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Decoding individual identity from brain activity
elicited in imagining common experiences
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David Dodell-Feder 1,2,7 & Feng V. Lin1,2,3,8,9

Everyone experiences common events differently. This leads to personal memories that

presumably provide neural signatures of individual identity when events are reimagined. We

present initial evidence that these signatures can be read from brain activity. To do this, we

progress beyond previous work that has deployed generic group-level computational

semantic models to distinguish between neural representations of different events, but not

revealed interpersonal differences in event representations. We scanned 26 participants’

brain activity using functional Magnetic Resonance Imaging as they vividly imagined them-

selves personally experiencing 20 common scenarios (e.g., dancing, shopping, wedding).

Rather than adopting a one-size-fits-all approach to generically model scenarios, we con-

structed personal models from participants’ verbal descriptions and self-ratings of sensory/

motor/cognitive/spatiotemporal and emotional characteristics of the imagined experiences.

We demonstrate that participants’ neural representations are better predicted by their own

models than other peoples’. This showcases how neuroimaging and personalized models can

quantify individual-differences in imagined experiences.
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A lmost everyone can imagine themselves at a wedding,
however each person does so differently because they have
been to different weddings and hence draw upon mem-

ories that no one else has. Our personal history of episodic
memories contributes to defining us as individuals and in extreme
cases—where memories are of traumatic events—can profoundly
affect our psychological health and quality of life. A principal goal
of cognitive science is to understand how such memories are
represented and manipulated in the human brain. Memories of
past experiences can be activated and relived through recollection
and are thought to be pieced together to support the mental
simulation of hypothetical scenarios1–5. Functional brain imaging
now enables the systematic study of brain activation elicited
during recall and imagination. A long-term vision for the future
might therefore be to devise technology that provides a com-
prehensive neural readout of the information that one voluntarily
activates in mental imagery. More humble prerequisites for this
are to establish that neural activity elicited during imagery cap-
tures meaningful differences between different individuals’ men-
tal simulations of similar kinds of events, and to devise
quantitative methods that can predict the information repre-
sented in neural activation.

In previous work, functional Magnetic Resonance Imaging
(fMRI) studies of brain activity have identified a core distributed
network of neuroanatomical regions that are reliably activated
during the recollection and/or imagination of different experi-
ences and scenarios6–8. Regions that are activated in episodic
recollection and simulation strongly overlap, which suggests that
similar neural machinery is engaged in both cases1,3–5 (although
activation patterns elicited in remembering, and imaging possible
past and future events are still distinguishable5). This core epi-
sodic recollection and simulation network includes regions of
medial parietal cortex, inferior parietal cortex, medial prefrontal
cortex, and medial and lateral temporal lobe1–13. Researchers
seeking to decipher what information is represented in brain
activity within regions of this network have shown that different
types of event can be distinguished from multiple network
regions14–17, as well different components of individual
events18–24 (e.g., people, places, objects, space/time of occur-
rence). However, it has remained unclear whether differences in
activation patterns between individuals imagining similar types of
event represent anything more than functionally-irrelevant
between-subject noise.

Reason to hypothesize that neural correlates of person-specific
imagery may be readable from fMRI data comes in part from a
recent thrust of research that has exposed individual differences
in other cognitive domains25. Prominent examples include: using
resting-state fMRI data to predict individual differences in the
cortical distribution of activity elicited in multiple (gambling/
motor/language etc.) task-related studies26, matching repre-
sentational similarity of fMRI elicited viewing photos of personal
belongings to behavioral measures of object similarity27; and
using measures of brain activity scanned during a picture-based
mechanical engineering task to predict individuals’ physics/
engineering exam results28. Research has even begun to char-
acterize brain network activity in terms of the nature of individual
differences in ongoing thought, reflecting whether current
thoughts are detailed, correspond to the past or future, are verbal
or in images and so on29,30. However, whilst these studies do
demonstrate that individual differences can be discerned using
fMRI, it is unclear that the methods utilized to elicit individual-
differences (e.g., picture interpretation, resting) and detect them
(e.g., exam results, object similarity judgments, ratings on com-
ponents of thought) would generalize to the current case of
imagining oneself in multiple different scenarios when cued by
generic prompts such as “a wedding” or “a funeral”.

