of the peak matching experiment for the conventional and point-enhanced recon-

structions from 50 × 50 data. One clear observation we can make out of these images is

that, since conventional image formation causes peaks to merge, some of the peaks in the

target area are lost, and peaks outside this area may become dominant. Figure 12 contains

a zoomed-in version of the peak extraction results for one of the targets in Figure 11. We

now compare the peak matching accuracy of point-enhanced and conventional images by

using the criterion described in Section III-A.3. In Figure 13, we plot the average number

of peak matches for each reconstruction method as a function of the radius r within which

a match declaration is allowed. The standard deviation of this estimate of the mean is

very small, hence we do not show error bars on these plots. The peak matching accuracy

of point-enhanced images appear to be higher than that of the conventional images. Note

that our analysis is based on finding peaks all around the scene. Alternatively, the search

for peaks can be done in a pre-determined target region only. In that case we wouldn’t

expect the conclusion of our analysis to change considerably, but the number of peak

matches for conventional images would reach the number for point-enhanced images at a

smaller value of the radius r, due to forced associations within the target region, possibly

with spurious peaks.

We now report the results of similar experiments for the synthetic T72 scenes. Fig-

ure 14 shows the extracted peak locations on sample reconstructions, where the improved

accuracy provided by point-enhanced imaging can be visually observed. The peak match-

ing accuracy results from the entire data, shown in Figure 15, quantitatively verify the

superresolution properties of point-enhanced imaging.
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T72 BMP2 BTR70
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Fig. 11. Sample peak extraction results for MSTAR images reconstructed from 50 × 50 data. Circles

indicate “reference” dominant scatterer locations extracted from full-resolution conventional images. Plus

signs indicate peaks extracted from the reconstructed images. Top: conventional. Bottom: proposed

point-enhanced, with p = 0.8.

C.3 Average Associated Peak Distance

We now compute the average distance between the 20 pairs of reference and extracted

peaks, as described in Section III-A.4. Tables III and IV illustrate the average associated

peak distances for the real and synthetic scene experiments respectively. These results

indicate that point-enhanced imaging provides a clear reduction in the distances between

the peak locations extracted from limited-data reconstructions and the true peak locations.

Note that this criterion computes distances for the case where all peaks in the recon-

struction are associated with a reference peak. One might generalize this criterion to

compute and plot the average associated peak distances as a function of the number of

matched peaks, by varying the radius within which a match declaration is allowed. This

generalized criterion would in some sense be the dual version of the analysis in Section V-

C.2, and we would expect a similar performance difference between point-enhanced and
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Fig. 12. Zoomed-in versions of the BMP2 peak extraction results from Figure 11. Left: conventional.

Right: proposed point-enhanced, with p = 0.8.

Average Associated Peak Distance T72 BMP2 BTR70

Conventional 3.13 m 4.32 m 4.30 m

Proposed 0.82 m 1.06 m 1.25 m

TABLE III

Average associated peak distances in MSTAR images reconstructed from reduced-resolution (50 × 50)

data.

conventional images.

D. Region-Enhanced Imaging

We now compare region-enhanced images with conventional ones in terms of the criteria

described in Section III-B. Here, we form 128×128 images from 128×128 Taylor-windowed

phase history samples. In feature-enhanced image reconstruction, we use p = 1, and set

λ2 > λ1 in (2) to enhance regions, in particular we choose λ1 = 0.1 and λ2 = 0.3.

The second row of Figure 16 shows sample region-enhanced reconstructions. In contrast

to the conventional images in the top row, these reconstructions reduce variability in

homogeneous regions, while preserving discontinuities at region boundaries.

D.1 Speckle Suppression

We quantify the speckle amplitude in images as described in Section III-B.1, by using the

bottom 20 rows (2560 pixels) of the reconstructed images as the clutter region. The results
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Fig. 13. Average number of peak matches in MSTAR images reconstructed from reduced-resolution

(50 × 50) data as a function of the radius of match declaration r.

July 7, 2003 DRAFT



28

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Fig. 14. Sample peak extraction results for the synthetic T72 scenes. Circles indicate the scatterer

locations in the synthetic scene. Plus signs indicate peaks extracted from the reconstructed images. Left:

50 × 50 data. Right: 25 × 25 data. Top: conventional. Bottom: proposed point-enhanced, with p = 0.8.

Average Associated Peak Distance (synthetic T72) 50 × 50 data 25 × 25 data

Conventional 1.22 m 1.35 m

Proposed 0.07 m 0.61 m

TABLE IV

Average associated peak distances in the synthetic T72 reconstructions.

in Table V illustrate the improved speckle suppression achieved by the region-enhanced

reconstructions.

