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A B S T R A C T   

Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) has gained popularity as an 
experimental treatment for a variety of psychiatric illnesses. However, there has yet to be a quantitative review 
regarding its efficacy. Here, we present the first meta-analysis of rtfMRI-NF for psychiatric disorders, evaluating 
its impact on brain and behavioral outcomes. Our literature review identified 17 studies and 105 effect sizes 
across brain and behavioral outcomes. We find that rtfMRI-NF produces a medium-sized effect on neural activity 
during training (g = .59, 95 % CI [.44, .75], p < .0001), a large-sized effect after training when no neurofeedback 
is provided (g = .84, 95 % CI [.37, 1.31], p = .005), and small-sized effects for behavioral outcomes (symptoms g 
= .37, 95 % CI [.16, .58], p = .002; cognition g = .23, 95 % CI [-.33, .78], p = .288). Mixed-effects analyses 
revealed few moderators. Together, these data suggest a positive impact of rtfMRI-NF on brain and behavioral 
outcomes, although more research is needed to determine how rtfMRI-NF works, for whom, and under what 
circumstances.   

1. Introduction 

The last several decades have seen a substantial increase in our un-
derstanding and treatment of psychiatric illness (Brady et al., 2019; 
Casey et al., 2013; McNaught and Mink, 2011; Millan et al., 2016; 
Normandeau et al., 2017). Despite these scientific and clinical gains, 
gold-standard treatments for most psychiatric illnesses are far from 
panaceas, often carrying significant side-effects and high rates of 
discontinuation (Baldessarini et al., 1999; Bowden et al., 2005; Coldham 
et al., 2002; Fernandez et al., 2015; Gersh et al., 2017; Graham et al., 
2011; Harrow et al., 2012; Kautzner et al., 2011; Lieberman et al., 2005; 
Quagliato et al., 2019; Rozental et al., 2018; Sonuga-Barke et al., 2013; 
Waltman et al., 2017; Wang et al., 2018; Wunderink et al., 2013). Even 
in cases where the gold-standard—whether it be pharmacological or 
psychosocial in nature—is shown to be efficacious, tolerable, and 
accessible, the prevalence of treatment-resistant illness remains high 
(Boylan et al., 2020; Patterson and Van Ameringen, 2017; Polese et al., 
2019). One reason why standard treatments do not show greater efficacy 
is that they fail to mechanistically target pathophysiological mecha-
nisms. Increasing research has shown that disruption to neural circuits is 

associated with the onset and progression of psychiatric illness (Bro-
hawn et al., 2010; Brown and Morey, 2012; Buse et al., 2016; E. R. Duval 
et al., 2015; Li et al., 2009), and yet, few treatments directly target these 
circuits (Sitaram et al., 2017). 

In recent years, several neuromodulatory techniques have emerged 
that show promise in their ability to mechanistically target neural cir-
cuits disrupted by psychiatric illness, without carrying the deleterious 
side-effects often associated with psychopharmacological intervention. 
One such technique is neurofeedback, which involves providing feed-
back to the participant based on their own neural signal as they engage 
in different mental processes. By providing a window into one’s own 
neural activity as it unfolds over time, neurofeedback presents an op-
portunity to gain awareness around, and subsequently control important 
processes associated with those brain states, which may be impaired in 
psychiatric illness (deCharms, 2008). Neurofeedback first emerged as a 
form of operant conditioning in early studies that demonstrated 
self-regulation of electroencephalography (EEG) signals in animals and 
humans during the 1960s (Clemente et al., 1964; Fetz, 1969; Sterman 
and Wyrwicka, 1967). Following the inception of real-time functional 
magnetic resonance imaging (fMRI) in 1995 (Cox et al., 1995), 

* Corresponding author at: Department of Psychology, University of Rochester, 453 Meliora Hall, Rochester, NY, 14627, United States. 
E-mail address: d.dodell-feder@rochester.edu (D. Dodell-Feder).  

Contents lists available at ScienceDirect 

Neuroscience and Biobehavioral Reviews 

journal homepage: www.elsevier.com/locate/neubiorev 

https://doi.org/10.1016/j.neubiorev.2020.12.020 
Received 23 June 2020; Received in revised form 1 December 2020; Accepted 18 December 2020   

mailto:d.dodell-feder@rochester.edu
www.sciencedirect.com/science/journal/01497634
https://www.elsevier.com/locate/neubiorev
https://doi.org/10.1016/j.neubiorev.2020.12.020
https://doi.org/10.1016/j.neubiorev.2020.12.020
https://doi.org/10.1016/j.neubiorev.2020.12.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neubiorev.2020.12.020&domain=pdf


Neuroscience and Biobehavioral Reviews 121 (2021) 291–306

292

neurofeedback was applied to fMRI, allowing for near instantaneous 
access to functional neuroimaging results of high spatial resolution. 
Contrary to standard therapeutic and pharmacological treatments, 
real-time fMRI neurofeedback (rtfMRI-NF) may offer specificity by 
directly targeting underlying neural circuits that are known to be 
implicated in psychopathology. 

Neurofeedback has long been rooted in clinical applications, begin-
ning with EEG-NF treatments for conditions such as epilepsy and anxiety 
in the 1970s (Hardt and Kamiya, 1978; Lubar and Shouse, 1976). In the 
first application of rtfMRI-NF for psychiatric illness, people with 
depression learned to upregulate individualized regions involved in 
positive emotion processing (Linden et al., 2012). In the years since, 
controlled rtfMRI-NF studies have demonstrated positive findings across 
a wide range of psychiatric disorders (Bauer et al., 2020; Sukhodolsky 
et al., 2020; Young et al., 2014; Zilverstand et al., 2015; Zotev et al., 
2016). For example, the first systematic review of rtfMRI-NF (Thibault 
et al., 2018), which integrated results from 99 rtfMRI-NF studies with 
healthy and clinical samples, demonstrated that rtfMRI-NF can be used 
to train self-regulation of a variety of brain regions disrupted in psy-
chiatric illness. 

In addition to rtfMRI-NF’s promise, many have validly highlighted 
its pitfalls (deCharms, 2007; Thibault et al., 2018; Weiskopf, 2012; 
Weiskopf et al., 2004), which are considerable. For example, rtfMRI-NF 
is inevitably costly and requires extensive technical setup to allow for 
real-time analysis (deCharms, 2007; Koush et al., 2017; Weiskopf, 2012; 
Weiskopf et al., 2004). The rtfMRI-NF signal itself is inherently limited 
due to noise and the hemodynamic response delay (deCharms, 2007; 
Oblak et al., 2017). Even if these issues could be appropriately dealt 
with, there remain open questions about optimal neurofeedback pa-
rameters (e.g., number of sessions, frequency of feedback, type of in-
structions; Heunis et al., 2020; Paret et al., 2019; Thibault et al., 2018). 
Many of these and related issues, for example, the extent to which 
rtfMRI-NF-induced brain changes translate to meaningful clinical 
change, have been incisively raised and discussed by others (e.g., Thi-
bault et al., 2018). 

Despite the increasing promise of rtfMRI-NF, and the growing need 
to address these open questions, most notably, the study parameters that 
are most likely to result in rtfMRI-NF-induced brain and behavior 
change, there has yet to be a quantitative synthesis of rtfMRI-NF studies 
for the treatment of psychiatric illness. Such an analysis would provide a 
formal estimate of rtfMRI-NF efficacy, and may help to uncover study 
parameters that maximize effects for future studies. Thus, here, we 
provide the first quantitative analysis of rtfMRI-NF studies of brain and 
behavioral outcomes in clinical populations. Our primary aim was to 
determine the ability of rtfMRI-NF to successfully modulate neural ac-
tivity (in the expected region and direction) and behavior. To do so, we 
conducted a systematic review and meta-analysis of controlled rtfMRI- 
NF experiments with psychiatric samples. Our meta-analysis addressed 
four primary questions: 1) Does rtfMRI-NF lead to volitional control of 
neural activity as evaluated during “training” tasks when feedback is 
provided to participants from the targeted region(s)-of-interest? 2) Do 
neural effects persist after training as evaluated by “transfer” tasks in 
which no neurofeedback is provided? 3) Does rtfMRI-NF lead to changes 
in behavior, including symptom and cognition outcomes, as well as 
Research Domain Criteria (RDoC; Insel et al., 2010) defined outcomes? 
4) Finally, because there remains significant heterogeneity across 
rtfMRI-NF protocols, are brain and behavioral outcomes impacted by 
study characteristics? Our goal with these analyses was to provide 
critical information for future clinical studies by determining the 
magnitude of rtfMRI-NF’s impact on brain and behavioral outcomes, 
and uncovering optimal rtfMRI-NF parameters. 