In addition, a number of studies have cataloged between-group
differences in autobiographical memory-related fMRI activation.
For instance, altered activation has been observed in Alzheimer’s
disease31,32, semantic dementia33, and epilepsy34. Relating more
to conceptual knowledge, machine learning methods have dis-
criminated between young suicidal ideators thinking about sui-
cide and emotion concepts and healthy controls35, and students
contemplating objects’ mechanical function at different phases of
education36. However, whilst all of the previous between-group
differences must be built on top of an accumulation of individual-
differences (neural features that appear in one group but not the
other), and whilst both group-average and trait-level individual
difference studies have revealed the engagement of similar brain
networks30,37,38, group-averages cannot explain detailed differ-
ences in event representations between pairs of individuals from
within the same group.

A question is then posed over how personal signatures of
imagined experiences can be identified in fMRI data, and how the
information content of brain activity can be interpreted. This
would appear to rely on having personalized models of mental
imagery that are sufficiently detailed to not only capture differ-
ences between events, but also between individuals’ idiosyncratic
experiences of similar events. Modeling advances39–45 have led to
the ability to predict/decode fMRI activity elicited as third-party
sentence-level descriptions of events are read/heard46–53. How-
ever, such neural decoding models have largely relied upon
internet-based approaches to model generic representations of
meaning by computationally harvesting semantic representations
from massive text repositories, or crowd-sourcing behavioral
ratings across large collectives of people. Consequently, the
resultant models are built at group-level, and whilst they have
high signal-to-noise-ratio when it comes to capturing broad
population-level commonalities, they have zero ability to discern
individual differences. It is unknown whether current modeling
approaches can be tailored to be practically effective at capturing
interpersonal differences in imagined experiences. It is also
unknown how accurately these current modeling approaches can
explain neural activity elicited as individuals vividly imagine
situations from their own perspective, as opposed to passively
reading third-party sentences49–53.

We here hypothesize that fMRI activity patterns elicited as
people imagine weddings, funerals and eighteen other common
scenarios reflect interpersonal differences in the information that
is brought to mind. We test this by devising personal models of
the imagined experiences to discern participant identity from
corresponding fMRI data. In so doing, we provide evidence that:
(1) Neuroimaging can quantitatively measure meaningful indi-
vidual differences in brain activity elicited as people imagine
complex events from their own perspective. (2) The information
content of brain activation can be predicted using personalized
models derived from verbal descriptions and behavioral ratings of
the imagined events. We discuss the potential implications this
has for both basic and applied science.

Results
We selected 20 common scenarios (e.g., reading, dancing, res-
taurant) that we asserted would be common experiences to our
study population, whilst also being of a sufficiently broad nature
that different people would have different experiences of each
(e.g., most people have experienced dancing, whether it was
actively or passively, in company or isolation, or enjoyable). We
next recruited 30 individuals who were healthy agers, although 26
completed the experiment (17F, 9M, mean ± SD age= 73 ±
7years). Healthy agers were chosen in particular to evaluate the
feasibility of the approach for future tests on clinical aging
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populations. In the Discussion we consider what similarities and
differences might arise from a comparative study on younger
adults, although this remains an open empirical question for the
time being.

Each participant attended a visit with an experimenter, who
read the different scenarios to the participant one by one (e.g., “A
dancing scenario”). On each reading the participant was
requested “to vividly imagine themselves in the scenario” placing
importance on their (imaginary) perception, action and feelings
(Fig. 1). Participants then provided a verbal sentence length
description of each imagined scenario. Examples illustrated in
Fig. 1 indicate that the descriptions supplied by different parti-
cipants for the same scenario were at least superficially different.
To estimate the extent to which participants could base imagi-
nation on real past experiences of the event in question (as
opposed to envisioning entirely new fictitious situations) we
asked participants to rate this, as well as how vividly they could
imagine each scenario. Participants tended to rate scenarios to
have happened and to have been vividly imagined (grand mean ±
SD ratings across both participants and scenarios were 5.5 ± 1.1,
and 5.2 ± 1.2, respectively, on a Likert scale of [0 6]). See Sup-
plementary Information for rating statistics for individual sce-
narios (Supplementary Fig. 1) and details of the ratings
procedure.