D.2 Segmentation Accuracy

We now demonstrate that region-enhanced images simplify segmentation of the images

into target, shadow and background regions. In our evaluation, we use the AFRL human

segmentations of the MSTAR images [31] as the ground truth. Samples of such human
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Fig. 15. Average number of peak matches for the synthetic T72 scenes as a function of the radius of

match declaration r. Top: 50 × 50 data. Bottom: 25 × 25 data.

segmentations are shown in the third row of Figure 16. Naturally, these segmentations are

themselves not perfect.

We segment the region-enhanced images by simple adaptive thresholding, as described

in Section III-B.2, using c1 = 1.2 and c2 = 2.5. Sample results of such processing are

shown in the bottom row of Figure 16. These results suggest that segmentation is con-

siderably simplified by region-enhanced imaging. If such thresholding-based segmentation

were applied to conventional images, the result would be dominated by fluctuations in ho-

mogeneous regions, as shown in the fourth row of Figure 16. For the conventional images

we have used c1 = c2 = 1, which appears to be a good choice based on visual assessment.

In Table VI, we present the average percentage of accurately classified pixels in adaptive

thresholding-based segmentations of conventional and region-enhanced images using the
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Average Speckle Amplitude T72 BMP2 BTR70

Conventional 5.919 dB 5.921 dB 5.898 dB

Proposed 2.261 dB 2.283 dB 2.269 dB

TABLE V

Average speckle amplitude in the dB-valued conventional and region-enhanced images.

Average Segmentation Accuracy T72 BMP2 BTR70

Conventional 77.49 % 76.11 % 76.79 %

Proposed 96.85 % 97.28 % 97.64 %

TABLE VI

Average segmentation accuracy based on adaptive thresholding for conventional and region-enhanced

images, measured as the percentage of correctly classified pixels.

entire data set. As expected, region-enhanced images have significantly higher accuracy.

Note that we are in no way suggesting that adaptive thresholding is the state-of-the-art for

segmenting conventional SAR images. In fact, conventional images can be more accurately

segmented using advanced segmentation tools. Our point here is that even such a simple

segmentation approach results in quite reasonable results for region-enhanced images.

We should note that the major error for region-enhanced images is due to the gap

between the target and shadow regions in the segmentations, shown in the bottom row

of Figure 16. This is a systematic error and may be improved upon by incorporation

of additional information during segmentation. Our error analysis in Table VI has the

limitation that the human segmentations, which we use as the truth, are really not perfect.

We should also note that the feature-enhancement parameters λ1, λ2, and the thresholding

parameters c1, c2 have not been optimized for best segmentation performance, but rather

picked based on visual assessment of one image, and applied to the processing of the entire

data set.
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T72 BMP2 BTR70

Fig. 16. Region-enhanced image formation and segmentation. Top row: MSTAR images. Second row:

region-enhanced reconstructions with p = 1, λ1 = 0.1 and λ2 = 0.3. Third row: human segmenta-

tions. Fourth row: threshold-based segmentations of conventional imagery. Bottom row: threshold-based

segmentations of region-enhanced imagery.
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Bhattacharyya Distances Targ.-Backg. Targ.-Shad. Backg.-Shad.

Conventional 0.28 0.76 0.25

Region-Enhanced 1.48 1.81 0.45

TABLE VII

Bhattacharyya distances between Gaussian densities characterizing different regions in SAR images.

D.3 Statistical Separability of Regions

We now provide a measure of the separability of different regions from each other in

conventional and region-enhanced images by using Bhattacharyya distances as described

in Section III-B.3. To this end, we treat the human segmented images as the truth, and

extract region labels from these segmentations for each location in the scene.

Figure 17 illustrates the estimated Gaussian densities for the target, shadow and back-

ground regions of the conventional and region-enhanced images. By visual inspection,

we can claim that the densities for the region-enhanced images are farther from each

other than those for the conventional ones. We quantify this claim by computing the

Bhatacharyya distances between region pairs. Table VII contains the results of this com-

putation, which demonstrate that the Bhattacharyya distances between all region pairs

are larger for the region-enhanced images than the conventional images.

