
Parameter Selection in Sparsity-Driven SAR
Imaging

We consider a recently developed sparsity-driven synthetic

aperture radar (SAR) imaging approach which can produce

superresolution, feature-enhanced images. However, this

regularization-based approach requires the selection of a

hyper-parameter in order to generate such high-quality images. In

this paper we present a number of techniques for automatically

selecting the hyper-parameter involved in this problem. We

propose and develop numerical procedures for the use of

Stein’s unbiased risk estimation, generalized cross-validation,

and L-curve techniques for automatic parameter choice. We

demonstrate and compare the effectiveness of these procedures

through experiments based on both simple synthetic scenes, as

well as electromagnetically simulated realistic data. Our results

suggest that sparsity-driven SAR imaging coupled with the

proposed automatic parameter choice procedures offers significant

improvements over conventional SAR imaging.

I. INTRODUCTION

Conventional image formation techniques

for synthetic aperture radar (SAR) suffer from

low resolution, speckle, and sidelobe artifacts.

These effects pose challenges for SAR images,

in particular when they are used in automatic

target detection and recognition tasks. Recently

proposed SAR image formation algorithms have

been shown to produce high quality images, offering

increased resolution and reduced artifacts [1—3].

We consider the sparsity-driven, nonquadratic

regularization-based approach of [1] which aims

to produce feature-enhanced SAR images. For

a review of this approach as well as other uses

of sparsity-based ideas in radar imaging, see [4].

The idea behind this approach is to emphasize

appropriate features by regularizing the solution.

In fact, regularization methods are well known

and widely used for real-valued image restoration

and reconstruction problems. However SAR
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imaging involves some difficulties in application

of these methods. As an example, SAR involves

complex-valued reflectivities. Considering and

addressing such difficulties, extensions of real-valued

nonquadratic regularization methods have been

developed for SAR imaging [1].

Regularization methods, in general, try to

balance the fidelity to data and prior knowledge to

obtain a stable solution. This stability is ensured

through a scalar parameter which is called the

regularization parameter or hyper-parameter.

Selection of this parameter is a fundamental problem

within a regularization framework. There exist

several approaches which are based on statistical

considerations such as Stein’s unbiased risk estimator

(SURE) [5], generalized cross-validation (GCV)

[6, 7], Bayesian methods [8], as well as graphical

tools such as the L-curve [9]. Most parameter choice

methods have been developed in the context of

the hyper-parameter choice problem for Tikhonov

regularization [10], which is a well-known and

widely-used quadratic regularization approach.

The quadratic form of the optimization problem in

Tikhonov regularization results in a closed-form

solution, through a set of linear equations, which

simplifies the computation of the regularized solution

and the automatic selection of the regularization

parameter. As the promise of sparse representation has

been discovered in a variety of fields such as optical

flow estimation [11], compressed sensing [12], and

functional regression [13], regularization constraints

which impose sparsity have become more prevalent.

It has been shown that a nonquadratic regularizer

promotes sparsity in the solution (see e.g., [14]).

However, inclusion of such a nonquadratic constraint

yields an optimization problem without a closed-form

solution. Consequently, iterative procedures need

to be used to compute the solution. In this case,

the selection of the regularization parameter is

more complicated than the quadratic case. For

parameter choice in nonquadratic regularization-based

techniques, the application of SURE, GCV, and

L-curve is limited [8, 15—18]. Especially for the form

of our problem which considers an `p-norm penalty

with p· 1 for complex-valued inverse problems, the
use and effectiveness of these methods have not been

truly explored yet. We propose the use of SURE,

GCV, and L-curve in the sparsity-driven SAR image

formation framework [1] and develop a number of

numerical tools for efficient implementation of the

methods considered. We present the effectiveness

of the applied methods through our experiments

based on both simple synthetic data as well as the Air

Force Research Laboratory (AFRL) Backhoe Data

Dome [19].

The organization of this paper is in the following

manner. Sparsity-driven SAR imaging is formulated

in Section II. In Section III, SURE, GCV, and
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L-curve are adapted to the form of our problem.

