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Abstract

Individuals with a schizophrenia-spectrum disorder (SSD) and those at familial high risk (FHR) for SSDs experience social
difficulties that are related to neural abnormalities in the network of brain regions recruited during theory of mind (ToM).
Prior work with these groups has focused almost exclusively on characterizing the involvement of these regions in ToM.
Here, we examine the representational content of these regions using multivariate pattern analysis. We analyzed two previ-
ously collected datasets of SSD, FHR and control participants who, while undergoing functional magnetic resonance imaging,
completed the false-belief task in which they read stories describing beliefs or physical representations (e.g. photographs).
Univariate and multivariate analyses were performed in regions of interest to evaluate group differences in task-based acti-
vation and representational content, respectively. Compared to non-SSDs, SSDs showed reduced decoding accuracy for the
category of mental states in the right temporo-parietal junction—which was related to false-belief accuracy—and the dorsal
medial prefrontal cortex (DMPFC) and reduced involvement of DMPFC for mental state understanding. FHR showed no dif-
ferences in decoding accuracy or involvement compared to non-FHR. Given prior studies of disrupted neural involvement in
FHR and the lack of decoding differences observed here, the onset of illness may involve processes that corrupt how mental
state information is represented.
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Introduction
Our ability to form meaningful social relationships and stay
socially connected to others carries profound consequences for
our health and well-being (House et al., 1988; Holt-Lunstad et al.,

2015, 2017; Yang et al., 2016; Snyder-Mackler et al., 2020). Success-

fully navigating the social world and forming such connections

hinge upon our ability to attribute and reason about the mental

states (i.e. beliefs, desires and intentions) of others—a process
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known as theory of mind (ToM). The importance of ToM is well
illustrated in cases where ToM is impaired. One such case is
schizophrenia-spectrum disorders (SSDs), which are associated
with marked and persistent impairments in behavioral mea-
sures of ToM (Bora et al., 2009; Ventura et al., 2015). In support
of the notion that ToM facilitates successful social interactions,
the extent of these behavioral impairments are cross-sectionally
and longitudinally associated with the extent of social function-
ing impairments (Couture et al., 2006; Fett et al., 2011; Schmidt
et al., 2011; Horan et al., 2012), which are also marked and
persistent for those with an SSD (Velthorst et al., 2017). Increas-
ing research has demonstrated that ToM impairments are not
merely the result of factors secondary to the illness (e.g. socioe-
conomic consequences and medication); individuals at familial
high risk (FHR) SSDs—i.e. those with a first-degree relative with
the illness—also demonstrate ToM impairments (Bora and Pan-
telis, 2013; Lavoie et al., 2013), as well as accompanying deficits
in social functioning (Tarbox and Pogue-Geile, 2011). Given that
FHR is far more likely to develop an SSD than non-FHR individ-
uals (Gottesman, 1991; Rasic et al., 2014), these findings suggest
that ToM impairments are present prior to illness onset andmay
even contribute to illness onset (Tarbox and Pogue-Geile, 2008;
Kim et al., 2011), a notion reflected in prominent etiological the-
ories of SSDs (van der Gaag, 2006; Hoffman, 2007; Selten et al.,
2017).

Toward better understanding the nature of ToM impairment
in SSDs and FHR and identifying associated neurobiological
markers of SSD-related risk and conversion, increasing work
has evaluated the functional properties of the neural network
subserving ToM in these groups. This network—often called
the ‘ToM network’—most commonly includes the right and left
temporo-parietal junctions (RTPJ and LTPJ), right superior tem-
poral sulcus (RSTS), medial prefrontal cortex (MPFC) and pre-
cuneus (PC) (Mar, 2011; Schurz et al., 2014; Molenberghs et al.,
2016). Specifically, these brain regions show preferential activa-
tion for mental state vs non-mental state information across a
variety of tasks (e.g. requiring explicit, conscious mental state
reasoning and implicit, spontaneous mental state attribution),
presented through a variety of modalities (e.g. reading vignettes
and watching videos). In SSDs, these regions respond abnor-
mally to mental state information (Kronbichler et al., 2017; Jáni
and Kašpárek, 2018). Two recent meta-analyses found that com-
pared to non-SSDs, SSDs showed reduced ToM-related neural
activity in the MPFC, PC and aspects of the temporal cortex as
well as increased ToM-related activity in TPJ (Kronbichler et al.,
2017; Jáni and Kašpárek, 2018), although several studies have
also found reduced TPJ activity (Walter et al., 2009; Lee et al.,
2011; e.g. Das et al., 2012; Dodell-Feder, Tully, et al., 2014; Lee
et al., 2016). Increasing work has also shown ToM-related neural
abnormalities in FHR (Marjoram et al., 2006; de Achával et al.,
2012; Villarreal et al., 2014; Dodell-Feder, DeLisi, et al., 2014a;
Mohnke et al., 2016; Herold et al., 2018). A recent qualitative
review found altered ToM-related neural activity in FHR groups
characterized by both hypo- and hyper-activation in these same
regions of the ToM network (Kozhuharova et al., 2020).

When taken together, these data provide strong support for
the view that the ToM network is functionally altered in the
schizophrenia spectrum from latent liability to manifest illness.
However, mixed findings regarding the major locus (e.g. TPJ vs
MPFC) and nature (e.g. hyper- versus hypo-activation) of the
abnormality in both SSDs and FHR make it difficult to draw
strong conclusions regarding how the network changes from
latent liability to manifest illness, and what becomes altered,

in an information-processing sense, in the schizophrenia spec-
trum. Moreover, the existing literature largely addresses a single
idea—namely, that regions of the ToM network show aberrant
levels of involvement in mental state attribution, that is, spe-
cific regions show more or less activation during ToM in SSDs
and FHR compared to healthy control participants. An alterna-
tive, uninvestigated possibility is that beyond aberrant levels
of involvement, the representational content of these regions
is disturbed, that is, the information about mental states con-
tained or processed in these regions is somehow corrupted.
Further, changes from latent liability to manifest illness may
be best characterized by relative changes in activation and/or
representational content.