2. Methods 

2.1. Study selection and inclusion criteria 

We searched for studies in two rounds. The initial study search began 
on April 7, 2019 by searching PubMed for articles in English using 
search terms related to fMRI, neurofeedback, and psychiatric illness. 
Within each category of terms, we included variations of the word and 
associated features (e.g., functional neuroimaging, NFT, psychiatric 
illness). The search terms were as follows: (fMRI OR functional MRI OR 
functional magnetic resonance imaging OR functional neuroimaging OR 
rtfMRI OR rt-fMRI OR rt-functional magnetic resonance imaging OR 
functional rtMRI OR functional rt-MRI) AND (neurofeedback OR neuro- 
feedback OR neural feedback OR NF OR NFB OR NFT OR feedback- 
training OR real time OR real-time OR realtime OR self-regulate) AND 
(dsm OR diagnostic statistical manual OR psychiat* OR symptom*). In 
order to avoid omitting newer publications, we conducted a second 
round of the same search on October 27, 2019 in PubMed, PsycInfo, Web 
of Science, and, in order to look for unpublished literature, we also 
searched several preprint servers including PsyArXiv, PrePubMed, and 
BioRxiv. Lastly, we reviewed reference sections of relevant review pa-
pers, monitored listservs, and created Google Scholar alerts using the 
above search terms to identify any additional papers not returned by the 
databases. 

In order to be included in the analysis, the study needed to meet the 
following criteria. First, the study involved the presentation of neuro-
feedback via rtfMRI methods. Second, the effects of rtfMRI-NF were 
compared with a control condition. Third, the study sample consisted of 
participants with a DSM disorder who were compared to other partici-
pants with the same disorder. Fourth, the study reported at least one 
brain and/or behavioral outcome with the necessary statistics (provided 
in the manuscript or by the author) to calculate effect sizes. Fifth, the 
effect of neurofeedback was evaluated in the region(s) targeted for 
neurofeedback. For example, if the source of neurofeedback was the 
amygdala, the authors needed to have analyzed changes in the amyg-
dala. This criterion meant we excluded studies that only reported whole- 
brain analyses instead of hypothesis-driven region-of-interest analyses. 

Records were screened using Abstrackr (http://abstrackr.cebm.br 
own.edu), an online tool for screening articles in systematic reviews 
that allows for simultaneous independent screening, organizational tags, 
and a machine learning algorithm with screening predictions (Wallace 
et al., 2012). Screening was performed by the first author under su-
pervision of the second author. For relevant papers that did not include 
the necessary statistics for calculating an effect size, the corresponding 
author was contacted for the information. When contacting authors, we 
also asked whether they had any unpublished data from a rtfMRI-NF 
study, although authors did not provide any additional data that we 
had not already found through our other search methods. See Fig. 2 for 
an overview of study screening and selection. 

2.2. Data extraction and study coding 

All data were extracted independently by the two authors. We coded 
for the following variables with generally high inter-rater reliability 
(Mdn Cohen’s κ = 1.00 and ICC = 1.00; see Supplementary Material for 
all values): 

2.2.1. Publication characteristics 
This included author(s), year, and publication status (published/ 

unpublished). 
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2.2.2. Participant characteristics 
This included M age of sample, M age of active group, M age of 

control group, percentage of female participants in entire sample, per-
centage of female participants in active group, percentage of female 
participants in control group, DSM-5 superordinate category included in 
the sample (e.g., neurodevelopmental disorder), specific DSM diagnosis 
(e.g., attention deficit hyperactivity disorder), and whether the sample 
was medicated or not. 

2.2.3. Control condition 
Researchers compared rtfMRI-NF to a variety of control conditions, 

which we classified initially into four categories. Studies in which the 
control group received no neurofeedback were classified as no feedback. 
Studies in which the control group received neurofeedback, physiolog-
ical feedback, or any other kind of true feedback signal from the 
participant that wasn’t related to the feedback signal of interest were 
classified as non-hypothesized signal feedback. We classified two other 
forms of feedback including other person feedback in which the partici-
pant received a feedback signal derived from another participant, and 
random feedback in which the feedback signal was randomly generated. 
We found only two studies with these latter two conditions. Thus, for 
parsimony, we collapsed these two categories into a sham feedback 
category that included non-hypothesized signal, other person, and random 
feedback. 

2.2.4. Instruction 
Two aspects of experimenter instruction were coded including what 

participants were told to do during the rtfMRI-NF paradigm (if any-
thing), and the direction in which they should regulate the neural signal. 
Participants were generally provided either explicit or implicit in-
structions for regulating the targeted neural signal. Explicit paradigms 
are those that involve presenting the participant with any kind of 
instruction—explicit, vague, or otherwise—for how the participant 
should attempt to regulate the targeted neural signal. Implicit paradigms 
are those in which participants are given no such guidance. In addition 
to the nature of the instruction, we coded whether participants were told 
to upregulate neural signal, downregulate neural signal, or to do both. 

2.2.5. Feedback signal 
The neurofeedback delivered to participants varied as a function of 

several characteristics including frequency, format, signal type, and 
signal origin (i.e., the ROI(s)). We coded frequency as either continuous, 
in which feedback was provided after each volume was acquired, or 
intermittent, in which feedback was provided after collecting several 
volumes as a summary measure (e.g., M, Mdn). We coded format in 
terms of how the feedback was visually presented to participants, which 
took the form of either line graph, thermometer, or video. We coded signal 
type as either reflecting percent signal change or connectivity. We coded 
several aspects of signal origin, including the names of the specific ROIs, 
and the number of ROIs used to calculate the feedback signal. 

2.2.6. Duration 
This included the number of separate testing sessions, and the total 

number of minutes spent performing the neurofeedback task (not 
including time spent by the participant performing a control task or 
resting). 

2.2.7. Brain outcomes 
We coded two brain outcomes towards calculating effect sizes that 

would address our two primary questions of interest. To address 
whether compared to control conditions, rtfMRI-NF training leads to the 
expected neural change, we extracted group Ms and SDs of the brain 
outcome variable (i.e., percent signal change, connectivity, etc.) for the 
last rtfMRI-NF training session; that is, the last session during which 
participants were provided with neurofeedback. To address whether the 
effect of rtfMRI-NF training generalizes to a context with no rtfMRI-NF, 

we extracted group Ms and SDs of the brain outcome variable for the last 
transfer session; that is, the last session in which participants performed 
the neurofeedback task without receiving neurofeedback. Accompa-
nying group ns were also extracted. When Ms and SDs were not reported 
in the text or a table, we extracted these values from relevant plots with 
WebPlotDigitizer (Rohatgi, 2019), which is a validated tool for 
extracting numerical values from figures (Arora et al., 2020; Castrellon 
et al., 2020; Drevon et al., 2017; Kip et al., 2020; Lim et al., 2017). We 
note that there was one instance in which we extracted values using 
WebPlotDigitizer only to later receive the values from the authors 
(Young et al., 2017). The values we initially extracted and the values we 
later received from the authors were near perfectly correlated, r(6) = .99 
(differences were due to rounding error), confirming the accuracy of 
extracting data using this method. In cases where the necessary statistics 
were not reported in the paper nor were there plots from which we could 
extract these data, we directly contacted the authors for this 
information. 