The optimization tools we propose are discussed

in Section IV. Finally, our experimental results are

presented in Section V, and the work in this paper is

summarized in Section VI.

II. SPARSITY-DRIVEN SAR IMAGING

We focus on the regularization-based SAR imaging

framework proposed in [1]. The framework of [1]

relies on the SAR observation process expressed in

the following form:

g =Hf+w (1)

where H represents a complex-valued discrete SAR

operator, w stands for additive white Gaussian

noise, and g and f are data and the reflectivity field,

respectively. In SAR imaging, one can obtain the

reflectivity field starting from various data domains

such as phase history, range profile, or conventional

image. Here we first produce a conventional SAR

image from SAR returns and then use it as our data

g. In such a case the SAR forward model H is a

convolutional operator. The framework developed in

[1] involves mechanisms for improving sparsity of

various features. Here we consider one form of this

approach that imposes sparsity on the reflectivity

field. In particular, to emphasize sparsity of the

reflectivities, the SAR image reconstruction problem

is formulated as the following optimization problem:

f̧̂ = argminfkg¡Hfk22 +¸kfkpp: (2)

Here ¸ is the regularization parameter, kfkp denotes
the `p-norm and is defined as kfkp = (

Pn
i jfijp)1=p

where fi is the ith element of f, n is the number

of elements in f. The first term in (2) is the data

fidelity term which incorporates the SAR observation

model in (1), and thus information about the

observation geometry. The second term which is

called the regularizer or side constraint brings in the

prior information we would like to impose. When

one chooses p= 2 in this term, that leads to the

well-known Tikhonov regularization method [10].

Unlike the Tikhonov approach, the side constraint

in our context is aimed at indicating a preference

for sparsity; hence a choice other than p= 2 will

be made. It has been known that minimum `p-norm

reconstruction with p· 1 provides localized energy
concentrations in the resultant image, and thus

promotes sparsity. In such images, most elements

are forced to be small, on the other hand, a few are

allowed to have large values. The outcome of the use

of this term is to suppress image artifacts, increase

the resolvability of scatterers, and result in a sparse

image. Such sparsity constraints have been shown

to lead to superresolution [20]. A smaller value of

p puts a smaller penalty on large pixel values as

compared with a larger p, and thus produces a field

with a smaller number of non-zero pixel values. Note

that in general pixels in the solution do not directly

correspond to the scatterers in the reflectivity field

because there could be multiple scatterers within one

pixel.

To avoid problems due to nondifferentiability of

the objective function when fi for any i is zero, a

smooth approximation to the `p-norm is used, and the

objective function in (2) takes the following form:

ª = kg¡Hfk22 +¸
nX
i=1

(jfij2 +¯)p=2 (3)

where ¯ is a small scalar. As long as ¯ is small but

positive, the minimizer of the above cost function

with ¯ 6= 0 is close to the minimizer obtained with
¯ = 0 [21]. However too small ¯ values increase

the computation time required for the solution of

this optimization problem. In our experiments, we

choose ¯ empirically by considering this tradeoff. In

particular we pick ¯ = 10¡7.
Our goal now is to find the estimate f̧̂ =

argminfª . We note that when p > 1, this is a convex

optimization problem. We take the gradient of ª with

respect to f:

rª =¡2H†g+2H†Hf+2¸W̄ (f)f (4)

where W̄ (f) is a diagonal weight matrix whose

ith diagonal element is (p=2)(jfij2 +¯)(p=2)¡1, and
set the gradient equal to zero. The solution of the

optimization problem for any value of p should be a

stationary point and should satisfy this equality:

(H†H+¸W̄ (f̧̂ ))f̧̂ =H†g: (5)

The ith diagonal element of W̄ (f̧̂ ) weights the

intensity of the ith pixel by a spatially varying penalty.

Since the weight matrix depends on f̧̂ , the equation

in (5) is not linear in f̧̂ , and (5) does not have a

closed-form solution. However, one can develop a

fixed-point iteration [22], each step of which involves

the solution of a linear problem:

(H†H+¸W̄ (f̂(k)¸ ))f̂(k+1)¸ =H†g (6)

where f̂(k)¸ is the solution obtained in the kth iteration.