This distinction between involvement and information is one
that has borne important insights into neural function in SSDs
(Yoon et al., 2008), other disorders characterized by social impair-
ment, such as autism spectrum disorder (Gilbert et al., 2009;
Coutanche et al., 2011; Koster-Hale et al., 2013; Richardson et al.,
2020), and the ToM network more generally (Skerry and Saxe,
2015; Tamir et al., 2016; Koster-Hale et al., 2017). In line with
providing complementary yet distinct information about neural
function, a key distinction between studies of neural involve-
ment and information is the statistical frameworks they are
based on (Hebart and Baker, 2018). While activation-based stud-
ies of neural involvement typically rely on univariate analysis to
test for differences between conditions in a single voxel or sin-
gle region (in which activation magnitudes are averaged across
voxels), studies of representational content are multivariate in
nature and evaluate the pattern of neural activity in response to
different stimuli across voxels within a given region (Haynes and
Rees, 2006; Kriegeskorte and Bandettini, 2007; Mur et al., 2009;
Hebart and Baker, 2018). These multivoxel activity patterns are
subjected to classifiers (e.g. linear support vector machine) to
determine whether experimental conditions are discriminable;
that is, whether there’s sufficient information contained in the
activity patterns that allows for accurate decoding of condi-
tion. By jointly analyzing multiple voxels, this approach, termed
multivoxel or multivariate pattern analysis (MVPA), affords bet-
ter sensitivity at detecting condition or group differences than
standard univariate analysis (Haynes and Rees, 2006; Norman
et al., 2006; Hebart and Baker, 2018) and has been shown to
exhibit regional sensitivity to experimental conditions that go
undetected with standard activation-based univariate analysis
(Kriegeskorte et al., 2006; Raizada et al., 2010). Despite prior work
demonstrating the utility of using MVPA to characterize neu-
ral representations of visual objects in SSDs (Yoon et al., 2008),
and, separately, the representation of social information in ToM-
related brain regions (Skerry and Saxe, 2015; Tamir et al., 2016;
Koster-Hale et al., 2017), to our knowledge, there has, yet, to be
a study using MVPA towards characterizing the ToM network in
SSDs and FHR.

Thus, here, we evaluate whether and how the represen-
tational content of mental state information is disturbed in
SSDs and FHR towards better characterizing ToM-related func-
tional abnormalities in the schizophrenia spectrum, and possi-
ble changes in the ToM network from latent liability to manifest
illness. Towards that goal, we re-analyzed data from two prior
task-based functional magnetic resonance imaging (fMRI) stud-
ies of the ToM network in SSDs and FHR (Dodell-Feder, DeLisi,
et al. 2014a; Dodell-Feder, Tully, et al., 2014). Both participant
groups performed the false belief (FB) task (Saxe and Kanwisher,
2003; Dodell-Feder et al., 2011), which is one of the most widely
used tasks in neuroimaging studies of ToM (Schurz et al., 2014;
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Molenberghs et al., 2016) known to robustly recruit the ToM net-
work and has been used in prior neuroimaging studies of SSDs
and other clinical populations (Dufour et al., 2013; Dodell-Feder,
Tully, et al., 2014). In the false-belief task, participants read and
answer true/false questions about two stories types: (i) those
describing outdated (i.e. false) beliefs, and (ii) those describing
outdated physical depictions of the world (i.e. as might occur
in an outdated photograph or map). Both story types require
the concurrent representation of a representation (i.e. a belief
or photograph/map/painting) and reality, and so, in theory, are
similar in non-ToM-related task demands (e.g. working mem-
ory). The two story types are also similar in linguistic features
such as number of words, Flesch readability, causal content
(i.e. the extent to which a story conveys causal information as
indexed by causal verbs, which is related to story coherence
and comprehensibility) and lexical concreteness (i.e. mean con-
creteness of the content words), among other linguistic features,
and are also similar in conceptual features including the extent
to which the story provoke thinking about physical objects and
causal interactions between those objects, and the ease of men-
tally visualizing the story events. On the other hand, false-belief
stories provoke greater thinking aboutmental states (e.g. beliefs,
desires, emotions) and social information (e.g. social status and
social roles) (see Dodell-Feder et al. (2011) for a more detailed
description of the stories). These features make the task well-
suited to addressing questions related to mental state under-
standing. We perform both univariate and multivariate region
of interest (ROI) analyses in a priori regions and exploratory
whole-brain analysis towards evaluating activation-based and
information-based alterations in the schizophrenia spectrum.
Further, we explore brain-behavior associations, evaluating the
relation between univariate activity, multivariate pattern infor-
mation, FB task performance and symptoms.

Methods

Participants

The current study involved re-analyzing two previously acquired
datasets. As these studies were designed and conducted to
address a separate set of hypotheses, the analyses described

herein should be considered exploratory and were not pre-
registered. The schizophrenia dataset included 38 participants
between the ages of 18 and 58years; 20 individuals with
schizophrenia (n=16, 80%) or schizoaffective disorder (n=4,
20%; hereafter, SSD) and 18 non-schizophrenia control partic-
ipants (non-SSD) with no current or past Axis I disorder or
first-degree relative with a psychotic disorder (Table 1). All par-
ticipantswere administered the StructuredClinical Interview for
DSM-IV Disorders (First et al., 2002) to assess psychiatric illness,
theWeschler Abbreviated Scale of Intelligence to assess IQ (two-
subtest form, Wechsler, 2011), as well as several other measures
not analyzed for the purposes of the current study. SSD and
non-SSD participants did not differ in demographic characteris-
tics or IQ. SSD participants were also administered the Positive
and Negative Syndrome Scale (PANSS) to assess current symp-
tom severity (Kay et al., 1987). For a more detailed description of
these participants, please see Dodell-Feder, Tully, et al. (2014).

The FHR dataset included 20 individuals with two or more
relatives with a psychotic-spectrum disorder (at least one of
which was a first-degree relative to schizophrenia or schizoaf-
fective disorder) and 19 controls (non-FHR) with no family
history of psychotic disorder, psychiatric hospitalization or
suicide. All participants were between the ages of 20 and
35years (Table 1). Personal and family history of psychiatric ill-
ness was assessed with the Diagnostic Interview for Genetic
Studies (Nurnberger, 1994) and Family Interview for Genetic
Studies (Maxwell, n.d.), respectively. All participants were addi-
tionally assessed with the Structured Interview for Prodromal
Syndromes (Miller et al., 2003) to assess psychotic symptoms.
Exclusion criteria for all participants included current or past
history of psychotic disorder or treatment with antipsychotic
or mood-stabilizing medications. Given that familial risk sta-
tus is associated with increased prevalence of psychiatric ill-
ness (Erlenmeyer-Kimling, 1997; Chang et al., 2002; Faridi et al.,
2009; Dean et al., 2010), participants were not excluded for cur-
rent or past history of psychiatric illness in order to increase
external validity. However, only a minority of participants met
lifetime criteria for a non-SSD psychiatric illness (n=9 FHR
and n=2 non-FHR). FHR and non-FHR participants did not dif-
fer in demographic characteristics or IQ. For a more detailed
description of these participants, please see Dodell-Feder,
DeLisi, et al. (2014a).