Overview of personalized models of imagined experiences.
To model the person-specific information content of each

participantʼs imagined scenarios, we employed a joint-modeling
approach that integrated semantic information that was estimated
from participants verbal descriptions of events with non-
linguistic sensory, motor, interoceptive, emotional, locational
and temporal information that could putatively contribute to
episodic recall and simulation (as there is evidence for at least in
conceptual representation53–56). The linguistic and non-linguistic
models were both founded on established approaches that have
been extensively used in modeling the semantic representation of
words and concepts since refs. 39–45. Different to previous work
that has constructed these models at group-level, we here newly
adapted the modeling approaches to capture person-specific
scenario representations and newly leveraged them to explain
(person-specific) neural activation elicited as participants actively
imagined themselves in common scenarios. See also ref. 57 for a
language modeling approach to representing individuals and
ref. 21 for a personal image-tagging approach to associating
autobiographical bodycam photographs with experience).

The linguistic modeling approach, henceforth referred to as the
“verbal model”, borrowed a popular method from computational
linguistics to transform participant’s verbal scenario descriptions
into quantitative representations reflecting the linguistic meaning
of each description. Specifically, we took a state-of-the-art
distributional semantic model (GloVe44) that approximates
words’ meaning in terms of the textual contexts that words
appear in as measured across a large text corpus. For instance,
pyramids and camels are related because they co-occur together

1. 26 participants vividly imagined and then verbally
described 20 common scenarios

4. Participants underwent fMRI as they reimagined
the scenarios when prompted by standardized cues

3. Verbal descriptions were mapped to a text-based
distributional semantic model of word meaning

2. Participants individually rated their imagined
scenarios on 20 experiential attributes

Participant 1 Participant 2

Participant 2

Participant 2
Computational model of
word meaning derived
from word co-occurrence
statistics (GloVe)
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20 attributes
summarized
by five icons
for illustrative
purposes

Dancing scenario Dancing scenario

Resting
scenario

Fig. 1 Data collection: experimental protocol and construction of personal models of the imagined scenarios. This diagram summarizes the entire data
collection procedure as 4 stages, ranging from the collection and processing of behavioral data to fMRI scanning. The chronological order of stages 1, 2, and
4 reflects the actual order of experimentation. Stage 3 is automated and could in practice take place at any time after stage 1.
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within sentences, and camels and donkeys are related because
they occur independently in “riding” sentences. Practically each
word is represented as 300-dimensional vector, derived by
factorizing a word co-occurrence matrix (vocabulary size is
2.2million words and co-occurrences were measured across 840
billion tokens from Common Crawl https://commoncrawl.org).
We cut out content words (words with intrinsic meaning as
opposed to a grammatical function) from participants’ verbal
descriptions, and mapped each content word to the correspond-
ing GloVe vector. We then combined word-vectors together to
model entire scenario descriptions through pointwise addition.
Although such additive composition is a naïve strategy that
discounts word order and syntax, it has proven practically
effective in both computational linguistics58,59 and in predicting
sentence-level brain activation49–53. This process yielded a
personalized distributional semantic model representation of
each participant’s verbal descriptions of each scenario for each
participant (even though word vectors were drawn from GloVe in
each case).

A limitation of verbal descriptions is that they may omit
information that is so salient in physical experience that it is
assumed to be too obvious to bother expressing. To cite a
common example, people seldom feel the need to communicate
the color of bananas60, or that they played tennis in daylight, or
watched a movie in the dark, because this is assumed to be
common knowledge. To counteract this limitation and potentially
build a more comprehensive model of episodic imagery, we
estimated the degree that different sensory/motor/cognitive/
emotional neural systems would have been engaged if the
participant had physically experienced the scenario, and hence
might have contributed information to memories and in turn
episodic simulation. To this end we constructed an experiential
attribute model45. Specifically, the attribute model was imple-
mented by having each participant rate each scenario on
20 sensory, motor, cognitive, spatiotemporal and emotional
experiential attributes (Likert scale 0–6, see Fig. 1, see “Methods”
section and Supplementary Information for specific details). For
instance, a regular dancer might be expected to imagine
themselves actively engaging at a dancing event, and hence rate
it strongly on motor engagement and positive affect. In contrast,
an ardent dance-avoider might imagine and rate the opposite.
The set of 20 attributes was an abridged selection of a wider set of
65 attributes identified by ref. 45 that when crowd-sourced at
group-level, had provided a basis for predicting brain activity
elicited as event-related sentences were read49,52,53. The 65
attributes were cut down to 20 before experimentation to meet
timing constraints (see “Methods” section for further details).
Importantly, the attribute model explicitly solicited for a
comprehensive rundown of experiential information that parti-
cipants might not have thought to provide in their verbal reports
if left to themselves (even if their reports were open ended in
length).