Although (6), in principle, leads to a closed-form

solution for f̂(k+1)¸ , this would require the inversion of

a large matrix. Hence we solve the set of equations

in (6) numerically by using the conjugate gradient

algorithm. This algorithm has been shown to be

a descent algorithm and is likely to converge to a

minimum of the cost function [23].

III. PARAMETER SELECTION

The objective function in (3) contains a scalar

parameter ¸ which has a role in determining the

behavior of the reconstructed field. Small parameter
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values make the data fidelity term, i.e., first term
in (3), dominate the solution, whereas large values
of ¸ emphasize the `p-norm-based penalty term. In
order to generate an accurate high-quality image, it
is necessary to strike the right balance between these
two terms by choosing the value of ¸ appropriately.
To choose ¸ in a data-driven way, we consider three
methods: SURE, GCV, and L-curve.
1) SURE: SURE aims to minimize the following

predictive risk, i.e., predictive mean-squared error:

R¸ = kHftrue¡Hf̧̂ k22: (7)

Here, f̧̂ denotes the solution obtained by using ¸
and ftrue is the true, unknown field. Obviously, the
predictive risk cannot be calculated exactly since it
depends on ftrue. However, Stein’s method achieves
an unbiased estimate of the predictive risk [5, 24], by
computing the expected value of this risk as

R̂¸ = n¾
2 + kek22 +2¾2re (8)

where ¾2 is the variance of the white Gaussian noise
w, e=Hf̧̂ ¡g, and re=P@ei=@gi. Here e is a

measure for the fitness of the estimate f̧̂ to the
observation g, and is usually called the residual.
For standard Tikhonov solution, the computation
of the gradient in (8) is straightforward since the
regularized solution is a linear function of the data.
However, when nonquadratic regularization methods
are considered, a nonlinear relation arises between
the data and the estimate and there does not exist a
closed-form solution for the estimate. In this case, it
is more convenient to use the chain rule for evaluating
re and calculate the risk estimate in the following
form1 [15]:

R̂¸ =¡n¾2 + kek22 +2¾2tr(Hª¡1
f̂f̂
ª
f̂g
) (9)

where ª
f̂f̂
= @2ª=@f̂@f̂† is the Hessian, and ª

f̂g
=

@2ª=@f̂@g†. Then, provided that ¾2 is known or
accurately estimated, the problem reduces to finding
the parameter ¸ which minimizes (9).
Starting from (9), we develop the SURE function

for (3) as

R̂¸ =¡n¾2 + kHf̧̂ ¡ gk22 +2¾2tr(Ţ ) (10)

where
Ţ =H(2H†H+¸K(f̧̂ ,¯))¡12H† (11)

and K(f̧̂ ,¯) is a diagonal matrix whose ith diagonal

element is p((p¡ 1)j(f̧̂ )ij2 +¯)(j(f̧̂ )ij2 +¯)(p=2)¡2. In
summary, the goal is to find ¸ that minimizes R̂¸ in

(10), and consequently obtain f̧̂ which is the image
reconstructed with this parameter. See [25] for more
details.

1For the sake of notational simplicity, we replace f̧̂ with f̂ in

subscripts.

Fig. 1. Generic form of L-curve and path L-corner search.

2) GCV: The method of generalized

cross-validation [6, 7] provides an estimate for ¸

which approximately minimizes the expected value

of the predictive risk, without requiring knowledge of

¾. Let us define the so-called influence matrix A¸ as

Hf̧̂ = A¸g: (12)

Then the GCV estimate of ¸ is the minimizer of

(see [6]):

V̧ =

1

n
ke¸k22·

1

n
tr(I¡A¸)

¸2 : (13)

The GCV method was originally designed for

problems in which A¸ is independent of g. If A¸
depends on g, then A¸ can be approximated by

H@f̧̂ =@g, where @f̧̂ =@g is the Jacobian of f̧̂ with

respect to g [26]. (Note that A¸ =H@f̧̂ =@g if f̧̂ is

linearly dependent on g.) Thus, we set A¸ =H@f̧̂ =@g.