2.2.8. Behavioral outcomes 
To address whether rtfMRI-NF impacted behavioral outcomes, we 

coded the necessary statistics for calculating effect sizes: group Ms and 
SDs, and ns for all non-brain outcomes. Similar to the brain outcome 
values, when relevant statistics were not reported in text, we extracted 
these data from plots included in the paper using WebPlotDigitizer. If no 
relevant plots were included, authors were contacted directly for this 
information. We classified behavioral outcomes as assessing either 
symptoms or cognition. Symptom measures were those that assessed 
characteristics that in part defined the disorder being studied (e.g., the 
Beck Depression Inventory in a study of individuals with major 
depressive disorder; Young et al., 2017), and cognitive measures were 
those that assessed aspects of cognition implicated in the disorder (e.g., 
Go/No-Go Task in a study of individuals with ADHD; Alegria et al., 
2017). Given that this distinction was not always clear, and towards 
grouping the behavioral outcomes in other potentially meaningful ways, 
we also used the RDoC Initiative (Insel et al., 2010) to classify behavioral 
outcomes into those assessing negative valence systems, positive valence 
systems, cognitive systems, social processes, arousal and regulatory systems, 
or sensorimotor systems. Previous work has demonstrated the benefits of 
this framework for conceptualizing components of psychopathology 
broadly including suicide risk (Glenn et al., 2017), hallucinations 
(Badcock and Hugdahl, 2014; Ford, 2016), and eating disorder symp-
toms (Wildes & Marcus, 2015). Beyond the advantages of its mechanistic 
specificity, the RDoC framework is particularly apt for our dataset, 
which spans diagnoses yet includes many shared clinical measures and 
outcomes. 

2.3. Statistical analyses 

We conducted all analyses in R (version 3.5.1; R Core Team, 2018) 
using the metafor package (Viechtbauer, 2010). The data are available 
on the Open Science Framework repository at the following link: 
https://osf.io/3qn2k/?view_only =

6b92982a56304c138bde24d337cf7422 

2.3.1. Effect size calculation 
We calculated the standardized mean difference as bias-corrected 

Hedges’ g, which we interpret using conventional benchmarks (Cohen, 
1988). Results were considered unexpected under the null hypothesis 
when p was less than .05 (hereafter referred to as “statistically signifi-
cant”). There was one instance (Bauer et al., 2020) in which a cross-over 
design was used in which the same participants completed rtfMRI-NF 
training and then a control training. In this instance, we calculated the 
standardized mean change score using raw score standardization 
(Morris and DeShon, 2002). Based on a prior meta-analysis of the reli-
ability of task-related fMRI response (Bennett and Miller, 2010), we 
assumed a correlation between the brain outcome variables of r = .5 
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when calculating the latter effect sizes. There was one instance whereby 
a behavioral outcome tested with an ANOVA was described as being not 
significant without providing relevant statistics (Linden et al., 2012). We 
conservatively estimated this effect to be 0. Additionally, there was one 
behavioral effect size that we were unable to calculate due to a pooled 
standard deviation of 0 (Alegria et al., 2017). 

Data were coded in such a way that a positive effect size indicates the 
predicted neurofeedback effect. For example, if the rtfMRI-NF group was 
trained to upregulate percent signal change, a positive Hedges’ g would 
mean that compared to the control group, the active group showed 
greater increases in percent signal change. Alternatively, if the active 
group was trained to downregulate percent signal change, a positive 
Hedges’ g would mean that compared to the control group, the active 
group showed greater decreases in percent signal change. 

2.3.2. Data synthesis 
We had three primary questions of interest: (1) Does rtfMRI-NF 

training lead to predicted rtfMRI-NF-related neural changes during 
training? (2) Does rtfMRI-NF training lead to predicted rtfMRI-NF- 
related neural changes during transfer (i.e., when no feedback is pro-
vided), and (3) Does rtfMRI-NF training lead to predicted changes in 
behavior? We addressed the first two questions by meta-analyzing the 
group difference in brain value for the last training session and the last 
transfer session, respectively. Because the behavior outcomes assessed 
were broad, we conducted several meta-analyses to address the third 
question. First, using the symptom/cognition classification, we con-
ducted separate meta-analyses for symptom and cognition outcomes. 
Second, using the RDoC Matrix, we conducted five follow-up meta-an-
alyses, evaluating outcomes assessing the respective RDoC constructs 
(we did not conduct a meta-analysis for RDoC arousal and regulatory 
systems since all three outcomes came from the same study; Young et al., 
2014). 

In each meta-analysis, there was at least one instance in which more 
than one effect size was derived from the same sample in the same study. 
To deal with the statistical dependence, we used a three-level random- 
effects model in which we added a random effect for study (Cheung, 
2014, 2019; Konstantopoulos, 2011; Van den Noortgate et al., 2013, 
2015). This model allowed effects to vary at the level of sampling 
variance (level 1), within-study variance (level 2), and between-study 
variance (level 3). We compared the fit of the three-level model to 
that of a two-level model (using maximum likelihood estimation) by 
fixing level 3, and separately, level 2 variance to 0, and performing 
likelihood ratio tests on the full and reduced model (Assink and Wib-
belink, 2016). A three-level model better fit the data for the symptom 
and RDoC negative valence meta-analyses; for all other meta-analyses, a 
two-level model better fit the data. In the results, we present the findings 
from the better fitting model using restricted maximum likelihood to 
estimate residual heterogeneity. To account for correlated sampling 
errors due to multiple effect sizes being derived from the sample, we 
generated cluster-robust tests and confidence intervals of model esti-
mates (Hedges et al., 2010) using the robust function in metafor. 

We assessed the presence and extent of heterogeneity with the Q and 
I2 statistics, respectively. The Q statistic and its p value provides a test of 
the hypothesis that all studies share a common effect size. A statistically 
significant Q value (p < .10) indicates that the true effects vary. I2 in-
dicates the proportion of observed variance attributable to true variance 
among the effect sizes as opposed to sampling error (Borenstein et al., 
2017). An I2 value of 0% indicates that the none of the variation among 
the observed effects is due to variation in true effects. When interpreted 
alongside a forest plot, I2 = 0% indicates that none of the variance 
among effects sizes would remain if sampling error was reduced to 
0 (Borenstein et al., 2017). An I2 value of 100 % indicates that all of the 
variation among the observed effects is due to variation in true effects. 
When interpreted alongside a forest plot, I2 = 100 % indicates that all of 
the variance among effects sizes would remain if sampling error was 
reduced to 0. We interpret I2 using benchmarks provided by Deeks et al. 

(2008). Absolute variance of the true effects is provided as τ2. 

2.3.3. Outlier and influence diagnostics 
We evaluated each meta-analysis for influential outliers, which, 

following Viechtbauer and Cheung (2010), we defined as effect sizes 
with studentized residuals ±1.96 and Cook’s d value larger than the 
50th percentile of chi-square distribution. In analyses where we iden-
tified an influential outlier, we re-ran the analysis without that effect 
size. 

2.3.4. Moderator analysis 
To investigate whether study attributes impacted the effect of 

rtfMRI-NF on brain and behavioral outcomes, we conducted a series of 
mixed-effects moderator analyses evaluating the impact of the following 
variables: DSM diagnosis, number of rtfMRI-NF sessions (dichotomized 
into one versus more than one session), minutes of rtfMRI-NF training, 
control group type, feedback frequency, direction of rtfMRI-NF regula-
tion, and type of rtfMRI-NF feedback. We decided not to include medi-
cation as a moderator given the variability in medication type and 
dosage, as well as a lack of information regarding the circumstances of 
pharmacological treatment (e.g., randomization to treatment, self- 
selection, etc.). In the case of a moderating effect, these factors would 
prevent us making meaningful conclusions regarding the impact of 
medication on rtfMRI-NF training. For categorical variables, we con-
ducted these analyses only when there were at least two effects sizes in 
each level of a variable coming from different studies and samples. In 
cases where a study attribute contained more than two levels, we 
dropped any level not containing at least two effect sizes each from a 
different study before running the analysis. Moderator effects were 
evaluated with the F statistic and its p value, which indicate whether the 
relation between the moderator and rtfMRI-NF effect is stronger than 
would be expected by chance. We provide pseudo R2 values denoting the 
percentage of heterogeneity accounted for when including the moder-
ator in the model (Raudenbush, 2009). We note that these values may be 
inaccurate in analyses where the number of studies is small 
(López-López et al., 2014)—as is the case in several of our analyses—and 
so we encourage caution when interpreting these values. 