fMRI experiment overview. Participants’ brain activity was
scanned using fMRI as they vividly re-imagined the scenarios
(Fig. 1). During fMRI participants imagined their own scenario
when a standard written prompt (“A dancing scenario”) was
visible. To accommodate noisy fMRI measures, the set of 20 sce-
nario prompts were displayed 5 times over (in different random
orders), and participants reimagined the same scenarios each
time. fMRI data was preprocessed using standard techniques to
correct for slice timing and head motion and each participants’
fMRI data was spatially normalized to a common anatomical
template (MNI). Previous work14–24,49,52,53 led us to expect that
activation patterns within localized brain regions would

comprehensively represent multiple scenarios (in particular the
episodic recollection/simulation network6–8). Thus, we parcel-
lated fMRI activation the cortex into 90 neuroanatomical regions
of interest (ROIs) using Automated Anatomical Labeling61,62. We
analyzed all regions (rather than a predefined network) to avoid
the possibility of overlooking patterns of interest. We estimated
the top 100 most informative voxels per ROI using a frequently
used voxel stability criteria46 (see “Methods” section). Com-
parative results using 50 and 200 voxels yielded a similar pattern
of results, and are included in Supplementary Information. The 5
fMRI volumes per scenario were voxel-wise averaged together
and vectorized to provide a single 100dimensional vector per
scenario, per ROI, per participant.

fMRI activation patterns reflect interpersonal differences in
scenario representation. To test our overarching hypothesis that
fMRI activation patterns elicited in imagining the scenarios
reflected interpersonal differences, we applied Representational
Similarity Analysis (RSA)63 to compare model and fMRI data
(Fig. 2 and see “Methods” section). In the case at hand, RSA can
be conceptualized as a two-step process that begins by re-
representing each of the 20 scenarios as an individual point in a
geometric similarity space. This similarity space is common
across model and fMRI data to enable their comparison, but the
coordinates of the scenarios are defined separately for the model
and fMRI data. The second step tests whether the relative geo-
metric arrangement of the scenario coordinates is similar for the
model and fMRI data. For instance, if in fMRI similarity space it
turns out that the dancing scenario is close to party and wedding,
whilst reading is close to writing, and cooking is close to
housework, and this same relationship is also seen in model
similarity space, then there is evidence that this arrangement is
meaningful because the model predicts the representational
structure of the fMRI data. Practically, the transformation to
similarity space was implemented by computing Pearson inter-
scenario correlation matrices separately for model and fMRI data.
Model to fMRI similarity space comparisons were implemented
by computing Spearman correlation between vectors of values
that define the respective fMRI/model correlation matrices (high
correlation coefficients reflect a strong relationship, see “Meth-
ods” section for more details and a description of the statistical
significance testing procedure).

The main interest of the current analysis, was however on
detecting meaningful representational structure in fMRI data that
is peculiar to each individual, and not a feature of the general
population. For instance, if a participant (unusually) reported that
they imagined themselves dancing whilst doing their housework
then their corresponding model might predict an unusually high
similarity between fMRI representations of housework and
dancing. To this end, we computed group-average model
representations to estimate population-level commonalities in
scenario representational similarity structure, and used these as a
control in our forthcoming analyses that sought to identify
person-specific idiosyncrasies.

All of the primary analyses reported (Fig. 2) incorporated our
three personalized data types: (1) fMRI activation (illustrated in
gray with the brain icon). (2) The attribute model (illustrated in
orange with icons for attributes). (3) The verbal model (illustrated
in blue with a book icon). To create a single personal multimodal
model representation (illustrated in green with attributes and
book icons) we integrated information across the person-specific
verbal and attribute models by averaging representations in
similarity space (see Fig. 2 and “Methods” section for details, and
Supplementary Information for evidence that model integration
was beneficial). Group-average models were estimated to serve as
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controls in our analyses in a similar fashion by averaging person-
specific model representations in similarity space (see Fig. 2 and
see “Methods” section for details). Critically a different group-
average model was computed for each participant, that excluded
the respective participant’s model data. So, in a test of participant
1’s fMRI, a group-level model (G-1) was built by averaging model
similarities across participants 2 to 26 and so on. See “Methods”
section for further details. Note, that group-average representa-
tions could equally have been built by averaging individuals in
model feature space prior to computing similarity matrices, and
this approach yields similar results (Supplementary Information).