We also note H@f̧̂ =@g =Hª¡1
f̂f̂
ª
f̂g
= Ţ where Ţ is

given in (11), and obtain the GCV function as

V̧ =

1

n
ke¸k22·

1

n
tr(I¡ Ţ )

¸2 : (14)

3) L-curve: L-curve was first defined in the

Tikhonov context as a parametric log-log plot of the

norm kf̧̂ k2, versus the corresponding residual norm
kHf̧̂ ¡ gk2, with the regularization parameter ¸ as
the parameter [9]. Then it was extended to different

regularization methods [27, 18]. In many applications,

L-curve appears as an L-shaped curve as shown in

Fig. 1. The corner of the L-shaped curve is considered

as the region containing good parameter choices that

balance the regularization errors and perturbation

errors in f̧̂ . The L-curve criterion for choosing the

regularization parameter is based on this feature.

Although this intuition is natural and quite simple,

computing the corner of the L-curve may not be
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straightforward. Several ideas have been proposed to

determine the corner including the point of maximum

curvature, the point closest to a reference location,

such as the origin [27], and the point of tangency with

a line of slope ¡1 [18]. Below we adapt L-curve to
the parameter selection problem in sparsity-driven

SAR imaging, and develop our own procedure for

finding the corner.

IV. OPTIMIZATION TOOLS

A. Computation of SURE and GCV: Randomized Trace
Estimation

For large scale problems, Ţ in (11) cannot be

easily constructed due to the memory limitations of

computers. In such cases, it is more convenient to

find an estimate of tr(Ţ ), which is what SURE and

GCV need, without explicitly constructing Ţ . The

method in [28] calculates an estimate of the trace

of the influence matrix in regularization of linear

equations and enables the use of the SURE and GCV

methods in large-scale problems. The method can be

applied through the following algorithm:

1) generate k independent realizations qi of a

white noise vector with zero mean and unit variance,

where i 2 f1, : : : ,kg,
2) compute ti(¸) = q

†
i Ţ qi,

3) take the sample mean t̄(¸) =
Pk
1=1 ti(¸)=k to be

the trace estimate.

This algorithm appears to have an explicit dependence

on the matrix Ţ . However, here we do not construct

Ţ explicitly. All the matrix-vector products involved

are actually carried out by convolution operations

(in the Fourier domain) such that there is no need

to construct the convolution matrix and deal with

memory-intensive matrix operations. It is well

known that a conventional SAR image, which

is the data in our case, can be described by the

convolution of the original reflectivity field with a

sinc function [29]. Hence the operator H as well as

H† in our problem are convolutional. Note that Ţ

itself is also a convolutional operator. Therefore the

computation required in step 2 above is also carried

out through convolution operations. Finally note that

the computation of Ţ in (11) requires the inversion of

a large matrix. Rather than performing that inversion

explicitly, we perform numerical computation through

the conjugate gradient algorithm by posing this

calculation as the problem of solving a set of linear

equations.

The accuracy of the trace estimate obtained

through the 3-step procedure above depends on the

variability of the ti(¸)s, and this variability can be

quantified in terms of the variance of ti(¸). It has

been shown that this variance is minimized by taking

the white noise qi to be a random vector whose

components are independent and take values +1 and

¡1, with equal probability [30].
B. Minimization of SURE and GCV: Golden Section

Search

SURE and GCV are aimed at finding the value
of ¸ which minimizes the expressions given in (10)

and (13), respectively. Note that the differentiation

of these expressions is not straightforward and these

minimization problems do not have closed-form
solutions. One might consider a brute force search

but we should also take into account that evaluating

points on SURE and GCV curves is computationally
demanding and one would prefer to compute as few

points as possible. Based on our experience with these

methods, SURE and GCV curves have a unimodal
structure in most cases although, to our knowledge,

there is no guarantee that this will always be the case.

