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Abstract—We propose an approach based on Hidden Markov
models (HMMs) combined with principal component analysis
(PCA) for classification of four-class single trial motor imagery
EEG data for brain computer interfacing (BCI) purposes. We
extract autoregressive (AR) parameters from EEG data and use
PCA to decrease the number of features for better training
of HMMs. We present experimental results demonstrating the
improvements provided by our approach over an existing HMM-
based EEG single trial classification approach as well as over
state-of-the-art classification methods.
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I. INTRODUCTION

Electroencephalography (EEG) based Brain-Computer In-
terface (BCI) systems are a new development in the field of
applied neurophysiology. These systems are being developed
in order to enable people who cannot carry out normal motor
functions, such as Amyotrophic Lateral Sclerosis (ALS) and
Tetraplegic patients, to control computer based devices.

EEG is a time series signal. EEG-based BCI research is
aimed at the development of signal processing and pattern
recognition techniques to find specific patterns, for performing
particular actions, using features extracted from this time series
signal. During the imagining of motor actions, the frequency
structure of the EEG signal changes through time [1]–[3].
There are four different motor imagery tasks in the data
we have used (see section III-A). A different region in the
brain is responsible for each of these tasks. Although, there
is a correspondence between recording electrodes and brain
regions, it is not one-to-one due to the volume conduction
effect of the brain tissues that make the electrical signal spread
all over the brain [4].

When a subject does not process a sensory input or produce
a motor output, primary sensory or motor cortical areas display
a 8-12 Hz activity known as the µ rhythm [1]. The µ rhythm
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decreases with movement, preparation of movement or imagi-
nation of that movement [3], particularly in contra-lateral areas
of the brain to the limb movement. This decrease is called
event-related desynchronization (ERD). Similarly increased
rhythm is called event related synchronization (ERS) and
often appears after movement [3]. Various machine learning
algorithms have been used by BCI community such as linear
classifiers, neural networks, nonlinear Bayesian classifiers,
nearest neighbor classifiers and the combinations of any of
the above [5]–[7] to characterize the ERD and ERS patterns
recorded during different movement experiments. In this study,
using data from different electrodes corresponding to motor
imagery related brain regions for different tasks, we have
modeled the evolution of the frequency structure of the signal
over time using HMMs.

Hidden Markov Models (HMM) are dynamic classifiers
used in a variety of fields, most widely in the field of speech
recognition [8]. An HMM is a kind of probabilistic automaton
that can provide the probability of observing a given sequence
of feature vectors. An HMM involves probabilities for tran-
sition between the states, as well as conditional probability
densities of the observed feature vectors, given the underlying
states. HMMs have been applied to the classification of 2-
class temporal sequences of BCI features [9], [10] and even
to the classification of raw EEG [11]. Although they are not
very widespread within the BCI community, they seem as
promising classifiers for BCI systems.

In this paper, an HMM-based classifier based on autoregres-
sive (AR) features is used within the context of BCI for the
first time. AR features are good frequency estimators however
their rather high dimensions are problematic in the learning
of the HMM parameters during training. To overcome this
problem, we have proposed an approach based on principal
component analysis (PCA) to reduce the dimensions of AR
features, making them more suitable for HMM classifiers.
This is the major technical contribution of this paper. Finally,
this study applies HMM-based classification on a 4-class BCI
problem for the first time. We evaluate our approach based
on the BCI Competition IV-2a dataset, and demonstrate the
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improvements it provides over existing techniques (see Table
I).

II. AR-PCA-HMM FOR CLASSIFICATION

A. Autoregressive Features

AR parameter estimation is one of the most commonly
used techniques to extract frequency related EEG features. The
pth order autoregressive (AR) model describes an EEG signal
yk(t) at channel (electrode) k as:

yk(t) = a1,ky(t−1) +a2,ky(t−2) + ...+ap,ky(t−p) +E(t)

Here, ai,k denotes the ith order AR parameter modeling the
EEG signal at channel k and E(t) is white noise with zero
mean and finite variance. There is a direct correspondence
between the AR parameters and the autocorrelation function
of the process, and this correspondence can be inverted to
determine the parameters from the autocorrelation function
using the Yule-Walker equations. We have estimated AR
parameters for each EEG channel that we have used for this
study using least-squares (LS) estimation. We have calculated
parameters for each single trial in overlapping windows. Four
EEG channels were used namely C3, C4, Cz, Pz . These chan-
nels correspond to the electrodes which are likely to provide
informative measurements about motor tasks. We have the
feature matrix F for each trial after the estimation:

F =



a1,C3(1), · · · , a1,C3(M)
...