We first questioned whether fMRI activation patterns in brain
regions that reflect group-average model structure (i.e., what we
would expect to predict using traditional group-level modeling
approaches) also encode person-specific representations. To this
end, we initially identified a network of eight brain regions that
reflected group-average model structure (excluding the test
participant) as is described in detail in the “Methods” section.
A complete listing of RSA results for all ROIs is in Supplementary
Table 1. The eight ROIs spanned left/right medial parietal cortex,
left inferior parietal cortex, left lateral temporal cortex and left
mid frontal cortex (the anatomical locations of these ROIs are
illustrated in Fig. 3 left). We next tested whether participant-
specific models could predict fMRI representational similarities
(in the same participant’s brain) over and above the correspond-
ing group-average model for the eight ROIs. This was
implemented by computing the partial correlation (Spearman)
between person-specific model similarity vectors and fMRI
similarity vectors, whilst controlling for group-average model
similarity vectors. Partial correlation coefficients were r-to-z
transformed. Then, for each of the eight ROIs, the set of

coefficients corresponding to the 26 participants were compared
to zero using one sample t-tests (1-tailed, anticipating positive
correlation). The resultant vector of eight p-values were corrected
for multiple comparisons according to False Discovery Rate
(FDR)64. Critically, all eight ROIs yielded FDR corrected p-values
< 0.05. See Fig. 3 right for comprehensive test statistics and
Supplementary Table 2 for a complete listing of results on all
ROIs. These results provide evidence that person-specific
elements of scenario representation were encoded in left/right
medial parietal cortex, left inferior parietal cortex, left lateral
temporal cortex and left mid frontal cortex. These regions broadly
overlap with the core episodic recollection/simulation network, as
considered further in the Discussion.

RSA coefficients computed using the personal models in
isolation are illustrated in Fig. 4 left. Mean RSA coefficients for
the personal models were marginally greater than the group-
average models in 7/8 ROIs (Fig. 4, Supplementary Table 1) but
there were no statistically significant differences for individual
ROIs. The broad similarities in the magnitude of RSA coefficients
between the personal and group modeling approaches probably
reflect their complementary strengths. Specifically, whilst group
models cannot capture the person-specific idiosyncrasies docu-
mented above, they have higher signal-to-noise for estimating
population-level commonalities. We leave an explicit quantifica-
tion of the complementary contribution made by the group-
models over to future work because it is not the prime focus of
the current article.

Detailed neuroanatomical distribution of person-specific
representational structure. To follow up out previous ROI-based
analysis we performed a searchlight analysis65 to more precisely

1. Re-representation in a common similarity space

3. Hypothesis: fMRI representations are predicted
by personal models over and above group models

Hypotheses were tested on all permutations of participants
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Fig. 2 Representational similarity analysis protocol and hypothesis formalization. The diagram summarizes the computational approach taken in our
analyses and illustrates two formalizations of our primary hypothesis. Stage 1 was repeated for each participant. In the diagram fMRI data is represented as
a single correlation matrix to simplify visualization, however stages 1 to 4 were repeated on fMRI activation extracted from multiple regions of interest
(ROIs). Step 1 illustrates how the three personal scenario representations (fMRI and the verbal and attribute models were transformed into a common
space to enable their comparison (stages 3 and 4). Step 2 illustrates how group-average model representations were constructed whilst excluding test
participants (G-1). Stages 3 and 4 reflect different approaches to testing the same fundamental hypotheses that fMRI activation patterns reflect meaningful
person-specific information that is brought to mind when individuals imagine themselves in different scenarios.
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estimate the neuroanatomical layout of brain regions reflecting
person-specific and group-average model structure. To this end
we replicated the previous RSA and partial RSA within search-
light ROIs. Searchlight ROIs were cubes of radius 3 voxels (side 7)
that were iteratively centered on every location in the brain via
the implementation in ref. 66 (as is analogous to shining a
searchlight, see “Methods” section). This complemented the
previous anatomical ROI-based analysis which was well equipped
to detect the presence of person-specific information in fMRI data
(because informative voxels were selectively analyzed and weaker
assumptions were placed on the shape of patterns of interest,
beyond that they could fit into the relatively large anatomical
ROIs). However, the previous ROI analysis did not precisely
locate person-specific representations.