Even if they exhibit unimodal behavior in their overall
structure, due to numerical approximations involved

in their computation, the curves might not be strictly

unimodal due to oscillations in some parts, especially
around small lambda values. Fortunately, these small

oscillations do not cause significant problems unless

the optimization method requires derivatives and
small step size in its search. Therefore we employ

golden section search which is a derivative-free

optimization method for unimodal functions [31].
Unlike a gradient-based approach, which seeks the

minimum with local movements, the golden section

search approach has a more global perspective and
first aims to locate the general basin of attraction. It

then focuses on smaller regions in subsequent steps.

In this sense, it is less likely that it will be trapped
in local minima with large values of the function to

be optimized, far away from the actual minimum.

Of course, there is no guarantee that it will perfectly
locate the global minimum. We find the minima of

SURE and GCV functions through the following

algorithm:

1) determine an initial interval I = [¸min,¸max]
(we start with a quite large initial interval, e.g., I =

[10¡8,102])
2) determine two test values ¸1,¸2 2 I according to

the golden ratio ®= 0:618

(since ¸ covers a large range of values, we choose

golden section in the logarithmic scale), i.e.,
log¸1 = log¸min + (1¡®)(log¸max¡ log¸min) and
log¸2 = log¸min +®(log¸max¡ log¸min)
3) compute R̂¸1 and R̂¸2 (V̧ 1

and V̧
2
)

4) determine a new interval Ĩ through golden
section search, i.e.,

if R̂¸2 ¡ R̂¸1 > ± (V̧ 2
¡ V̧

1
> ±) (where ± is a small

positive constant) then

Ĩ = [¸min,¸2]

else

Ĩ = [¸1,¸max]

CORRESPONDENCE 3043



5) set I = Ĩ and repeat starting from step 2 until
the interval is sufficiently small (e.g., log¸max¡
log¸min = 10

¡2)

C. Finding the L-Corner

Evaluating points on the L-curve involves less
computational cost since it does not require the
computation of the matrix trace involved in SURE
and GCV. Still, it is desirable to compute as few
points as possible. Besides, defining the corner of the
L-curve is an important issue. Our approach involves
the definition and solution of an optimization problem
for this task. In particular, we determine the L-corner
through the following algorithm:

1) let I = [I1,I2] denote the search interval for ¸
where I1 and I2 are the lower and the upper limits of
I, respectively.
2) set initial limits of the interval such that I1 =

¸0min and I2 = ¸
0
max

3) consider the ¸ values ¸k¡1min , ¸
k
min = ¸

k¡1
min +¢¸,

¸l¡1max and ¸
l
max = ¸

l¡1
max¡¢¸ where k and l are iteration

numbers, and ¢¸ is a predefined step size
4) compute slopes mk¡1min , m

k
min, m

l¡1
max and m

l
max

of the tangent lines at the points on the L-curve
corresponding to ¸k¡1min , ¸

k
min, ¸

l¡1
max and ¸

l
max,

respectively
(note that the derivatives are computed numerically)
5) if mk¡1min >m

k
min then

I1 = ¸
k
min

increment k
else
¸min = ¸

k¡1
min

and similarly,
if ml¡1max <m

l
max then

I2 = ¸
l
max

increment l
else
¸max = ¸

l¡1
max

continue shrinking the interval by iterating through
step 3 to 5.
(note that the conditions for k and l in step 5 are
performed independently in parallel as illustrated in
Fig. 1)
6) set a reference point (x0,y0) which is the

intersection point of the tangent lines at ¸min and ¸max
7) determine two test values ¸1,¸2 2 I according to

the golden ratio

8) compute the residual norm r¸i = kg¡Hf̧̂ i
k22

and the solution norm ½¸i = kf̧̂ i
kpp for i= 1,2

9) compute the distance from (r¸i ,½¸i ) to the

reference as di = (logr¸i ¡ logx0)2 + (log½¸i ¡ logy0)2
10) determine a new interval Ĩ through golden

section search, i.e.,
if d1 > d2 then

Ĩ = [¸1,¸max]
else
Ĩ = [¸min,¸2]

Fig. 2. Plot of magnitude of (a) 32£ 32 synthetic scene, (b) PSF,
(c) conventional SAR image.