Table 1. Participant characteristics

SSD dataset FHR dataset

SSD Non-SSD Group difference FHR Non-FHR Group difference

n 20 18 20 19
Age, years 38.8 (9.7) 32.4 (12.1) t(36)=1.78, P=0.084 27.2 (3.9) 26.1 (3.9) t(37)=0.91, P=0.367
Sex, male/female (n) 12/8 12/6 χ2 (1, n=38)=0.18, P=0.671 14/6 15/4 χ2 (1, n=39)=0.07, P=0.785
Education, years 15.0 (2.3) 14.2 (2.6) t(36)=1.00, P=0.326 16.0 (1.5) 16.3 (0.7) t(28)=0.71, P=0.486
IQ 108.7 (13.4) 107.4 (10.7) t(36)=0.03, P=0.763 115.6 (10.7) 118.3 (11.4) t(35)=0.76, P=0.454

PANSS
Positive 15.6 (5.7)
Negative 11.8 (4.1)
Disorganized 7.6 (4.0)

SIPS
Positive 2.8 (2.5) 0.1 (0.3) t(19)=4.65, P<0.001
Negative 1.9 (2.0) 0.1 (0.2) t(19)=4.03, P<0.001
Disorganized 2.1 (1.6) 0.4 (0.6) t(24)=4.44, P<0.001
General 1.7 (1.7) 0.2 (0.6) t(22)=3.45, P=0.002

Values represent M (SD) unless otherwise noted. SIPS=Structured Interview for Prodromal Syndromes.
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Additional exclusion criteria for all studies included being a
non-native English speaker, IQ<70, neurological or major medi-
cal illness, history of head trauma andMRI contraindicator. Both
studies were approved by the Harvard University Committee on
the Use of Humans Subjects.

FMRI experiment: false-belief task

All participants performed an optimized version of the false-
belief task (Dodell-Feder et al., 2011, derived from Saxe and
Kanwisher, 2003) while undergoing fMRI. In this task, partici-
pants read two types of short stories: (i) FB stories described a
character’s false (i.e. outdated) belief (e.g. ‘The morning of the
high school dance, Barbara placed her high heel shoes under the
dress and then went shopping. That afternoon, her sister bor-
rowed the shoes and later put them under Barbara’s bed.’), and
(ii) FPR stories described outdated physical states in the world
as depicted in photographs, maps and paintings (e.g. ‘Old maps
of the islands near Titan are displayed in the Maritime Museum.
Erosion has since taken its toll, leaving only the three largest
islands.’). Following each story, participants are presented with
a true/false question (e.g. FB: ‘Barbara gets ready assuming her
shoes are under the dress’; FPR: ‘Near Titan today, there are
many islands’). The full stimulus set and presentation code is
available online (http://saxelab.mit.edu/use-our-efficient-false-
belief-localizer).

Participants saw a total of 10 stories per condition divided
into two functional runs (five stories per condition per run). The
order of stories was pseudo-randomized in two orders, which
were seen in approximately equal amounts between participant
groups. Stimuli were presented visually in white text on a black
background in the following sequence: fixation on a central cross
for 12 s, story for 11 s and true/false question for 6 s (each run
ended with an additional 12 s of fixation). MATLAB and the Psy-
chophysics Toolbox (Brainard, 1997; Kleiner et al., 2007) were
used to present the task and collect behavioral responses.

MRI data acquisition

All MRI data were acquired with a 3T Siemens TimTrio
scanner at Harvard University. A 32-channel head coil was
used to collect the SSD dataset, and a 12-channel coil was
used to collected the FHR dataset. Anatomical images were
acquired with a T1-weighted multi-echo MPRAGE sequence in
176 sagittal slices (voxel size=1mm3). Functional data were
acquired with a T2*-weighted echo-planar imaging sequence
with parallel imaging (acceleration factor=2, 47 slices, voxel
size=3 mm3, TR=2560ms, TE=30ms and flip angle=85◦)
for the SSD dataset, and a T2*-weighted echo-planar imag-
ing sequence (40 slices, voxel size=3 mm3, TR=2560ms,
TE=30ms and flip angle=85◦) for the FHR dataset. In both
sequences, the first several volumes consisted of dummy scans
that were discarded prior to analysis to allow for steady-state
magnetization.

MRI data analysis

Preprocessing. Both datasets were re-preprocessed in SPM12
(http://www.fil.ion.ucl.ac.uk/spm) using the same preprocess-
ing steps and parameters. Functional images were re-aligned to
the first image of the first run, co-registered to the anatomical
scan, normalized to the MNI template and smoothed using an

8mm FWHM Gaussian kernel. Prior work has shown that spa-
tial smoothing does not decrease the sensitivity of MVPA (Op de
Beeck, 2010). We used the Artifact Detection Tools (ARTs; https://
www.nitrc.org/projects/artifact_detect/, Whitfield-Gabrieli et al.,
2011) to identify signal artifacts (timepoints with signal that
exceeded 3 SD of the global signal) and motion artifacts (time-
points that exceeded the prior timepoint in composite motion
by 1 mm), which were included as nuisance regressors in the
univariate analyses (see below).

Regions of interest. ROIs were defined from an independent
dataset reported in Dufour et al. (2013) of 462 neurotypical
participants who completed the FB task (available at http://
saxelab.mit.edu/use-our-theory-mind-group-maps). Specifica-
lly, ROIs were defined as 6mm spheres around peak coordi-
nates from a whole-brain random-effects analysis of FB>FPR
(voxel-level threshold t>3, k>10): dorsal medial prefrontal cor-
tex (DMPFC; MNI coordinate center x, y, z: 2, 54, 22), LTPJ; −48,
−56, 22, PC; 2, −56, 36, RSTS; 58, −10, −14 and RTPJ; 54, −52, 22;
see Figure 1A. These regions have been demonstrated by meta-
analysis to be most consistently recruited by the FB task (Schurz
et al., 2014). Restricting our analyses to these five regions specif-
ically allowed us to test our hypotheses in areas defined a priori
as being selective for mental state information and reduced the
number of tests we performed, limiting the possibility of Type I
error.