Results of the searchlight analyses are illustrated in Fig. 5, and
the neuroanatomical locations of significant clusters (p < .05
FDR64 corrected) are identified in Supplementary Tables 3–5.
Similar to the ROI-based analyses fMRI representations in medial
parietal cortex and inferior parietal cortex were identified by the
group-average models (Fig. 5 right) and were subsequently found
to reflect person-specific information structure in the partial RSA
analysis (Fig. 5 left). Different to the ROI-based analysis,
prefrontal regions were not detected and inferior parietal cortex
was less well represented, which may reflect a lower sensitivity of
the searchlight approach (which did not exclude non-informative
voxels, and may have been disadvantaged in capturing patterns
that did not adequately fit within the searchlight). The searchlight
RSA based on person-specific models alone (i.e., when the group-
average was not controlled for) revealed a widely distributed
network of brain regions that included clusters in dorsal and
ventral medial prefrontal cortex, dorsolateral frontal cortex and

anterior temporal cortex (Fig. 5 middle). Importantly, this more
neuroanatomically precise estimate of the distribution of regions
encoding scenario information echoes the configuration of the
core episodic simulation/recollection network6–8 more precisely
than the ROI-based analysis.

Individual identity can be decoded from brain activity elicited
imagining personal experiences. As a second formalization of
our key hypothesis, we explicitly tested how well individual
identity could be decoded by matching participants’ fMRI acti-
vation to their person-specific models. This analysis was repeated
on each of the eight anatomical ROIs that had been identified in
our earlier analyses. In advance, some degree of success in
interpersonal decoding is already entailed from the earlier partial
RSA analyses that revealed person-specific neural representations.
However, the current analysis is still required to estimate just how
accurately pairs of individuals can be distinguished, which would
be difficult to estimate otherwise.

The decoding procedure is detailed in “Methods” section. In
brief, pairs of test participants were drawn, and we computed
RSA between each participant’s person-specific model, and both
participants’ fMRI data (4 coefficients in total). We then tested
whether RSA coefficients between participant-specific models and
the corresponding fMRI data sets (P1-model vs. P1-fMRI+ P2-
model vs. P2-fMRI) were greater than the incongruent mismatch
(e.g., P1-model vs. P2-fMRI+ P2-model vs. P1-fMRI). A
decoding accuracy was estimated as the percentage of times that
congruent scores were greater than incongruent scores across all
325 participant pairs. If there were no participant-specific
relationship an accuracy of 50% was expected.