...
...

ap,C3(1), · · · , ap,C3(M)
a1,C4(1), · · · , a1,C4(M)

...
...

...
ap,C4(1), · · · , ap,C4(M)
a1,Cz(1), · · · , a1,Cz(M)

...
...

...
ap,Cz(1), · · · , ap,Cz(M)
a1,Pz(1), · · · , a1,Pz(M)

...
...

...
ap,Pz(1), · · · , ap,Pz(M)


4p×M

Here ai,k(m) is the AR parameter at the mth window and M
is the number of overlapping windows. From now on, each
column of F will be represented as f c

m if data are labeled and
as fm if the data are not labeled, where m ∈ [1, . . . ,M ] and
c ∈ [1, . . . , 4], with c denoting the class label.

B. Principal Component Analysis

PCA is an orthogonal linear transformation that maps the
data into a new space, so called eigenspace, such that the
elements of the transformed data are uncorrelated with each
other.

Let fm be the r = 4p dimensional feature vector with zero
mean and covariance matrix Σ. Eigenvalues and eigenvectors
can be calculated using eigendecomposition:

Λm = WmΣmW
T
m

where WT
m is the eigenvector matrix of the covariance matrix

Σm, and Λm is the corresponding diagonal matrix of eigenval-
ues. These eigenvectors in this case are known as the principal
components. Consequently, projection to the eigenspace is
achieved by

zm = Wmfm

One can reduce the dimension of the feature vector by
ordering eigenvalues and selecting the corresponding first s
columns of Wm where s < r.

We compute one eigenvector matrix for each overlapping
window separately. To do that, first we estimate features for
each trial using four electrodes as explained in section II-A.
Then, we create the following matrix Gn

m for each overlapping
window by concatenating the data from same window of
different classes:

Gn
m =

[
f1

m, . . . , f
4
m

]
4.p×4

where n ∈ [1, ..., N ] denotes the trial number and N corre-
sponds to the total number of trials. For the sake of notational
simplicity we ignore the dependence of f c

m on the trial index n.
Then, corresponding features from the corresponding windows
of each trial are concatenated:

Hm =
[
G1

m, · · · , GN
m

]
4.p×4.N

For each overlapping window m, we estimate the covariance
matrix of fm as Σ̂m = HT

mHm. Then Wm is found as the
matrix of eigenvectors of Σ̂m.

First s rows (s < 4p) of each overlapping window specific
Wm matrix is used and represented as W s

m to calculate each
reduced dimensional feature vector, where s is the number of
principal components that we want to reduce the dimension
to.

jc
m = W s

mf
c
m

Finally, by concatenating the reduced dimensional feature
vectors we get the following reduced dimensional feature
matrix Jc

train for each class:

Jc
train = [jc

1, j
c
2, . . . , j

c
M ]s×M

We apply the learned matrix W s
m for dimensionality reduction

of unlabeled test data. For each trial the number of features
were reduced from 4p×M to s×M . The values of p and s
used in the test data for each subject are shown in Table I.

C. Hidden Markov Model Learning

We learn a different HMM for each of the four classes in
our problem. We model the conditional probability densities of
the reduced dimensional feature vectors given the underlying
states with Gaussian mixtures. For each of these models, we
consider two sets of parameters to be learned. The first one,
which we denote model-order parameters includes the number
of states (NoS) of the HMM, the number of Gaussian mixtures
(NoGM), the AR model order p, and reduced dimension s
(see Table I). We denote the second set of parameters as
model parameters λc = {A,B,Π}. Here A is state transition
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probabilities, B is the means and variances of the observation
probability distributions and Π is initial state distributions
(see [8]). We split the data into three namely F c

train (40%),
F c

validation (30%), Ftest (30%). For a fixed set of model-
order parameters, we learn the model parameters based on
training data F c

train using the expectation-maximization (EM)
algorithm so that the likelihood of the observed training
sequences is locally maximized. We learn the model-order
parameters by maximizing the classification performance on
validation data F c

validation. We then test our classification
approach on test data Ftest based on these learned parameters.