Univariate analysis. FB task data were first analyzed at the
individual-subject level in the whole brain using a general lin-
ear model (GLM), which included a term for condition con-
volved with the standard hemodynamic response function, and
nuisance regressors for the movement parameters and move-
ment and signal outlier timepoints identified by ART. Data were
high-pass filtered at 128 s. Individual subject contrasts were
generated for each condition versus baseline and FB>FPR.

Data were submitted to ROI and whole-brain analysis. Find-
ings from the SSD dataset were reported in Dodell-Feder, Tully,
et al. (2014). We note that a different set of ROIs were used
in that study. To make these prior findings more comparable
with the multivariate findings reported in the current study,
we re-ran the univariate ROI analysis with the same ROIs used
in the current study and report these findings in the sup-
plementary materials (no differences were observed between
the ROI analysis performed in the original study and the cur-
rent study). For the FHR dataset, we conducted ROI analy-
sis using the Dufour et al. (2013) ROIs, and a performed a
second-level random-effects whole-brain analysis comparing
FHR to non-FHR with a two-sample t-test. These data are
reported in the supplementary materials. For both datasets,
ROI analysis was conducted by extracting the beta values for
FB>baseline and FPR>baseline contrasts and submitting these
values to repeated-measures analysis of variance (ANOVAs)
that included terms for group, condition and their interac-
tion. Follow-up tests to evaluate between group differences in
condition were conducted with Welch’s t-tests (Delacre et al.,
2017). These tests and follow-up tests on extracted univari-
ate and multivariate (see below) ROI values were performed in
R Statistical Software (R Core Team, 2018).

Multivariate analysis. MVPA was conducted in MATLAB using
The Decoding Toolbox (Hebart et al., 2015). Our primary aim
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Fig. 1. Multivariate ROI analysis and accompanying effect sizes. (A) Depiction of ROIs. (B) Accuracy-minus-chance percentage (chance= 50%) for the SSD dataset (left

panel) and FHR dataset (right panel). Case group (SSD, FHR) depicted in orange and control group (non-SSD, non-FHR) in gray. Error bars depict 95% confidence intervals.

(C) Cohen’s d effect sizes for case minus control with SSD–non-SSD in blue and FHR–non-FHR in red. Error bars depict BCa 95% confidence intervals derived from 10000

bootstrap samples. Horizontal dashed gray lines represent effect size benchmarks corresponding to small, medium and large effects.

was to characterize group differences in classification accu-
racy in regions of the brain selective for mental state infor-
mation. Towards that goal, for each participant, we sub-
mitted the beta images for FB and FPR generated from the
first-level GLMs described above to a leave-one-out cross-
validation scheme using a linear support vector machine as
a classifier. This generated a single accuracy-minus-chance
(chance=50%) value per ROI per participant. These val-
ues were compared against zero within each group using a
one-sample t-test, and then between groups using a two-
sample Welch’s t-test. We report false-discovery rate (FDR)
adjusted P-values (i.e. q-values) adjusting for five ROI tests
conducted within groups and between groups. Effect sizes
were calculated as Cohen’s d along with bias-corrected-and-
accelerated (BCa) 95% confidence intervals (CIs) generated from
10000 bootstrap samples with the package bootES (Kirby and
Gerlanc, 2013). We interpreted these effect sizes using con-
ventional benchmarks (Cohen, 1988). To better understand the
nature of group differences, we followed-up significant between
group differences by evaluating the within-condition pattern
correlations. Following Haxby (2001), we did this by splitting the
data in half for each condition, calculating the beta value for
each voxel within the ROI for each condition and, then, eval-
uating the correlation between betas in each voxel of the ROI
for each condition. This analysis generated four values for each
ROI—the correlation between voxels for FB in SSDs; the correla-
tion between voxels for FB in non-SSDs; the correlation between
voxels for FPR in SSDs; the correlation between voxels for FPR in
non-SSDs—which were transformed using Fisher’s r-to-z trans-
formation, and then compared between groups using Welch’s
t-tests. Given that we used a different headcoil and acquisition
parameters for the SSD and FHR dataset, we did not perform
direct statistical comparisons between the SSD and FHRdatasets
for any analysis.

To investigate whether there were differences in classi-
fication accuracy in regions outside of the ToM network,
we performed an exploratory whole-brain searchlight anal-
ysis using searchlights with a 4-voxel radius around the
center voxel. Searchlights were passed through the whole-
brain on a voxel-by-voxel basis, and classification was per-
formed within each searchlight with the classification value

(accuracy-minus-chance) being assigned to the center voxel.
This created whole-brain classification maps for each partic-
ipant representing the local information content around the
center of each searchlight. These maps were analyzed at
the group level by conducting one-sample t-tests within each
group, and two-sample t-tests to compare local classification
accuracy between groups. All images were thresholded at a
voxel-wise P<0.001 and a cluster-wise family-wise error (FWE)-
corrected P<0.05. Data were visualized with Surf Ice (https://
www.nitrc.org/projects/surfice/).

Brain, behavior and symptom associations. To assess the
behavioral and clinical impact of the neural measures, we eval-
uated the associations between univariate activity (using the
FB-FPR contrast estimate for univariate activity), multivariate
pattern information, FB task accuracy and symptoms. In order
to reduce the number of tests and limit Type I error, we did
this only in the dataset and ROIs in which we found group dif-
ferences in either multivariate or univariate neural outcomes.
All analyses were conducted using Pearson r correlations and
were accompanied by BCa 95% CIs generated from 10000 boot-
strap samples. We consider a finding to be unexpected under
the null hypothesis when q<0.05. Given that we find group
differences in two ROIs, for task performance correlations, we
corrected for four tests (two ROIs × two conditions [FB, FPR]);
for symptoms, we corrected for six tests (two ROIs × three
symptom categories [positive, negative and disorganized]). We
evaluated the association between the neuralmeasures and task
accuracy across all participants given that we did not expect
the relation between brain and task performance to differ as a
function of diagnostic status (e.g. Hawco et al., 2019). For any
association that was found to be unexpected under the null
hypothesis, we evaluated whether the brain–task accuracy asso-
ciation was moderated by group by regressing task accuracy on
the interaction of group and brain. For brain–symptom associa-
tions, we conducted these onlywithin the clinical group because
the PANSS was not administered to non-SSD participants. We
conducted two follow-up analyses on associations that sur-
vived FDR-correction. First, we evaluated whether the brain–
behavior association was specific to that behavioral variable
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(i.e. whether there was a difference brain–FB accuracy versus
brain–FPR accuracy, and brain–positive symptom versus brain–
negative symptom versus brain–disorganized symptom asso-
ciations) by evaluating the 95% CI of the difference between
the correlations using the method described in Zou (2007). Sec-
ond, we evaluated the relative variance explained in the behav-
ioral outcome by univariate activity versus multivariate pattern
information with multiple linear regression.