2.3.5. Publication bias and sensitivity analyses 
The validity of a meta-analytic finding depends on whether the meta- 

analysis incorporates all of the available relevant data. Selective 
reporting of results from a study and in the literature more broadly based 
on statistical significance or other conditions—i.e., publication bias—-
creates a situation in which the available data to analyze is not repre-
sentative of the population of studies. This represents a fundamental 
threat to the validity of a meta-analysis. A variety of methods exist for 
detecting and correcting publication bias as well as other forms of bias 
(e.g., questionable research practices; John et al., 2012; Simmons et al., 
2011), which are more or less effective depending on the meta-analytic 
conditions (Carter et al., 2019). However, few such methods exist that 
appropriately handle dependent effect sizes. Two recent simulation 
papers suggest that Egger’s regression test (ERT) may be appropriate in 
the case of dependent effect sizes when using multilevel models or 
cluster-robust tests (Fernández Castilla, 2019; Rodgers and Pustejovsky, 
2019). In ERT, effect sizes are regressed on their standard errors (Egger 
et al., 1997). A statistically significant slope (b1) indicates an association 
between effect sizes and their precision, meaning that smaller, less 
precise studies, consistently produce larger effects. An important limi-
tation of this method is that it does not speak to the underlying cause of 
the association, which may be due to “small-study effects” (i.e., smaller 
studies producing larger effects for reasons other than selection bias 
such as methodological differences between small and larger studies; 
Sterne et al., 2001; Sterne and Egger, 2006) or publication bias. It is 
useful to consider ERT in the context of funnel plots; a widely used visual 
tool for assessing small-study effects that plots effect sizes against their 
precision (typically standard errors). In the absence of small-study 
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effects (of which publication bias may be a cause), smaller, less precise 
studies should scatter widely at the bottom of the plot, while larger, 
more precise studies should cluster at the top, resembling a symmetrical 
funnel (Sterne and Egger, 2006). In the presence of small-study effects 
(of which publication bias maybe a cause), the plot will be asymmet-
rical. ERT is a formal evaluation of funnel plot asymmetry. 

Here, we evaluate publication bias by conducting cluster-robust ERT, 
and, to increase interpretability of funnel plot asymmetry, provide 
contour-enhanced funnel plots, which depict areas of conventional sta-
tistical significance (e.g., p < .05; Peters et al., 2008). If funnel plot 
asymmetry seems to be caused by missing studies in areas of statistical 
non-significance, to the extent that selective reporting is based on sta-
tistical significance, publication bias may be more likely to be assumed 
as the source of asymmetry. This method too has its limitations, which 
includes the inherently subjective nature in interpreting the plots (Ter-
rin et al., 2005). Finally, for thoroughness, we use the trim and fill (TAF) 
method using the R0 estimator (Duval and Tweedie, 2000), which at-
tempts to create symmetry in the funnel plot by imputing “missing” 
studies, correcting the overall effect size estimate with these missing 
studies, and then testing the hypothesis that the number of missing 
studies is 0. Despite its use in multilevel meta-analysis (e.g., Weisz et al., 
2017) and cluster-robust meta-analytic tests (e.g., Clark et al., 2016), we 
note an important limitation of this method too in that it is not designed 
to handle dependent effect sizes, and minimally reduces bias and Type I 
error rates even in the case of standard two-level meta-analyses (Carter 
et al., 2019). Taking into account these limitations, we treated the 
findings from all of the methods as a form of sensitivity analysis, and 
weighted the findings of ERT more heavily given its validation for 
dependent effect sizes. 

3. Results 

3.1. Participant and study characteristics 

Our search returned 17 relevant studies (2 unpublished) with 105 
effect sizes across brain and behavioral outcomes (brain effect sizes n =
25, symptom effect sizes n = 62, cognition effect sizes n = 18; Table 1, 
Fig. 2). In total, the studies included 410 participants, 234 of whom 
received rtfMRI-NF. Participants were on average 34.1 ± 9.9 years old, 
and 50.7 % of the sample was female. Several psychiatric disorders were 
studied, the most common disorder being major depressive disorder 
(52.9 % of studies; 60.0 % of effect sizes; Table 2). Over half of the 
participant samples included (52.9 %) were on psychotropic 
medication. 

On average, participants completed 2.3 ± 1.3 sessions (min-max =
1–4) of rtfMRI-NF with an average total regulation time across sessions 
of 23.5 ± 18.1 min (min-max = 5–57.2). Active neurofeedback was most 
often compared to a sham feedback control condition (70.6 %). The 
overwhelming majority of studies (88.2 %) provided explicit in-
structions for regulating the neural signal. Most studies asked partici-
pants to upregulate the neural signal (64.7 %), which was most often 
task-based activation (e.g., percent-signal change; 82.4 %) as opposed 
to connectivity, and provided participants with continuous neurofeed-
back (82.4 %). A variety of brain regions were used as the source of the 
neurofeedback signal with the most common ROI being the amygdala 
(35.3 %). The majority of studies (70.6 %) included a transfer task in 
which no neurofeedback was provided. See Fig. 1 and Table 1 for more 
details regarding study characteristics. 

3.2. The neural effect of rtfMRI-NF during the training task 

3.2.1. Overall effect 
We first asked whether compared to control training, rtfMRI-NF led 

to the predicted changes in neural signal during the training task in 
which participants received neurofeedback. Data were analyzed from 12 
studies contributing to a total of 16 effect sizes. We found a medium- 

sized-effect of rtfMRI-NF during the training task, g = .52, 95 % CI 
[.34, .71], which was statistically significant, p < .0001. We identified 
one influential outlier, which demonstrated a negative effect of rtfMRI- 
NF (Bauer et al., 2020). After removing this outlier, the effect was 
slightly larger, although similar, g = .59, 95 % CI [.44, .75], p < .0001 
(Table 3, Fig. 3A). Regarding heterogeneity, the Q test was not statisti-
cally significant, and I2 was 0% indicating that none of the variance was 
due to variation in the true effects. Rather than there being no variation 
in true effects, it is likely that this finding is being driven, at least in part, 
by the fairly small sample sizes, which led to larger CIs with greater 
overlap. Regarding publication bias, the funnel plot showed the majority 
of studies in areas of non-statistical significance, with some studies 
tracking the line of statistical significance (p < .05), though some of this 
clustering was the result of effect sizes coming from the same study (see 
Fig. S2). ERT was not statistically significant, b1=-.71, 95 % CI [-3.15, 
1.72], p = .524, and the TAF estimate was similar, g = .61, 95 % CI [.41, 
.81], p < .001, imputing one missing study on the right side of the plot, 
which was not statistically significant, p = .250. 

3.2.2. Moderator analysis 
Given that all the variance could be attributed to sampling variance 

(τ2 = 0; I2 = 0%), as opposed to variation in true effects, we did not 
perform moderator analyses in order to reduce the likelihood of Type I 
error. 