VI. Experimental Results for ATR Performance

A. Experimental Setup

We now evaluate the performance of the classifiers described in Section IV, given

MSTAR images produced by feature-enhanced versus conventional imaging. In our recog-

nition experiments, we use the T72, BMP2 and BTR70 targets. For all three classifiers,

our training set is composed of images at 17◦ depression angle, and our test set is com-

posed of an independent set of images at 15◦ depression angle. The numbers of each type

of target images in each of these sets are shown in Table VIII. In training and testing with

all three classifiers, we extract and use a near-central portion of the SAR image which

contains the target. In all cases, we normalize the images so that they have the same
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Fig. 17. Gaussian probability density functions for regions in SAR images. (a) Conventional images. (b)

Region-enhanced images.

�2-norm, before using them in the classifiers.

We present the results of our evaluations in the form of classifier confusion matrices,

which show the number of correct and incorrect classifications achieved on test inputs of

each type. A single number characterizing the classifier’s ability to recognize test inputs

can be obtained through the probability of correct classification, Pcc, which is defined as

the fraction of all target test inputs that were correctly classified.

B. Template-based Classification Results

We now present the recognition performance of the conventional, point-enhanced (non-

superresolution) and region-enhanced images, when they are used as inputs to the template-
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Training set Test set

Target Depression No. of images Depression No. of images

T72 17◦ 232 15◦ 196

BMP2 17◦ 233 15◦ 195

BTR70 17◦ 233 15◦ 196

TABLE VIII

Composition of the MSTAR data set used in recognition experiments.

based classifier, described in Section IV-A.

We have initially conducted recognition experiments with images reconstructed from

high-SNR data. By high-SNR data, we mean the SAR data obtained by undoing the im-

age formation steps for the images in the MSTAR data set, without any additional mea-

surement noise. We have observed that for this high-SNR, 3-target classification problem

both conventional and feature-enhanced images result in a high recognition rate, and the

performance difference is not significant. Next, we investigate the recognition performance

of these images in the face of degraded data, which may provide a better representation

of a practical situation. To this end, we have included additive complex Gaussian noise in

the projectional SAR data. Treating the original data before the addition of this noise as

the clean signal, the SNR of the corrupted data we use is −4 dB. This represents a very

noisy scenario.

We now present the recognition results for this low-SNR case. Table IX shows the con-

fusion matrices for the classification of conventional and feature-enhanced images. The

conventional images result in an overall probability of correct classification of 69.85 %.

Point-enhanced and region-enhanced imaging increase this rate to 88.93 % and 96.76 %

respectively. These results suggest that noise causes a much smaller degradation in recog-

nition performance for feature-enhanced images, as compared to conventional images.

Hence feature-enhanced imaging is more robust to limitations in data quality.
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T72 BMP2 BTR70

T72 159 30 7

BMP2 53 120 22

BTR70 33 32 131

(a) Conventional images. Pcc = 69.85 %

T72 BMP2 BTR70

T72 176 13 7

BMP2 8 173 14

BTR70 3 20 173

(b) Point-enhanced images. Pcc = 88.93 %

T72 BMP2 BTR70

T72 184 11 1

BMP2 3 191 1

BTR70 1 2 193

(c) Region-enhanced images. Pcc = 96.76 %

TABLE IX

Confusion matrices summarizing the template-based classification results. The entry in row i, column j

shows the number of images from vehicle type i classified as vehicle j.

C. Likelihood-based Classification Results

We now present the results of running the low-SNR data used in Section VI-B through

the likelihood-based classifier described in Section IV-B. The results in Table X indicate

that the classifier has a correct classification rate of 87.05 % with conventional images,

94.38 % with point-enhanced images, and 99.15 % with region-enhanced images.

D. Point-feature-based Classification Results

We now report the results of recognition experiments using the classifier of Section IV-C.

In order to investigate the preservation of point features in the face of reduced-resolution
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T72 BMP2 BTR70

T72 170 18 8

BMP2 7 161 27

BTR70 4 12 180

(a) Conventional images. Pcc = 87.05 %

T72 BMP2 BTR70

T72 190 5 1

BMP2 10 178 7

BTR70 8 2 186

(b) Point-enhanced images. Pcc = 94.38 %

T72 BMP2 BTR70

T72 193 3 0

BMP2 1 194 0

BTR70 1 0 195

(c) Region-enhanced images. Pcc = 99.15 %

TABLE X

Confusion matrices summarizing the likelihood-based classification results. The entry in row i, column j

shows the number of images from vehicle type i classified as vehicle j.

data, we use 50 × 50 phase history data with a resolution of 0.6 m.4 The data used for

these low resolution experiments do not contain any noise in addition to what is already

present in the MSTAR data. Hence, we consider a high-SNR, but limited-data scenario

here. Since the classifier we consider here explicitly uses point-based features, the question

of interest is whether enhancing point-based features during the imaging process improves

the recognition performance. For that reason, our evaluation in this section involves only

point-enhanced imagery and not region-enhanced imagery.