Results

Univariate results

Results of all univariate analyses are reported in the Supple-
mentary Materials, and the whole-brain analysis of the SSD
dataset is reported in Dodell-Feder, Tully, et al. (2014). Briefly,
ROI analysis revealed a group by condition interaction in DMPFC
characterized by reduced neural activity for FB and FPR stories
in SSD versus non-SSD (Supplementary Table S1, Supplemen-
tary Figure S1). Whole-brain analysis similarly revealed reduced
neural activity for FB versus FPR in MPFC (Dodell-Feder, Tully,
et al., 2014). In contrast, ROI and whole-brain analysis revealed
no differences in neural activity for FB versus FPR between
FHR and non-FHR (Supplementary Table S2 and Supplementary
Figure S2).

Multivariate results

Our main question concerned how mental state information
was represented within ToM-related regions across the SSD
and SSD-risk groups. First, we evaluated whether the ROIs
distinguished betweenmental state and non-mental state infor-
mation within each group by evaluating classification accu-
racy. Non-SSD participants showed above chance classification
accuracy in all ROIs (Table 3, Figure 1B). SSD participants sim-
ilarly showed above chance classification in all ROIs except
for DMPFC. Comparing the classification accuracies between
groups, the non-SSD group showed higher accuracy across all
ROIs, with effect sizes ranging from small in PC to large in
RTPJ (Figure 1C). The between-group difference in classification
accuracy was unexpected under the null hypothesis in DMPFC
and RTPJ. Given the sensitivity of MVPA analyses to movement,
we evaluated whether group differences in movement might
have been driving the differences in pattern discriminability.
Neither translation nor rotation differed between the groups,
rotation: t(30)=1.16, P=0.255, d=0.35, 95% CI [−0.31, 1.02]
and translation: t(25)=1.06, P=0.297, d=0.26, 95% CI [−0.40,
0.92]. Further, mean translation and rotation were not corre-
lated with pattern discriminability in either ROI, DMPFC and
translation r(36)=0.06, 95% CI [−0.27, 0.37], P=0.735, DMPFC
and rotation, r(36)=0.11, 95% CI [−0.22, 0.42], P=0.509, RTPJ
and translation r(36)=0.04, 95% CI [−0.29, 0.35], P=0.820,
RTPJ and rotation r(36)=−0.21, 95% CI [−0.50, 0.11], P=0.197.
Another possibility is that multivariate differences are being
driven largely by differences in univariate activity. To address
this possibility, we re-evaluated group differences with analysis
of covariances (ANCOVAs), controlling for univariate activation.
The group difference in DMPFC pattern discriminability was
reduced to a trend level of significance, F(1, 35)=3.33, P=0.077,
η2 =0.08, although the effect size based on the marginal means
was medium in size, d=0.64, with a 95% CI, [−0.04, 1.31],
largely overlapping with that of the non-adjusted model, [0.18,
1.66]. When controlling for univariate activity, the impact of
group on pattern discriminability in RTPJ remained statistically

significant, F(1, 35)=7.54, P=0.009, η2 =0.12, with a large effect
size, d=0.90, 95% CI [0.21, 1.60], similar in magnitude to the
non-adjusted model, d=1.04, 95% CI [0.37, 1.69]. This suggests
that univariate differences may be contributing to multivariate
patterns differences in DMPFC, but not in RTPJ.

To better understand the source of the group difference
in pattern discriminability, we evaluated group differences in
within-condition pattern correlations. In DMPFC, pattern corre-
lations values were similar and did not differ between groups
for FB or FPR (Table 4). In RTPJ, pattern correlations values were
similar and did not differ between groups for FB; however, we
did observe a medium-sized difference in pattern correlations
for FPR, t(34)=2.15, P=0.039, d=−0.70, 95% CI [−1.37, −0.003]
such that SSD exhibited higher pattern correlations than non-
SSD (Table 4). Looking within each group, pattern correlations
did not differ between FB and FPR in SSD, t(19)=1.60, P=0.125,
dz =0.36, 95% CI [−0.13, 0.85], as they did in non-SSD, t(17)=2.50,
P=0.023, dz =0.59, 95% CI [0.04, 1.08], suggesting that SSD par-
ticipants may be treating physical information like mental state
information. One explanation for these findings is that group
differences, or a lack thereof, may be attributable to noisier,
less consistent patterns in SSD for either or both conditions.
We tested for this possibility by examining homogeneity of
variance in pattern correlations for each condition using Lev-
ene’s test; however, no group differences emerged, Fs≤1.29,
ps≥0.264.

The non-FHR and FHR groups showed classification accu-
racies above chance in all ROIs (Table 5, Figure 1B). Although
accuracy was higher in the non-FHR versus FHR group across
all ROIs, with effect sizes ranging from trivially small in RTPJ
to medium in RSTS (Figure 1C), none of these differences were
unexpected under the null hypothesis.

Next, we used whole-brain exploratory searchlight analysis
to address whether there were regions outside of the a pri-
ori ROIs that differed in classification accuracy as a function
of group. In line with the ROI analysis, both the non-SSD and
SSD group showed above chance classification in the ToM net-
work, with the SSD group showing a smaller area of MPFC,
located in the ventral aspect, that decoded condition (Supple-
mentary Table S3, Figure 2A). A direct comparison of the groups
revealed that compared to the SSD group, the non-SSD group
showed greater classification accuracy in RTPJ as well as a region
in anterior middle temporal gyrus (Table 6). There were no
SSD>non-SSD classification differences.