3.3. The neural effect of rtfMRI-NF during the transfer task 

3.3.1. Overall effect 
Next, we asked whether compared to control training, rtfMRI-NF led 

to the predicted changes in neural signal during the transfer task in 
which participants received no neurofeedback. This task serves as a test 
of generalizability to evaluate whether volitional control is observed in 
instances in which the training signal is not provided. Data were 
analyzed from 9 studies contributing 9 effect sizes total. We found a 
medium-sized-effect of rtfMRI-NF during the transfer task, g = .68, 95 % 
CI [.13, 1.23], which was statistically significant, p = .022. We identified 
one medium effect size as an influential outlier in which the control 
condition outperformed rtfMRI-NF (Sukhodolsky et al., 2020). After 
removal of this effect size, the effect of rtfMRI-NF on neural signal 
during the transfer task increased to a large effect, g = .84, 95 % CI [.37, 
1.31], which was statistically significant, p = .005 (Table 3, Fig. 3B). The 
Q test for heterogeneity was not statistically significant, Q = 10.51, p =
.162, and the proportion of observed variance attributable to true 
variance may represent moderate heterogeneity, I2 = 31.5 %. The ma-
jority of studies fell in the area of non-statistical significance in the 
contour-enhanced funnel plot, with some clustering of studies close to 
the line of statistical significance, which was in part due to effect sizes 
coming from the same studies (Fig. S2). ERT was not statistically sig-
nificant, b1=-5.72, 95 % CI [-17.12, 5.68], p = .253, and the TAF esti-
mate was the same, g = .84, 95 % CI [.46, 1.22], p < .0001, imputing 
zero missing studies, p = .500. 

3.3.2. Moderator analysis 
We were able to conduct moderator analyses for DSM diagnosis 

(restricting the analyses to studies of MDD and ADHD due to a limited 
number of effect sizes from other diagnoses), number of sessions, and 
training time (Table 4). Though the inclusion of DSM diagnosis and 
training time substantially reduced unexplained variance (DSM diag-
nosis R2 = 34.8 %, training time R2 = 48.1 %), this reduction in variance 
was not statistically significant, nor was the reduction in variance with 
inclusion of number of sessions (R2 = 0%). We note that including a 
category for other diagnoses (i.e., non-ADHD, non-MDD; n = 2) also did 
not change the findings of the DSM diagnosis moderator analysis, F(2, 5) 
= 2.05, p = .224, R2 = 37.2 %, other g = .11, 95 % CI [-1.26, 1.49], p =
.843. 
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Table 1 
Study characteristics.  

Study Diagnosis Control 
Group 

Sample Size Mean 
Age 

Training Paradigm Timing Transfer Behavioral 
Outcomes 

Alegria et al. (2017) ADHD Sham 
Feedback 

31 
(EG = 18, CG 
= 13) 

13.90 ROI = rIFG 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = implicit 

4 sessions, 55 min 
total 

Yes ADHD Symptoms 
Motor Inhibition 
Sustained Attention 
Time Perception 

Bauer et al. (2020) SZ Sham 
Feedback 

11 
(EG = 11, CG 
= 11) 

43.50 ROI = DMN-CEN 
Feedback = connectivity 
Direction = decrease 
Frequency = continuous 
Instructions = explicit 

1 session, 8 min 
total 

Yes Auditory 
Hallucinations 

Hamilton et al. 
(2016) 

MDD Sham 
Feedback 

20 
(EG = 10, CG 
= 10) 

32.85 ROI = salience network 
Feedback = PSC 
Direction = decrease 
Frequency = intermittent 
Instructions = explicit 

1 session, 5.4 min 
total 

Yes Mood 

Hartwell et al. 
(2016) 

Nicotine 
Dependence 

No Feedback 33 
(EG = 16, CG 
= 17) 

35.18 ROI = ACC/PFC 
Feedback = PSC 
Direction = decrease 
Frequency = intermittent 
Instructions = explicit 

3 sessions, 16.5 
min total 

No Craving 

Jaeckle et al. (2019) MDD No Feedback 35 
(EG = 19, CG 
= 16) 

37.15 ROI = ATL & SCC 
Feedback = connectivity 
Direction = decrease 
Frequency = continuous 
Instructions = explicit 

3 sessions, 33.6 
min total 

No Depression 
Mood 
Self-Blame 
Self-Esteem 

Linden et al. (2012) MDD No Feedback 16 
(EG = 8, CG =
8) 

48.44 ROI = VLPFC, insula, 
DLPFC, MTL, OFC 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = implicit 

4 sessions, 42 min 
total 

No Depression 
Mood 

Mehler et al. (2018) MDD Sham 
Feedback 

32 
(EG = 16, CG 
= 16) 

47.07 ROI = variable 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = explicit 

4 sessions, 32 min 
total 

Yes Anxiety 
Depression 
Motivation 
Self-Efficacy 
Thought Control 

Misaki et al. (2018) PTSD Sham 
Feedback 

22 
(EG = 16, CG 
= 6) 

30.27 ROI = left amygdala 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = explicit 

3 sessions, 24 min 
total 

Yes Anxiety 

Sukhodolsky et al. 
(2020) 

Tourette’s 
Disorder 

Sham 
Feedback 

21 
(EG = 11, CG 
= 10) 

16.05 ROI = SMA 
Feedback = PSC 
Direction = both 
Frequency = continuous 
Instructions = explicit 

2 sessions, 57.2 
min total 

Yes Tic Severity 

Young et al. (2014) MDD Sham 
Feedback 

21 
(EG = 14, CG 
= 7) 

37.33 ROI = left amygdala 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = explicit 

1 session, 8 min 
total 

Yes Anxiety 
Mood 

Young et al. (2017) MDD Sham 
Feedback 

33 
(EG = 18, CG 
= 15) 

31.55 ROI = left amygdala 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = explicit 

2 sessions, 16 min 
total 

Yes Anhedonia 
Anxiety 
Depression 
Memory 

Zahn et al. (2019) MDD Sham 
Feedback 

28 
(EG = 14, CG 
= 14) 

45.20 ROI = ATL & SCC 
Feedback = connectivity 
Direction = increase 
Frequency = continuous 
Instructions = explicit 

1 session, 8 min 
total 

No Depression 
Guilt 
Indignation 
Mood 
Self-Esteem 

Zilverstand et al. 
(2015) 

Specific Phobia No Feedback 18 
(EG = 9, CG =
9) 

21.20 ROI = DLPFC, insula 
Feedback = PSC 
Direction = both 
Frequency = intermittent 
Instructions = explicit 

1 session, 5 min 
total 

No Anxiety 
Spider Fear 

Zilverstand et al. 
(2017) 

ADHD No Feedback 13 
(EG = 7, CG =
6) 

36.68 ROI = dorsal ACC 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = explicit 

4 sessions, 48 min 
total 

Yes ADHD Symptoms 
Cognitive 
Interference 
Sustained Attention 
Working Memory 

Zotev et al. (2016) MDD Sham 
Feedback 

37.79 ROI = left amygdala 
Feedback = PSC 

1 session, 8 min 
total 

Yes Anxiety 
Mood 

(continued on next page) 
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3.4. The effect of rtfMRI-NF on behavior 

3.4.1. Overall effect 
In addition to neural outcomes, we also evaluated whether compared 

to control training, rtfMRI-NF improved behavioral outcomes, including 
symptoms and cognition. All 17 of the included studies assessed symp-
tom outcomes, contributing to a total of 62 effect sizes. We present the 
findings from the three-level model, which better fit the data than the 
two-level model. Compared to control training, rtfMRI-NF was associ-
ated with a small advantage in symptom reduction, g = .37, 95 % CI 

[.16, .58], which was statistically significant, p = .002 (Table 3, Fig. 4). 
The Q test for heterogeneity was not statistically significant, Q = 75.16, 
p = .105, and the proportion of variance attributable to true variance 
may represent moderate heterogeneity, I2 = 36.48 %. All of the variance 
was attributable to between-study (i.e., level 3) differences in effect 
sizes. The majority of studies fell within the area of non-statistical sig-
nificance, with some tracking of effects around the line of significance 
(Fig. S2). ERT was statistically significant, b1 = 4.40, 95 % CI [1.13, 
7.67], p = .012, and the TAF estimate (derived on the basis of a two-level 
symptom model) was smaller in magnitude, g = .25, 95 % CI [.13, .37], p 

Table 1 (continued ) 

Study Diagnosis Control 
Group 

Sample Size Mean 
Age 

Training Paradigm Timing Transfer Behavioral 
Outcomes 

24 
(EG = 13, CG 
= 11) 

Direction = increase 
Frequency = continuous 
Instructions = explicit 

Zotev et al. (2018) PTSD Sham 
Feedback 

28 
(EG = 18, CG 
= 10) 