III. EXPERIMENTAL RESULTS

A. Experimental Setup and Data

BCI Competition IV-2a dataset consists of EEG data from
9 subjects. The cue-based BCI paradigm consisted of four
different motor imagery tasks, namely the imagination of
movement of the left hand (class 1), right hand (class 2), both
feet (class 3), and tongue (class 4). Two sessions on different
days were recorded for each subject. Each session is consist
of 6 runs separated by short breaks. One run consists of 48
trials (12 for each of the four possible classes), yielding a total
of 288 trials per session.

The subjects were sitting in a comfortable armchair in front
of a computer screen. At the beginning of a trial (t = 0 s), a
fixation cross appeared on the black screen. In addition, a short
acoustic warning tone was presented. After two seconds (t =
2 s), a cue in the form of an arrow pointing either to the left,
right, down or up (corresponding to one of the four classes
left hand, right hand, foot or tongue) appeared and stayed on
the screen for 1.25s. The subjects were asked to carry out the
motor imagery task until the fixation cross disappeared from
the screen at t = 6s. A short break followed where the screen
was black again. The paradigm is illustrated in Figure 1b.

(a) (b)

Fig. 1: Electrode Configuration and Timing Scheme

Twenty-two Ag/AgCl electrodes (with inter-electrode dis-
tances of 3.5 cm) were used to record the EEG according
to the international 10-20 system. All signals were recorded
monopolarly with the left mastoid serving as reference and
the right mastoid as ground (see Figure 1a). The signals were
sampled at 250 Hz and bandpass filtered between 0.5 Hz
and 100 Hz. An additional 50 Hz notch filter was enabled
to suppress line noise. We have used the first sessions of first
8 of the subjects. These same 8 subjects were also used in
[12] and [13].

B. Results

Fig. 2: Performance of the proposed AR-PCA-HMM approach
as compared to other HMM-based techniques.

TABLE I: Model-order parameters that gave best probability
of correct classification results in validation dataset and used
in the test dataset.

Method Parameters S1 S2 S3 S4 S5 S6 S7 S8

AR-PCA-HMM

p 14 15 14 14 15 14 15 15
s 10 8 8 10 10 7 9 8
NoGM 3 3 3 3 3 2 3 3
NoS 5 5 5 3 5 5 5 5

AR-HMM
p 9 5 5 8 6 15 13 6
NoGM 2 1 1 1 2 1 1 3
NoS 4 2 3 4 1 2 3 3

Hjorth-HMM NoGM 3 1 3 2 1 1 1 3
NoS 5 3 1 5 3 1 4 1

AR-Mahal p 10 8 5 7 9 5 6 9

TABLE II: AR-PCI-HMM vs. State-of-the-art Techniques.
κ = (C × PCC − 1)/(1 − C). κ approaches to zero
as the PCC approaches to 1/C where C is the number of
classes.

Feature / Classifier κmean S1 S2 S3 S4 S5 S6 S7 S8
AR-PCA / HMM .65 .93 .91 .34 .36 .95 .01 .89 .81
FBCSP / Naive Bayes .57 .68 .42 .75 .48 .40 .27 .77 .75
CSP / LDA-Bayes .51 .69 .34 .71 .44 .16 .21 .66 .73
CSP / SVM-Voting .30 .38 .18 .48 .33 .07 .14 .29 .49
CSP / LDA-SVM .29 .46 .25 .65 .31 .12 .07 .00 .46
CSP / SVM .28 .41 .17 .39 .25 .06 .16 .34 .45

We show the probability of correct classification (PCC) of
our AR-PCA-HMM approach as compared to other HMM-
based classifiers including the Hjoth-HMM approach of [14]
in Figure 2. For 7 of 8 subjects, our approach achieves the
highest PCC. In Table II, we present a comparison of AR-
PCA-HMM with the top techniques in BCI Competition IV
on this dataset1, in terms of the κ coefficient. We observe that
AR-PCA-HMM achieves the best performance.

1In our experiments, we have used the first part of the competition data,
provided for use in algorithm development.
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IV. CONCLUSIONS

In this paper, we have estimated autoregressive (AR) fea-
tures from EEG data and used principal component analysis
(PCA) to decrease the number of features for better training
of HMMs to solve the four-class sensory motor EEG-based
BCI classification problem. The main idea of the paper was
supporting the use of AR features with HMM classifiers for
the EEG-based BCI problem.

Results suggest that AR features are better features for
HMM based EEG-BCI classifiers and dimension reduction is
crucial for EEG classification. Comparison with the state-of-
the-art classification methods shows that dynamic structure
of the HMMs combined with a good frequency estimator
results in better performance than all static classifiers and their
combinations.
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