Both the non-FHR and FHR group also showed above chance
classification accuracy in the ToM network, with the FHR group
showing a smaller area of MPFC that decoded condition (Supple-
mentary Table S4, Figure 2B). Compared to FHR, non-FHR showed
higher classification accuracy in a cluster spanning superior to
middle frontal gyrus, and a cluster located primarily in left cere-
bellum that extended into fusiform gyrus (Table 6). There were
no FHR>non-FHR classification differences.

Brain, behavior and symptom associations

To better understand the behavioral and clinical significance
of the differences in DMPFC and RTPJ in the SSD dataset,
we evaluated the associations between univariate activity
(i.e. the FB-FPR contrast estimate), multivariate pattern infor-
mation, task performance (Table 2) and symptoms. On task
performance, greater pattern discriminability was associated
with better performance on the FB condition, r(31)=0.53, 95%
CI [0.17, 0.77], q=0.007, and this was not moderated by group,
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Table 2. False belief task performance

SSD dataset FHR dataset

SSD Non-SSD Group difference FHR Non-FHR Group difference

Accuracy, %
FB 74.8 (17.3) 80.6 (16.0) t(31)=0.99, P=0.329,

da=0.34 [−0.38, 1.05]
88.5 (11.0) 90.1 (10.7) t(35)=0.47, P=0.642,

d=0.15 [−0.50, 0.82]
FPR 79.9 (15.3) 82.2 (14.3) t(31)=0.45, P=0.656,

d=0.16 [−0.57, 0.83]
86.7 (13.1) 90 (12.8) t(35)=0.78, P=0.442,

d=0.26 [−0.45, 0.93]

Reaction time, s
FB 4.1 (0.6) 3.4 (0.6) t(31)=3.35, P=0.002,

d=1.17 [0.35, 1.98]
3.3 (0.6) 2.9 (0.5) t(34)=2.57, P=0.015,

d=0.84 [0.19, 1.45]
FPR 3.7 (0.5) 3.5 (0.5) t(31)=1.31, P=0.201,

d=0.45 [=.26, 1.16]
3.1 (0.5) 3.0 (0.5) t(34)=0.91, P=0.368,

d=0.30 [−0.41, 0.98]

aCohen’s d values with 95% bias-corrected-and-accelerated confidence intervals (CIs) derived from 10000 bootstrap samples.

Table 3. ROI classification accuracy: SSD dataset

SSD Non-SSD Group difference

M [95% CI] accuracy- M [95% CI] accuracy-
above-chance % One-sample t-test above-chance % One-sample t-test Cohen’s d [95% CI] Two-sample t-test

DMPFC 6.3 [−4.4, 16.9] t(19)=1.23, q=0.234 27.8 [15.8, 39.8] t(17)=4.89, q< 0.001 0.92 [0.18, 1.66] t(35)=2.82, q=0.019
LTPJ 26.3 [16.6, 35.9] t(19)=5.69, q<0.001 36.1 [25.5, 46.7] t(17)=7.16, q< 0.001 0.47 [−0.21, 1.19] t(35)=1.44, q=0.197
PC 27.5 [16.8, 38.2] t(19)=5.40, q<0.001 36.1 [25.5, 46.7] t(17)=7.16, q< 0.001 0.39 [−0.28, 1.07] t(36)=1.20, q=0.238
RSTS 15.0 [1.6, 28.4] t(19)=2.35, q=0.037 29.2 [17.7, 40.7] t(17)=5.36, q< 0.001 0.54 [−0.12, 1.25] t(36)=1.69, q=0.167
RTPJ 16.5 [2.4, 30.1] t(19)=2.46, q=0.037 41.7 [33.1, 50.2] t(17)=10.31, q< 0.001 1.04 [0.37, 1.69] t(31)=3.28, q=0.013

Table 4. ROI pattern correlations

M (SD) Fisher r-to-z value

ROI Condition SSD Non-SSD Group difference

DMPFC
FB 0.98 (0.54) 0.97 (0.52) t(36)=0.05, P=0.961, d=−0.02, 95% CI [−0.66, 0.66]
FPR 1.10 (0.57) 1.03 (0.63) t(35)=0.37, P=0.716, d=−0.12, 95% CI [−0.80, 0.56]

RTPJ
FB 1.25 (0.45) 1.13 (0.69) t(29)=0.63, P=0.533, d=−0.21, 95% CI [−0.83, 0.47]
FPR 1.04 (0.54) 0.63 (0.63) t(34)=2.15, P=0.039, d=−0.70, 95% CI [−1.37, −0.003]

Table 5. ROI classification accuracy: FHR dataset

FHR Non-FHR Group difference

M [95% CI] accuracy- M [95% CI] accuracy-
above-chance % One-sample t-test above-chance % One-sample t-test Cohen’s d [95% CI] Two-sample t-test

DMPFC 13.8 [2.7, 24.8] t(19)=1.23, q=0.022 23.7 [12.0, 35.4] t(18)=4.26, q< 0.001 0.42 [−0.26, 1.10] t(37)=1.30, q=0.339
LTPJ 31.3 [20.6, 41.9] t(19)=6.14, q< 0.001 36.8 [27.5, 46.1] t(18)=8.32, q< 0.001 0.26 [−0.39, 0.88] t(37)=0.83, q=0.516
PC 25.0 [10.8, 39.2] t(19)=3.68, q=0.003 36.8 [27.5, 46.1] t(18)=8.32, q< 0.001 0.46 [−0.15, 1.03] t(32)=1.46, q=0.339
RSTS 17.5 [1.8, 33.2] t(19)=2.33, q=0.031 35.5 [25.4, 45.6] t(18)=7.39, q< 0.001 0.64 [0.01, 1.24] t(32)=2.02, q=0.257
RTPJ 30.0 [17.1, 42.9] t(19)=4.86, q<0.001 31.6 [19.6, 43.5] t(18)=5.55, q< 0.001 0.60 [−0.60, 0.70] t(37)=0.19, q=0.852

β=−0.56, 95% CI [−1.50, 0.37], P=0.229. Task accuracy, either
on the FB or FPR condition, was not associated with pattern dis-
criminability in DMPFC, r(31)≤0.07, and although we observed
positive associations between FB accuracy and univariate activ-
ity in DMPFC, r(31)=0.37 and RTPJ, r(31)= 0.41, at an uncorrected
level (P<0.05), neither association survived FDR correction. The
association between RTPJ pattern discriminability and FB accu-
racy was larger in magnitude than the association between
RTPJ pattern discriminability and FPR accuracy, r(31)=0.18, 95%