33.09 ROI = left amygdala 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = explicit 

3 sessions, 24 min 
total 

Yes Depression 
PTSD Symptoms 

Zotev et al. (2020) MDD Sham 
Feedback 

24 
(EG = 16, CG 
= 8) 

32.67 ROI = left amygdala 
Feedback = PSC 
Direction = increase 
Frequency = continuous 
Instructions = explicit 

1 session, 8 min 
total 

Yes Anxiety 
Mood 

Note. Abbreviations in alphabetical order: ACC = anterior cingulate cortex; ADHD = attention deficit hyperactivity disorder; ATL = anterior temporal lobe; CEN =
central executive network; CG = control group; DLPFC = dorsolateral prefrontal cortex; DMN = default mode network; EG = experimental group; MDD = major 
depressive disorder; MTL = medial temporal lobe; OFC = orbitofrontal cortex; PFC = prefrontal cortex; PSC = percent signal change; PTSD = posttraumatic stress 
disorder; ROI = region of interest; SCC = subgenual cingulate cortex; SMA = supplementary motor area; SZ = schizophrenia; VLPFC = ventrolateral prefrontal cortex. 

Table 2 
Count of DSM diagnoses across studies and effect sizes.  

DSM Category 
Number of Studies Number of Effect Sizes 

Brain Symptom Cognition Brain Symptom Cognition 

Depressive Disorders 6 9 2 10 47 6 
Neurodevelopmental Disorders 3 3 2 7 6 12 
Trauma and Stressor Related Disorders 1 2 0 2 5 0 
Schizophrenia and other Psychotic Disorders 1 1 0 3 1 0 
Anxiety Disorders 1 1 0 2 2 0 
Substance-Related and Addictive Disorders 1 1 0 1 1 0  

Fig. 1. Depiction of the rtfMRI-NF protocol with statistics from the studies included in our analysis. RtfMRI-NF software image depicts OpenNFT software.  
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< .001, imputing three missing studies to the left side of the plot, which 
trended towards statistical significance, p = .062. Together, these data 
suggest the possibility of publication bias. As such, the true effect of 
rtfMRI-NF on symptoms is likely lower than g = .37. 

On cognition, four studies assessed cognitive outcomes, contributing 
a total of 18 effect sizes. Compared to control conditions, rtfMRI-NF 
resulted in a small improvement in cognitive outcomes, g = .23, 95 % 
CI [-.33, .78], which was not statistically significant, p = .288 (Table 3, 
Fig. 5). The Q test for heterogeneity was statistically significant, Q =
37.19, p = .003, and the proportion of variance attributable to true 

variance may represent moderate heterogeneity, I2 = 54.4 %. 

3.4.2. Moderator analysis 
For symptom outcomes, we were able to evaluate the effect of all 

moderators (Table 4). The effect of DSM diagnosis (including studies of 
MDD and ADHD only due to a limited number of effect sizes from other 
diagnoses) on symptom outcome was statistically significant, F(1,8) =
6.06, p = 0.039, R2 = 10.86 %, with there being no effect of rtfMRI-NF 
on symptoms for ADHD, g = .005, 95 % CI [-.01, .02], p = .514, and a 
small effect for MDD, g = .39, 95 % CI [.03, .75], p = .037. Including a 

Fig. 2. Flow diagram of study selection following PRISMA criteria (Moher et al., 2009).  

Table 3 
Meta-analytic results.  

Outcome  k ES g [95% CI] p τ2 Q I2 

Brain          
Neural Effect During Training Taska 11 15 .59 [.44, .75] <.0001 0 8.07 0%  
Neural Effect During Transfer Taska 8 8 .84 [.37, 1.31] .005 .09 10.51 31.51% 

Behavior          
Symptomsb 17 62 .37 [.16, .58] .002 .09 75.16 36.48 %  
Cognition 4 18 .23 [-.33, .78] .288 .21 37.19* 54.43 %  
RDoC Negative Valence Systemsb 12 37 .41 [.15, .68] .006 .09 38.60 35.51%  
RDoC Positive Valence Systemsa 8 9 .13 [-.42, .67] .576 .11 11.62 39.76%  
RDoC Cognitive Systems 5 20 .22 [-.28, .72] .289 .14 32.77* 42.82 %  
RDoC Social Processes 3 8 .02 [-.44, .48] .871 .05 10.20 30.34%  
RDoC Sensorimotor Systems 2 3 .64 [.39, .88] .020 0 .74 0% 

Note. Statistics are from models in which influential outliers were removed. k=number of studies, ES = number of effect sizes. 
aN = 1 influential outlier identified and removed. Hedges’ g and model statistics are reported without this influential outlier. 
bData were fit with a three-level model. The sum of the variance components (across levels 2 and 3; i.e., σ2), and the total proportion of variance attributable to 
heterogeneity in the true effects is provided in the τ2 and I2 columns, respectively. 
*p<.05. 
**p<.01. 
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category for other diagnoses (i.e., non-ADHD, non-MDD; n = 10) did not 
appreciably change the results, F(212) = 20.56, p = .0001, R2 = 14.3 %, 
with outcomes also being superior for the other diagnosis category 
versus ADHD, contrast g = .50, 95 % CI [.31, .68], p < .0001, but similar 
to MDD, contrast g = .12, 95 % CI [-.25, .50], p = .489. Other moderators 
explained an additional 0% (control condition) to 29.9 % (training mi-
nutes) of variance in symptom outcomes, but none of these effects were 
statistically significant. Given that rtfMRI-NF did not impact cognition in 
a meaningful way, we did not conduct moderator analyses for cognitive 
outcomes. 

3.4.3. RDoC analysis 
As a way of providing another meaningful classification of behav-

ioral outcomes, we conducted follow-up meta-analyses based on RDoC 
constructs. We were able to classify 80 behavioral outcomes as part of 
negative valence systems, positive valence systems, cognitive systems, 
social processes, sensorimotor systems, or arousal and regulatory sys-
tems. The majority of these outcomes fell within the domain of negative 
valence systems (46.2 %) and cognitive systems (25.0 %). 

Compared to control training, a three-level meta-analysis of negative 
valence outcomes demonstrated that rtfMRI-NF produced a small effect, 
number of effect sizes = 37, g = .41, 95 % CI [.15, .68], p = .006 
(Table 3, Figure S1), although the ERT indicated small-study effects, b1 

Fig. 3. Forest plots of the brain outcomes. A) Hedges’ g effect sizes with 95 % confidence intervals comparing post-training neural activity between active and control 
groups. B) Hedges’ g effect sizes with 95 % confidence intervals comparing transfer effects between active and control groups. ACC = anterior cingulate cortex; ADHD 
= attention deficit hyperactivity disorder; ATL = anterior temporal lobe; BA = Brodmann area; dACC = dorsal anterior cingulate cortex; DLPFC = dorsolateral 
prefrontal cortex; LA = left amygdala; MDD = major depressive disorder; MPFC = medial prefrontal cortex; PFC = prefrontal cortex; PTSD = posttraumatic stress 
disorder; rIFG = right inferior frontal gyrus; SCC = subgenual cingulate cortex; SMA = supplementary motor area; SZ = schizophrenia. 
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= 4.86, 95 % CI [1.14, 8.59], p = .017, and the TAF estimate (based on a 
two-level model) was smaller, g = .29, 95 % CI [.14, .43], p < .001, 
imputing four missing studies to the left side of the plot, p = .031. 
RtfMRI-NF also produced a medium impact on sensorimotor system 
outcomes, number of effect sizes=3, g = .64, 95 % CI [.39, .88], p = .020 
(Table 3, Fig. S1). We did not observe a statistically significant effect for 
any other RDoC outcome. Of the moderators we were able to test, none 
impacted the effect of rtfMRI-NF on negative valence outcomes, and 
there were too few effect sizes to perform any moderator analyses on 
sensorimotor system outcomes (Table 4). 