11) set I = Ĩ and repeat starting from step 7 until

the interval is sufficiently small

V. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the parameter

choice algorithms we have described on both synthetic

and electromagnetically simulated realistic data. We

present sparsity-driven SAR images with selected

parameters and compare these results to different

parameter choices and conventional reconstructions.

A. Synthetic Scene

We first present experimental results on a synthetic

example. As we know the ground truth, we can use

this example to provide a quantitative performance

analysis in terms of the reconstructed scenes. The

results we present on a single scene and a single noise

realization here are typical over multiple scenarios

not presented here. The complex-valued synthetic

scene consists of 9 randomly chosen point scatterers

as shown in Fig. 2(a). Throughout our work, we

display the magnitude (in dB) of the complex-valued

reflectivities. Figs. 2(b) and (c) show the point

spread function (PSF) of the SAR imaging system

and the conventional SAR image of the synthetic

scene, respectively. Here the collected SAR data

involve bandlimited (through a rectangular window)

Fourier samples, and as a result, the PSF is a 2-D sinc

function. The vertical spread of the PSF corresponds

to the resolution in the range direction in which the

radar pulses are transmitted. The horizontal spread

of the PSF corresponds to the cross-range resolution.

Thus, the conventional image is a filtered or smoothed

version of the true scene. We perform experiments for

different noise levels, adding complex Gaussian noise

to the simulated SAR data. We take the SNR to be the

power ratio of the noise-free data to noise in dB.

Here we consider sparsity-driven reconstructions

with p= 1. Fig. 3 shows the estimation error

kftrue¡ f̧̂ k22, predictive risk kHftrue¡Hf̧̂ k22, as
well as SURE and GCV curves for three different

SNR values. SURE has a similar structure with

the predictive risk whereas GCV has a different

structure. Note that GCV is very flat around its

minimum and this sometimes makes it difficult to

locate the minimum. Yet the minima of SURE and
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Fig. 3. Estimation error, predictive risk, SURE and GCV cost functions for synthetic image with (a) 30 dB, (b) 20 dB,

(c) 10 dB SNR.

GCV are close to the minimum of the predictive

risk. As we have mentioned before, SURE and GCV

estimate the predictive risk in (7), but the quality of

the reconstruction is, naturally, better measured by

the estimation error. In this example, the minima

of the estimation error and the predictive risk are

very close, and as a result SURE and GCV provide

good parameter choices in the sense of minimizing

the estimation error. Fig. 4 shows the L-curve and

corresponding L-corner. Note that for lower noise

levels, the corner of the L-curve is sharper, and

thus it is easier to locate the L-corner. Parameter

choices of SURE, GCV, and L-curve are given and

compared with the parameter values minimizing the

estimation error and the predictive risk in Table I.

When compared with the estimation error and the

predictive risk, SURE and GCV lead to very good

parameter choices whereas L-curve chooses a smaller

parameter. In general, the L-curve choice of ¸ is 3—10

times smaller than those of SURE and GCV, and

thus leads to less sparse images. The observation that

TABLE I

Values of Parameter ¸ Minimizing Various Costs for the Synthetic

Scene in Fig. 2, when p= 1

SNR kf ¡ f̧̂ k2
2

kHf ¡Hf̧̂ k2
2

SURE-GCV L-Curve

30 dB 0.024 0.028 0.028 0.004

20 dB 0.080 0.081 0.083 0.026

10 dB 0.302 0.271 0.342 0.104

L-curve usually leads to underregularization has been

made by others as well (see, e.g., [32]).

We now show the reconstruction results based

on these parameters in Fig. 5. We observe that SAR

images reconstructed using the SURE, GCV, and

L-curve parameters are very similar and hard to

distinguish visually. The reconstructed SAR image is

noisy when ¸ is too small, and some of the scatterers

are not found when ¸ is too large. This confirms the

need for a parameter choice method. In addition, the

similarity of the scenes reconstructed through our

parameter choice algorithms to the scene reconstructed
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Fig. 4. L-curve and corresponding L-corner for synthetic image with (a) 30 dB, (b) 20 dB, (c) 10 dB SNR.