We obtain the true peak locations for all targets at all the orientations available, using

conventionally formed SAR images at 0.3 m resolution, and 17◦ depression angle. We

4Note that the data used in Sections VI-B and VI-C had a resolution of 0.3 m.
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T72 BMP2 BTR70

T72 38 84 74

BMP2 14 114 67

BTR70 4 81 111

(a) Conventional images. Pcc = 44.80 %

T72 BMP2 BTR70

T72 162 23 11

BMP2 28 147 20

BTR70 10 17 169

(b) Point-enhanced, superresolution images. Pcc = 81.43 %

TABLE XI

Confusion matrices summarizing the point-feature-based classification results, from reduced-resolution

data. The entry in row i, column j shows the number of images from vehicle type i classified as vehicle j.

then run the classifier on conventional and point-enhanced, superresolution images at 15◦

depression angle, reconstructed from data supporting a resolution of 0.6 m. The number

of dominant scatterers we consider for each image is Np = 20.

The classification results presented in Table XI demonstrate a clear improvement in

recognition performance through the use of point-enhanced, superresolution images as

compared to the case of conventional images. The correct classification rates for the

conventional and point-enhanced images are 44.80 %, and 81.43 %, respectively.

E. Further Analysis and Extensions

We have presented some recognition experiments to compare the performance of feature-

enhanced and conventional images. Although this analysis has provided a flavor of the

impact of feature-enhanced imaging, more extensive experimentation on a more general

setting would be an important contribution for a number of reasons. First, the recognition

problem posed in this paper contained three classes. This is too small to represent a

practical setting where the decisions usually involve a larger number of vehicle types.
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Furthermore, our experiments did not involve confuser vehicles. Confuser vehicles are

test inputs, for which no training is done, and the ATR system should ideally respond

as “unknown” to data containing such vehicles. This is an important practical issue,

and a more realistic recognition evaluation should involve confuser vehicles. In addition,

one might include SAR images of natural clutter and urban scenes in the experiments.

Finally, although the classifiers that we considered were mostly based on real recognition

systems in use, there are more advanced, feature-based systems under development, such

as that associated with the MSTAR program, as described in [15, 35]. Evaluation of the

performance of feature-enhanced SAR images directly in such a feature-based recognition

system would be an important extension of the work presented in this paper.

Another line of future work might be to experimentally compare feature-enhanced imag-

ing to other advanced SAR imaging techniques, such as those proposed in [17, 21], which

have also been found to result in better ATR performance [20, 22] than conventional im-

ages.

VII. Conclusions

We have presented an analysis demonstrating the impact of a recently proposed, non-

quadratic optimization-based SAR image formation technique on feature enhancement

and ATR performance.

We have demonstrated the feature enhancement properties through a variety of quanti-

tative criteria. The results indicate that the images produced by the new image formation

method exhibit superresolution and improved localization accuracy for dominant scatter-

ers, and improved separability for different regions in the scene. It might be useful to

compare our results to those in similar analyses carried out for other enhanced SAR image

formation techniques (e.g. [17,18,33]).

We have conducted an evaluation of how the new feature-enhanced SAR imaging method

affects ATR performance. We have defined a 3-class target recognition problem to compare

the recognition performance of feature-enhanced images and conventional images. We have

constructed two pixel-based classifiers, and one feature-based classifier. With high-SNR

data we have not observed a significant performance difference between the conventional

and the feature-enhanced images. With reduced-quality data however, feature-enhanced
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High-resolution, low-SNR experiment

Conventional Point-Enhanced Region-Enhanced

Template-based classifier 69.85 % 88.93 % 96.76 %

Likelihood-based classifier 87.05 % 94.38 % 99.15 %

Reduced-resolution, high-SNR experiment

Conventional Point-Enhanced, Superresolution

Point-feature-based classifier 44.80 % 81.43 %

TABLE XII

Overall summary of the classification experiments, in terms of the probability of correct

classification, Pcc.

images resulted in higher recognition rates. We have also conducted reduced-resolution

data experiments, and used the feature-based classifier to test the performance of feature-

enhanced, superresolution images. We have observed recognition improvements as com-

pared to the conventional images in this case, as well. Table XII summarizes the recogni-

tion results obtained in this paper in terms of the probability of correct classification.
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