4. Discussion 

In recent years, rtfMRI-NF has emerged as a promising experimental 
intervention for psychiatric illness. Despite several excellent qualitative 
reviews synthesizing these findings (Heunis et al., 2020; Paret et al., 
2019; Sitaram et al., 2017; Stoeckel et al., 2014; Sulzer et al., 2013; 
Thibault et al., 2016, 2018; Tursic et al., 2020; Weiss et al., 2020), there 
has yet to be a quantitative review of these data. Here, we present data 
from the first quantitative analysis addressing this topic. 

Our literature search uncovered 17 controlled studies evaluating the 

efficacy of rtfMRI-NF in improving brain and behavioral outcomes for a 
variety of psychiatric disorders. Despite the range of study parameters, 
there was some consistency in rtfMRI-NF methods. For example, rtfMRI- 
NF was most often compared to sham feedback, instructions for regu-
lating the signal were explicit, the feedback signal was derived from 
task-based activation (e.g., percent signal change), and the feedback 
signal was delivered continuously. The neural effects of rtfMRI-NF were 
often evaluated in two contexts: (a) when participants were regulating 
while receiving neurofeedback (“training sessions”), and (b) when par-
ticipants were regulating in the absence of neurofeedback (“transfer 
sessions”) towards evaluating whether regulation can be sustained in a 
context without receiving a feedback signal, as in one’s daily life. 

We first addressed whether during the training task—i.e., when 
receiving a neurofeedback signal—rtfMRI-NF produced an advantage 
over control conditions in the region targeted for training. We found that 
it did. Specifically, rtfMRI-NF produced a medium-sized advantage over 
control conditions, g = .59, 95 % CI [.44, .75]. Said otherwise, patients 
across a range of psychiatric illnesses are able to use a neurofeedback 
signal delivered through rtfMRI to self-regulate neural activity in the 
targeted region. Despite the range of neurofeedback parameters (e.g., 
instructions, neurofeedback format and delivery, number of sessions, 

Table 4 
Mixed-effects moderator analyses results.     

Moderator Test Residual Heterogeneity Individual Estimates 

Outcome Moderator Level F p R2 Q I2 ES g [95% CI] p 

Neural Effect During Transfer Task            
Diagnosis  2.61 .182 34.82 % 7.04 30.60%      

ADHD      2 .34 [-.70, 1.37] .416   
MDD      5 1.06 [.36, 1.76] .013  

Sessions  .43 .535 0% 17.66** 60.57 %      
Multiple      5 .55 [-.51, 1.61] .249   
Single      4 .84 [.63, 1.06] <.0001  

Training Minutes  4.29 .084 48.07 % 11.49 39.97% 9 b=-.02 [-.04, .004] .084 
Symptomsa            

Diagnosis  6.06 .039 10.86 % 67.87** 46.66 %      
ADHD      5 .005 [-.01, .02] .514   
MDD      47 .39 [.03, .75] .037  

Control Condition  .00 .948 0% 74.26 38.84%      
No Feedback      17 .38 [.03, .74] .037   
Sham Feedback      45 .37 [.10, .64] .011  

Sessions  1.22 .289 17.08% 69.91 35.27%      
Multiple      34 .27 [-.01, .56] .054   
Single      28 .50 [.16, .83] .007  

Training Minutes  2.52 .136 29.95 % 65.89 32.20% 62 b=-.01 [-.02, .003] .136  
Instructions  .01 .919 .43% 75.04* 38.96 %      

Explicit      55 .38 [.15, .61] .004   
Implicit      7 .35 [-.30, .99] .267  

Regulation Direction  .39 .686 .63% 73.90* 40.68 %      
Decrease      15 .42 [.04, .81] .032   
Increase      44 .35 [.04, .65] .029   
Mixed      3 .49 [.32, .65] <.0001  

Neural Signal  .69 .421 6.87% 72.15 37.93%      
Activation      45 .40 [.14, .66] .006   
Connectivity      17 .26 [-.01, .52] .054 

RDoC Negative Valence Systemsa            

Control Condition  .11 .751 0% 38.55 40.08%      
No Feedback      8 .51 [-.23, 1.25] .159   
Sham Feedback      29 .40 [.09, .70] .016  

Sessions  .27 .615 11.18% 37.57 38.01%      
Multiple      19 .36 [-.10, .81] .108   
Single      18 .48 [.15, .82] .010  

Training Minutes  .09 .776 19.93% 35.84 37.22% 37 b=-.004 [-.04, .03] .776  
Regulation Direction  .086 .777 2.64% 37.88 43.97%      

Decrease      6 .36 [-.21, .93] .181   
Increase      29 .44 [.07, .82] .027  

Neural Signal  3.18 .112 18.08% 35.98 36.74%      
Activation      29 .48 [.13, .83] .013   
Connectivity      8 .19 [.04, .33] .021  

a Data were fit with a three-level model. 
* p<.10. 
** p < .05. 
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etc.) and patient samples tested, none of the variation in effects could be 
attributed to heterogeneity in the true effects (τ2 = 0; I2 = 0%). How-
ever, this might reflect, in part, the relatively small samples tested, 
leading to imprecise study effect size estimates, and large, overlapping 
CIs. Thus, we caution against interpreting these findings to mean that 
there truly is no variation in true effects. Nevertheless, the lack of 
variance in the effects precluded a meaningful analysis of potential 
moderators. 

One of the key tests in assessing whether an individual truly learns 
volitional control over a brain region(s) is evaluating whether the in-
dividual shows evidence of regulation in the absence of neurofeedback. 
If so, this might suggest that the individual can regulate the targeted 
region in other contexts during which neurofeedback is not available, 
such as one’s daily life, which is precisely the context in which one 
would hope that an intervention has an impact. Towards evaluating this 
issue, we meta-analyzed the effects of rtfMRI-NF during transfer scans 
from 9 studies (8 after the removal of one outlier). Compared to control 
trainings, rtfMRI-NF demonstrated a large advantage, g = .84, 95 % CI 
[.37, 1.31]. In other words, participants demonstrated volitional control 
of the targeted region(s) even in the absence of a neurofeedback signal. 

In fact, this effect was even larger than the effect observed during 
training sessions when the neurofeedback signal is provided. Given that 
transfer sessions are typically administered last, it is possible that these 
large effects reflect the benefit of learning across all training sessions, 
including the final session from which we measured the training effect 
size. Another possibility is that the feedback is distracting and/or to 
some extent inaccurate. For example, given the hemodynamic response 
lag, if provided with continuous neurofeedback, one needs to keep in 
mind that the feedback currently received maps onto to the mental 
processes engaged 4–8 seconds prior. This would be challenging at 
baseline, and perhaps even more so for individuals experiencing 
cognitive difficulties due to psychiatric illness. Further, many studies do 
not report denoising and quality control methods leaving open the 
possibility that the neurofeedback signal may be corrupted (Heunis 
et al., 2020). In fact, recently it was shown that rtfMRI-NF training ef-
fects on network connectivity could be attributed to physiological arti-
facts (Weiss et al., 2020). As suggested by others, this all serves as 
further evidence in support of the need for additional work determining 
how learning occurs, how best to facilitate the generalization of learning 
in the context of rtfMRI-NF (Weiskopf, 2012), and methodological 

Fig. 4. Forest plot depicting Hedges’ g effect sizes with 95 % confidence intervals comparing post-training psychiatric symptoms between active and control groups. 
ADHD = attention deficit hyperactivity disorder; MDD = major depressive disorder; PTSD = posttraumatic stress disorder; ND = nicotine dependence; SZ =
schizophrenia. 
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guidelines for conducting high-quality rtfMRI-NF studies that are not 
corrupted by noise (Fede et al., 2020; Heunis et al., 2020). 