CI [−0.17, 0.50], q=0.547, 95% CI of the correlation difference
[0.03, 0.65], meaning that increased pattern discriminability
in RTPJ might specifically support FB reasoning as opposed to
reasoning about representations more generally. Further, the
variance in FB accuracy accounted for by pattern discriminabil-
ity, β=0.41, 95% CI [0.06, 0.76], P=0.023, was above and beyond
that accounted for by univariate activity, which was not associ-
atedwith FB accuracywhen takingmultivariate pattern discrim-
inability into account, β=0.19, 95% CI [−0.17, 0.54], P=0.295.
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Fig. 2. Whole-brain exploratory searchlight analysis. SSD dataset (A) and FHR dataset (B). The top panels depict the Control group (non-SSD, non-FHR), the middle

panel depicts the Case group (SSD, FHR), and the bottom panel depicts the control > case comparison. No differences were observed for case> control in either dataset.

All images are thresholded at a voxel-wise P<0.001 and a cluster-wise FWE-corrected P<0.05. Color bars depict t values. R= right, L= left, A=anterior, P=posterior.

Table 6. Whole-brain searchlight analysis group differences

MNI coordinates Cluster extent Cluster P Peak t-value
Dataset Contrast Region x, y, x (voxels) (FWE-corrected) (P<0.001)

SSD Non-SSD>SSD RTPJ 66, −50, 22 165 <0.001 5.13
Right anterior middle
temporal gyrus

60, 3, −34 52 0.032 4.71

SSD>Non-SSD No suprathreshold clusters
FHR Non-FHR>FHR Right superior/middle

frontal gyrus
26, 46, 16 270 <0.001 5.44

Left cerebellum/left fusiform
gyrus

−34, −80, −20 281 <0.001 4.51

FHR>Non-FHR No suprathreshold clusters

Images were thresholded at a voxel-wise P<0.001 and a cluster-wise FWE-corrected P<0.05.

On symptoms, we observed negative associations between
RTPJ pattern discriminability and positive, r(18)=−0.52, and
disorganized symptoms, r(18)=−0.49, at an uncorrected level
(P<0.05), but neither association survived FDR-correction.
We also observed a positive association between DMPFC uni-
variate activity and negative symptoms, r(18)= 0.45, at an uncor-
rected level, which too did not survive FDR-correction. All other
associations were not unexpected under the null hypothesis.

Discussion

The majority of task-based fMRI research on ToM in SSDs and
FHR have examined a single question: whether regions in the
ToM network show aberrant of levels of involvement during
mental state reasoning (i.e. hypo- or hyper-activation). Using
univariate analysis, these studies have consistently shown that
levels of activation between SSDs, FHR and control group are
different (Kronbichler et al., 2017; Kozhuharova et al., 2020). How-
ever, there are other questions to be asked regarding how latent
liability for an SSD and manifest illness impacts the functional

properties of the ToM network. Answers to these other ques-
tions may shed more light on the neurobiological processes at
work in the development of an SSD and the social difficulties
it brings. MVPA, which characterizes regional representational
content, may be useful in this regard as it has in other studies of
neural function in SSDs (Yoon et al., 2008).

Here, using MVPA, we assessed ToM-related activation pat-
terns in a group of SSD and FHR participants who performed the
same well-validated ToM task while undergoing fMRI. MVPA of
ToM ROIs showed that compared to non-SSD participants, SSDs
showed reduced classification accuracy in two regions of the
ToM network thought to constitute a core mental state under-
standing network (Schurz et al., 2014; Molenberghs et al., 2016):
DMPFC and RTPJ. In other words, the pattern of information
in DMPFC and RTPJ for the category of mental states was less
discriminable in SSD than it is in non-SSD participants, sug-
gesting that in SSDs, mental information is not privileged in
brain regions that are typically highly specialized for represent-
ing such information. Further, this difference could not clearly
be explained by differences in univariate activation (although it
reduced the multivariate difference in DMPFC to a trend level
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of significance) or because the SSD data were noisier (e.g. due
to in-scanner motion). In RTPJ, the analysis of pattern corre-
lations revealed a more highly stable, consistent response to
FPR in SSDs versus non-SSDs that was equal in magnitude to
the FB response. In consideration of this finding, one possi-
bility is that the source of reduced pattern discriminability in
SSDs is due to SSDs representing non-mental information in the
sameway they representmental state information. If RTPJ treats
physical information like mental information, this may help to
explain reports of increased mind perception (Gray et al., 2011;
Raffard et al., 2016), and ‘hyper-ToM’ (i.e. inappropriately ascrib-
ing mental states to others) in psychosis and certain psychotic-
like experiences (i.e. paranoia, delusional ideation; Russell et al.,
2006; Fyfe et al., 2008; Montag et al., 2011; Clemmensen et al.,
2014). The fact that we observed more differences in multivari-
ate pattern information versus univariate activity—in which we
saw reduced activity for FB in SSDs vs non-SSDs—may reflect
the fact that multivariate approaches afford better sensitivity at
detecting differences as shown in other work (Kriegeskorte et al.,
2006; Raizada et al., 2010).

Exploratory whole-brain searchlight analysis were partially
consistent with these ROI findings revealing reduced decoding
accuracy in RTPJ and RSTS in SSDs versus non-SSDs. These find-
ings somewhat parallel those from studies of autism spectrum
disorder, which is similarly characterized by marked ToM and
social functioning deficits (Pinkham et al., 2019). Specifically,
studies of ASD have shown altered patterns of neural activity
in RTPJ and MPFC during social cognitive tasks (Gilbert et al.,
2009; Koster-Hale et al., 2013; Richardson et al., 2020), suggest-
ing that altered representation of mental state information may
be a transdiagnostic marker of social dysfunction.