TABLE II

Values of Parameter ¸ Minimizing Various Costs for the Synthetic

Scene in Fig. 6, when p= 1

SNR kf ¡ f̧̂ k2
2

kHf¡Hf̧̂ k2
2

SURE-GCV L-Curve

30 dB 1.108 0.020 0.018 0.054

20 dB 1.720 0.162 0.173 0.125

10 dB 2.864 0.828 0.826 0.854

by the optimal parameter ¸optimum (minimizing the

estimation error), as well as to the underlying true

scene demonstrates the success of our approach.

In certain cases we have observed significant

differences between the minima of the estimation error

and the predictive risk. An example of this occurs

when we consider a different SAR imaging scenario

where the resolution is very poor resulting in a PSF

as in Fig. 6. In particular, in the 30 dB SNR case of

the scenario in Fig. 6, the minimum of the predictive

risk is attained at a significantly smaller value of ¸

as compared with the estimation error, as shown in

Fig. 7. As SURE and GCV are based on the predictive

risk, they also choose small parameter values and may

lead to underregularization in this case. In fact, as

shown in Table II, SURE and GCV produce smaller

parameters than L-curve for 30 dB and 10 dB SNR in

this particular scenario. The main difference between

the scenario in Fig. 2 and the one in Fig. 6 is that the

resolution is much lower in the latter case. When we

have high resolution (such that the pixel spacing and

the resolution are close), the operator H is close to

unitary. When that is the case, the predictive risk and

the estimation error have a similar structure. On the

other hand, in scenarios such as the one in Fig. 6,

where H is further away from being unitary, we are

not guaranteed that the two curves will have similar

structures. This explains our empirical observations

in this experiment in terms of the differences between

the minima of the predictive risk and the estimation

error.

B. Realistic Data

We now present 2-D image reconstruction

experiments based on the AFRL Backhoe Data

Dome, which consists of simulated wideband

(7—13 GHz), full polarization, complex backscatter

data from a backhoe vehicle in free space [19]. The

backhoe model is shown in Fig. 8. The backscatter

data are available over a full upper 2¼ steradian

viewing hemisphere. In our experiments, we use VV

polarization data, centered at 10 GHz, and with an

azimuthal span of 110± and a peak elevation angle of
30± (at azimuth center). Note that this is a wide-angle
imaging scenario. Sparsity-driven SAR imaging was

extended and applied to SAR data collections that

span a wide angular aperture [33]. Here we consider

the sparsity-driven composite imaging technique of

[33] and show experimental results based on this
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Fig. 5. SAR reconstructions for (a) 30 dB, (b) 20 dB, (c) 10 dB

SNR. The following parameters are used from top to bottom:

10¡2¸optimum, ¸optimum, ¸SURE (SURE and GCV choices of ¸ are

almost the same and their reconstructions are visually

indistinguishable therefore we show one reconstruction for both),

¸L-curve, and 10
2¸optimum.

Fig. 6. Plot of magnitude of (a) 32£ 32 synthetic scene, (b) PSF,
(c) conventional SAR image.

framework. In this framework, the whole angular

aperture is divided into subapertures and a separate

image is formed for each subaperture. For composite

imaging, we use 19 overlapping subapertures, with

azimuth centers at 0±,5±, : : : ,90±, and each with an
azimuthal width of 20±. Then the maximum pixel

magnitude among all subapertures is retained for

Fig. 7. Estimation error, predictive risk, SURE and GCV cost

functions for synthetic image in Fig. 6 with 30 dB SNR.

Fig. 8. Backhoe model used in Xpatch scattering predictions.

View to right corresponds approximately to view in images in our

experiments.

TABLE III

Values of Parameter ¸ Minimizing Various Costs for the Backhoe

Scene when p= 1

SNR SURE-GCV L-Curve

30 dB 1:9£ 10¡3 2:0£ 10¡4
20 dB 3:6£ 10¡3 1:5£ 10¡3
10 dB 3:0£ 10¡2 7:8£ 10¡3

TABLE IV

Values of Parameter ¸ Minimizing Various Costs for the Backhoe

Scene when p= 0:7

SNR SURE-GCV L-Curve

30 dB 8:6£ 10¡5 7:6£ 10¡5
20 dB 4:6£ 10¡4 3:0£ 10¡4
10 dB 2:8£ 10¡3 1:7£ 10¡3

each pixel location in the composite image. In our

experiments we have observed that the ¸ choice in

each subaperture image is very similar. Hence we

have chosen a ¸ value in one subaperture image

and then used that ¸ for the reconstruction of all

subaperture images. In a different scenario, one may

need to choose it separately for each subaperture.