Given that the proportion of observed variance could be attributed to 
moderate heterogeneity in true effects (I2 = 31.5 %), we evaluated 
whether some of the heterogeneity in transfer effects could be explained 
by study characteristics. We found the effect of rtfMRI-NF training to be 
higher in MDD versus ADHD, in single-session versus multiple-session 
designs, and the effect to be larger in studies with fewer minutes of 
rtfMRI-NF training. Though the pseudo R2 values for sample diagnosis 
and rtfMRI-NF minutes were substantial at 34.82 % and 48.07 %, 
respectively, the effect of these moderators, and number of sessions, was 
not statistically significant. Because the number of studies included in 
each analysis was small, the lack of effect here does not necessarily mean 
that rtfMRI-NF is not impacted by these factors, but that we may have 
been underpowered to detect such an effect. Nonetheless, these findings 
intimate study characteristics that may be important. For example, more 
sessions and more training time may not be helpful; sufficient learning 
may occur early, and additional sessions may instead contribute to 
mental fatigue (Sulzer et al., 2013), which would dampen the transfer 
effect. In line with this idea, several prior studies have found that 
rtfMRI-NF can be effective after only one or a few sessions (Canterberry 
et al., 2013; Nicholson et al., 2018; Orlov et al., 2018; Stoeckel et al., 
2014). That said, there is at least one study to suggest that while neural 
effects due to rtfMRI may be observable early, clinical change may 
require additional rtfMRI sessions (Canterberry et al., 2013). Given that 
rtfMRI-NF dose did not moderate any outcomes, these ideas are specu-
lative, but would be worth evaluating in future work. In particular, it 
would be useful to evaluate the effect of rtfMRI-NF on the brain and 
behavior at the end of each training run to better understand the arc of 
rtfMRI-NF-induced change. 

To summarize thus far, rtfMRI-NF has a moderate-sized impact on 
the targeted brain region(s) during training, which increases in magni-
tude when the neurofeedback signal is not provided. We believe this 
provides relatively strong evidence that volitional control over neural 
processes that are specifically targeted during training is possible, and 
that this volitional control generalizes to contexts in which no feedback 
is provided. Because the regions targeted for training from each study 
were selected based on prior research demonstrating their role in the 

underlying mechanisms of illness (e.g., Dunlop et al., 2017; Zahn et al., 
2019), these data suggest that psychopathology-related neural disrup-
tions may be remediable through self-regulation. 

For rtfMRI-NF to have clinical utility, it should not simply restore 
neural function, but confer demonstrable benefits to behavior. We 
addressed this issue by evaluating the effect of rtfMRI-NF on symptoms 
and cognition. Analyzing data from all 17 studies, we found that rtfMRI- 
NF showed a small effect on reducing symptoms, g = .37, 95 % CI [.16, 
.58]. That said, sensitivity analyses suggested the possibility of publi-
cation bias. Thus, the effect of rtfMRI-NF on symptom outcomes is likely 
smaller than the effect size observed here. The moderator analysis 
showed similar trends as above whereby the effect was higher for MDD 
versus ADHD, in single versus multiple session protocols, and with fewer 
training minutes, with difference for MDD versus ADHD being statisti-
cally significant, although accounting for a small amount of variance 
(pseudo R2 = 10.9 %). Also similar to the moderator effects on neural 
transfer outcomes, of all the moderators, training minutes accounted for 
the most variance (pseudo R2 = 29.9 %). We observed the effect of 
rtfMRI-NF on symptoms to be equivalent for sham versus no feedback 
controls, explicit versus implicit instructions, up- versus down- versus 
mixed-regulation, and the effect to be slightly greater for activation- 
versus connectivity-based neurofeedback. In contrast to the impact on 
symptoms, the effect of rtfMRI-NF training on cognition was small, g =
.23, 95 % CI [-.33, .78], and not statistically significant. Here, there were 
too few studies to perform a moderator analysis. 

Because the distinction between symptoms and cognition is not clear 
cut, and the fact that the behavioral outcomes could be meaningfully 
classified using other schemes, we evaluated behavioral outcomes as a 
function of RDoC construct. We found that rtfMRI-NF was most effective 
at producing changes within the negative valence—a small effect, g =
.41, 95 % CI [.15, .68]—and sensorimotor constructs—a medium effect, 
g = .64, 95 % CI [.39, .88]. We did not find moderator variables to have 
an impact on the negative valence effect size, and were unfortunately 
not able to perform a moderator analysis on the sensorimotor effect size 
due to our small sample size. Similar to our cognition results, we found 
that there was not a significant impact of training on the cognitive 
systems RDoC construct, and no impact of rtfMRI-NF on the other RDoC 
constructs. 

Fig. 5. Forest plot depicting Hedges’ g effect sizes with 95 % confidence intervals comparing post-training cognition between active and control groups. ADHD =
attention deficit hyperactivity disorder; MDD = major depressive disorder. 
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Regarding these behavioral outcomes, it is important to note that 
many of them lacked diagnostic specificity (e.g., Positive and Negative 
Affect Schedule; Linden et al., 2012) and were administered at different 
time points across studies. A growing literature has suggested that the 
time course of clinical change may differ from the course of learned 
self-regulation of neural activity (Rance et al., 2018; Sukhodolsky et al., 
2020) and it is possible that behavioral effects were obscured in part due 
to these factors. One recent study found that rather than plateauing or 
returning to baseline, clinical symptoms continued to improve even 
weeks after rtfMRI-NF in two separate samples of individuals with 
obsessive compulsive disorder and Tourette Syndrome (Rance et al., 
2018). Thus, it is possible that our behavioral analyses underestimate 
the clinical benefit of rtfMRI-NF due to these effects. It would be useful 
for future studies and quantitative reviews to further investigate the 
time course of neural and clinical change. For example, a recent sys-
tematic review and meta-analysis of EEG-NF investigated the long-term 
clinical sustainability of training for ADHD and found lasting behavioral 
improvements in follow-ups of at least six to twelve months (Van Doren 
et al., 2019). With the steadily growing number of studies investigating 
rtfMRI-NF across many psychiatric illnesses and increased interest in the 
time course of clinical change (Rance et al., 2018; Sukhodolsky et al., 
2020), we hope that this type of systematic review will soon be possible 
for fMRI neurofeedback as well. 

Our findings should be considered in the context of several important 
limitations. First, the effect sizes we analyzed were derived from rela-
tively small sample sizes. Second, we were unable to conduct moderator 
analyses for several outcomes, and those that we did conduct may have 
been underpowered. Third, though we limited our analysis to controlled 
studies evaluating brain outcomes in neurofeedback-targeted regions, 
given the wide range of rtfMRI-NF methods and applications, we 
analyzed a diversity of outcomes. That said, these diverse outcomes all 
address the broad questions we set out answer, which we believe will 
help identify areas for future research and assist in the planning of future 
studies. Fourth, given the lack of methods for addressing publication 
bias in multilevel and/or clustered data, we were limited in our ability to 
detect publication bias. Finally, though our analysis addresses, in part, 
whether rtfMRI-NF works for those with a psychiatric illness, how and 
specifically for whom it works remains unanswered. Addressing these 
issues may help to maximize the potential clinical benefits of rtfMRI-NF. 

In summary, here we provide the first quantitative analysis of brain 
and behavioral outcomes from rtfMRI-NF studies of those with psychi-
atric illness. We find a medium-to-large sized effect of rtfMRI-NF for 
brain outcomes, and small-to-medium sized effects for behavioral out-
comes. In addition to providing effect size estimates that may be used in 
power analyses towards conducting new rtfMRI-NF studies, our review 
highlights the need for more pre-registered, adequately powered, and 
high quality studies that follow many of the excellent guidelines sug-
gested in other reviews (deCharms, 2007; Fede et al., 2020; Heunis et al., 
2020; Paret et al., 2019; Ros et al., 2020; Sitaram et al., 2017; Stoeckel 
et al., 2014; Sulzer et al., 2013; Thibault et al., 2018; Tursic et al., 2020; 
Weiss et al., 2020). We also recommend that future studies systemati-
cally evaluate rtfMRI-NF parameters that the current analysis can only 
intimate as being important (e.g., training time), and address questions 
about the mechanism underlying rtfMRI-NF mediated change. This work 
will be instrumental in establishing the clinical utility of rtfMRI-NF. 
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