It remains an open question as to why in SSDs, DMPFC and
RTPJ pattern discriminability would be reduced, and, as sug-
gested by the pattern correlation analysis, why in RTPJ, physical
information would be represented in a similar manner as men-
tal information. One possibility is that early social skills deficits,
social anhedonia and social withdrawal—characteristics that
describe individuals who later develop SSDs (Kwapil, 1998;
Tarbox and Pogue-Geile, 2008; Radua et al., 2018)—reduce the
quantity and quality of early social exposure in a way that pre-
vents the specialization of ToM-related brain regions that occurs
in typically developing youth (Saxe et al., 2009; Gweon et al.,
2012; Bowman et al., 2019). In partial support of this idea, pre-
SSD individuals show progressive cortical thickness reductions
in brain regions implicated in ToM, specifically MPFC and poste-
rior temporal cortex (Cannon et al., 2015), which may impact the
functional specialization of these regions. This may also speak
to why we saw a difference in DMPFC and RTPJ, and not other
regions of the network; that is, in line with these other find-
ings, the pathophysiology of SSDs may specifically affect these
regions and the functional networks that they, in part, com-
prise, such as the default mode network which too is disrupted
in at-risk groups (Dodell-Feder, DeLisi, et al., 2014b; Karcher et al.,
2019).

In contrast to SSDs, we found no evidence of altered repre-
sentational content formental state information in FHR. Specifi-
cally, the activation patterns for the category of mental states in
the a priori ROIs were equally discriminable in FHR as they were
in non-FHR. The exploratory whole-brain searchlight analyses
demonstrated reduced decoding accuracy in FHR compared to
non-FHR in right superior to middle frontal gyrus and left cere-
bellum extending into fusiform gyrus. It is unclear what tomake
of these findings given that the role of these regions duringmen-
tal state understanding is unknown. We note that we did not

observe differences in the univariate analyses either, which is in
contrast to prior work showing altered involvement of ToM brain
regions (Kozhuharova et al., 2020). This might reflect the intact
involvement of these regions in the context of FB reasoning, but
not other, more complex social scenarios (de Achával et al., 2013;
Dodell-Feder, DeLisi, et al., 2014a; Mohnke et al., 2016). There are
several reasons as to why theMVPA findings in FHR diverge from
those in SSDs. First, disrupted neural representation of mental
state information may only occur in pre-SSDs (i.e. prodromal)
and manifest illness, not simply in those at elevated risk due to
a constitutional or acquired vulnerability factor. Second, there
may exist differences in pattern discriminability in FHR that are
simply smaller than those observed in SSDs, andwewere under-
powered to detect them. Third, FHR differencesmight have been
obscured by a methodological difference between the FHR and
SSD studies. Because of the small number of FHR participants
and the methodological differences between the FHR and SSD
studies, the between-sample differences should be interpreted
with caution and replicated.

An important issue concerns the behavioral consequences of
disrupted pattern information and/or activity, that is, to what
extent do disruptions to representation or activation account
for the social cognitive deficits and symptoms observed in the
schizophrenia spectrum? Toward addressing this question, we
evaluated the associations between univariate activity, mul-
tivariate pattern discriminability, FB task performance and
symptoms. On task performance, we found that only RTPJ pat-
tern discriminability in the SSD dataset was associated with
FB accuracy and not task accuracy more generally. Further,
pattern discriminability explained the variance in FB accuracy
above and beyond that explained by RTPJ univariate activ-
ity, suggesting particular importance of representational infor-
mation for FB understanding. This finding is consistent with
work demonstrating that pattern discriminability in RTPJ for
intentional vs unintentional acts is associated with the extent
to which mental states are weighted when making moral judg-
ments (Koster-Hale et al., 2013) and with work in SSDs show-
ing that pattern discriminability in regions recruited during
visual object processing is associated with task performance
(Yoon et al., 2008). In contrast to task performance, the neu-
ral measures were not associated with symptoms at a corrected
level.

Prior work on the representational content of ToM brain
regions has shown that activity patterns in RTPJ and MPFC con-
tain granular mental state information well beyond what was
tested here, including the social impact of amental state (i.e. the
degree to which a mental state influences social relationships)
(Tamir et al., 2016; Thornton and Tamir, 2020), the epistemic
context of a mental state (i.e. how a belief was formed and the
justification for the belief) (Koster-Hale et al., 2017), as well as
affective states, their valence and the context in which an emo-
tion occurs (Skerry and Saxe, 2015; Tamir et al., 2016; Koster-Hale
et al., 2017; Thornton and Tamir, 2020). It has been suggested
that representing these dimensions may facilitate social predic-
tions (Tamir and Thornton, 2018; Thornton and Tamir, 2020),
an idea supported by other works demonstrating that neural
response in ToM brain regions can be characterizedwithin a pre-
dictive coding framework (Carter et al., 2012; Koster-Hale and
Saxe, 2013; Tamir and Thornton, 2018; Thornton et al., 2019; Park
et al., 2020; Richardson and Saxe, 2020). This raises the intriguing
possibility that altered representation of mental state informa-
tion in SSD contributes to difficulty in making social predictions
(e.g. Sterzer et al., 2018), which in turn contributes to social dys-
function. Because we did not test the integrity of information
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within the ROIs for these other dimensions nor their contribu-
tion to social prediction, these ideas are speculative. However,
they would be worth addressing in future research.

Several limitations are notable. First, given the small sample
sizes, we were adequately powered to detect large differences
between groups (d=0.92 with power=0.80) and large associ-
ations between the brain and behavior (r=0.44 for brain–task
accuracy associations and r=0.61 for brain–symptom associa-
tions with power=0.80). This leaves open the strong possibility
that there may be smaller yet clinically meaningful differences
between groups or associations between brain and behavior that
went undetected here, particularly in the FHR group. Second, we
were unable tomake direct statistical comparisons between SSD
and FHR due to different acquisition parameters. Third, given
that these data are cross-sectional, they can only suggest but
not directly speak to how the ToM network changes from states
of risk to manifest illness. Last, we tested how information is
represented for only one specific context of mental state reason-
ing, without examining other dimensions within the category of
mental states.

Conclusion

Wefind that in SSDs, core ToMbrain regions demonstrate altered
involvement and patterns of neural activity, including reduced
discriminability between FB and FP, suggesting that the category
of mental states is not represented with sufficient distinguish-
ing details or characteristics. Thus, this may be partially driven
by SSD representing physical information as they do mental
information. The extent of altered pattern information in SSD
carries functional implications as well as it was shown here to
impact the performance on the FB task. In contrast, the ToM
network in FHR can be characterized by altered involvement but
preserved the informational content for the category of mental
states. These data suggest that unlike aberrant involvement of
these brain regions in ToM, which occurs in SSD risk states, the
representation of mental states may be disrupted by the onset
of illness and not before. This notion should be more directly
evaluated in future work using larger samples with longitudinal
paradigms.
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