Figs. 9 and 10 show SURE, GCV curves, and

the L-curve for 20 dB and 10 dB SNR, respectively,

when p= 1. Tables III and IV display selected ¸
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Fig. 9. (a) SURE and GCV curves, (b) L-curve and

corresponding L-corner for the backhoe scene when p= 1 and

SNR= 20 dB.

values for three different noise levels when p= 1

and p= 0:7, respectively. It can be observed that

larger parameters are selected for data with lower

SNR. This behavior makes sense from a Bayesian

estimation-theoretic view on image reconstruction:

noisier data result in relatively more emphasis on

the prior than the data through the use of a larger

regularization parameter. As in the synthetic example

in Fig. 2, L-curve chooses smaller parameters than

SURE and GCV. To provide a visual comparison, we

first present the conventional SAR image in Fig. 11.

Sparsity-driven SAR reconstructions with parameters

selected by SURE, GCV, and L-curve for p= 1 and

p= 0:7 are shown in Figs. 12 and 13, respectively. We

cannot carry out any quantitative performance analysis

for this experiment since ground truth data are not

directly available to us. While our quantitative results

on the synthetic scene experiments provide a useful

characterization of the proposed methods, further

quantitative analysis on more complicated scenes, such

as the backhoe, would be of interest in future work.

Fig. 10. (a) SURE and GCV curves, (b) L-curve and

corresponding L-corner for the backhoe scene when p= 1 and

SNR= 10 dB.

Fig. 11. Conventional SAR image.

VI. CONCLUSION

We have considered the problem of automatic

regularization parameter selection in sparsity-driven

SAR imaging. We have provided extensions of

several parameter selection methods to be used in

SAR imaging and developed numerical algorithms

for automatic parameter selection in sparsity-driven

imaging of complex-valued SAR reflectivity

fields.

SURE and GCV are both aimed at estimating

the predictive risk and in many cases the minimizers

of the predictive risk and the mean squared error
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Fig. 12. Sparsity-driven images for p= 1 and (a) 30 dB,

(b) 20 dB and (c) 10 dB SNR. The following parameters are used

from top to bottom: Too small ¸, ¸SURE (SURE and GCV choices

of ¸ are almost the same and their reconstructions are visually

indistinguishable therefore we show one reconstruction for both),

¸L-curve, and too large ¸.

of the solution are close. Under these conditions,

we can conclude that SURE and GCV usually

produce satisfying results. Thus, their parameter

choice leads to reasonable images when compared

to the images where the regularization parameter

is selected manually. L-curve, on the other hand,

tends to select slightly smaller parameters than those

chosen by SURE and GCV with less computational

cost. Sparsity-driven backhoe images appear to

be somewhat underregularized, but still provide a

reasonable tradeoff between artifact suppression and

feature preservation for all three methods.

Overall, this work has addressed an open problem

in sparsity-driven SAR imaging. It is also general

enough to be applied to any complex-valued `p-norm

regularized image reconstruction problem. The

numerical tools we have developed can be used

in other types of large-scale problems. This study

has provided mechanisms for automatic selection

of the regularization parameter, thus resulting in

a new opportunity for advancement in the use of

sparsity-driven SAR images in automatic target

recognition systems.

Fig. 13. Sparsity-driven images for p= 0:7 and (a) 30 dB,

(b) 20 dB and (c) 10 dB SNR. The following parameters are used

from top to bottom: Too small ¸, ¸SURE (SURE and GCV choices

of ¸ are almost the same and their reconstructions are visually

indistinguishable therefore we show one reconstruction for both),

¸L-curve, and too large ¸.
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