ROIs identified using RSA
with group models (G-1)
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Fig. 3 fMRI activation patterns elicited in imagining common scenarios reflect person-specific information. The plot shows how participant-specific
scenario models predict the representational similarities of corresponding fMRI data over and above group-average models (that excluded the respective
participant in each test). Black circles illustrate RSA coefficients for the 26 participants. Bar heights correspond to the mean across participants. Bar colors
correspond to the ROIs illustrated on the brain (left). One sample t-tests tested whether partial RSA coefficients were greater than zero (1-tailed). Cohen’s
d was computed by dividing the t-statistic by 261/2. Exact FDR64 corrected p-values in the same order as plotted above were: 0.0030, 0.0030 0.0034,
0.0034, 0.0034, 0.0077, 0.0030, 0.0400 (see also Supplementary Table 2). Permutation-based p-values derived from partial RSA tests performed at an
individual-level revealed significant outcomes (p < 0.05) in the following numbers of participants per ROI (in parentheses): L Precun (7), R Precun (9), L
Mid Temp (5), L Inf Pariet (4), L Post Cing (4), L Mid Occ (3), L Mid Front (6), L Angular (4). The cumulative binomial probability of achieving 4 or more
outcomes at p < 0.05 in an ROI is 0.04. The eight ROIs presented were selected using G-1 data (see “Methods” section, the following figure and
Supplementary Table 1 for results using the personal and group-average models separately). Brain illustrations were made using ref. 103. Source data are
provided as a Source Data file.
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Fig. 4 RSA coefficients for personal models (capturing idiosyncratic features) and group-average models (high signal-to-noise for group-
commonalities) were of broadly similar magnitudes. Black circles illustrate RSA coefficients for the 26 participants. Bar heights correspond to mean
values across participants. t-tests tested whether RSA coefficients were greater than zero. Cohen’s d was computed by dividing the t-statistic by 261/2. P-
values illustrated were FDR-corrected64 across 90 ROIs. Exact FDR corrected p-values in the same order as plotted above for the personal models were:
0.0024, 0.0047, 0.0047, 0.0116, 0.0024, 0.0124, 0.0138, 0.0327. Exact FDR corrected p-values in the same order as plotted above for the group-average
models were: 0.0070, 0.0070, 0.0111, 0.0140, 0.0070, 0.0150, 0.0393, 0.0150. The eight ROIs plotted correspond to regions for which FDR corrected p-
values derived using the group-average (G-1) models were less than 0.05 (see also “Methods” section). A detailed listing of results for all ROIs is provided
in Supplementary Table 1. Permutation-based p-values derived from performing RSA at an individual-level revealed significant outcomes (p < 0.05) in the
following numbers of participants per ROI (indicated in parentheses for personal and group-average models, respectively): L Precun (13,14), R Precun
(12,8), L Mid Temp (10,11), L Inf Pariet (7,8), L Post Cing (10,9), L Mid Occ (9,8), L Mid Front (8,5), L Angular (8,7). The cumulative binomial probability of
achieving 4 or more outcomes at p < 0.05 in an ROI is 0.04. Source data are provided as a Source Data file.

Partial RSA: fMRI vs personal models,
controlling for group models (G-1)
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Fig. 5 Neuroanatomical distribution of person-specific representational structure (RSA-Searchlight). Computation of the three RSAs illustrated here, as
well as hypothesis testing and FDR correction mirrored the protocol of the above ROI-based analyses translated into a searchlight framework. Differently
ROI selection was by passing a 3-voxel radius cube throughout the brain (rather than segmenting anatomical atlas regions). The heat maps illustrate t-
statistics corresponding to one sample t-tests of the corresponding RSA coefficients against zero. The t-statistics illustrated correspond to p-values that
survived an FDR64 threshold placed at q= 0.1 (q= 0.1 was used rather than q= 0.05 to enhance the visibility of clusters for display purposes). The
anatomical makeup of clusters arising from an FDR threshold of q= 0.05 are listed in detail in Supplementary Tables 3–5. Brain illustrations were made
using ref. 103.
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We detected decoding accuracies of around 75% across all
eight ROIs (all p < 0.05, see Fig. 6 for precise percentages and
permutation test-based p-values, and Supplementary Table 2 for a
complete listing of results for all ROIs). Critically, these results
provide evidence that individual identity can be decoded from
fMRI activity elicited during the imagination of common
scenarios. They also provide an initial estimate of how accurately
pairs of individuals can be distinguished based on fMRI data.

Supplementary analysis overview: results are robust to per-
turbation of parameters. In light of the variability in hypothesis
testing outcomes that have been observed to arise out of differ-
ences in choices of analytic procedure67, we conducted a battery
of analyses to probe the robustness of the current results to
changes in parameterization.

As concerns the anatomical ROI-based RSA we present
evidence in Supplementary Fig. 2 that both the verbal and
attribute models helped contribute to explaining person-specific
fMRI representations (and therefore that multimodal model
integration was warranted). In Supplementary Figs. 3 and 4 we
demonstrate that the verbal and attribute models both predicted
person-specific fMRI representational structure when applied in
isolation, and therefore that even though multimodal model
combination proved to be beneficial, it was not essential to detect
interpersonal differences. In Supplementary Fig. 5 we replicate
our main findings when group-average models were differently
built by averaging individuals’ model representations in model
feature space as opposed to similarity space (thus the averaging
method was not critical). To demonstrate that results were not
tied to the precise number of voxels used in analysis, we
replicated similar outcomes when analyzing 50 or 200 informa-
tive voxels per ROI (Supplementary Figs. 6 and 7). For
completeness, we also include results derived using RSA on
generic GloVe representations of the stimulus prompts (GloVe
vectors did correlate with the eight ROIs, but cannot account for
interpersonal differences, see Supplementary Fig. 8). Lastly, we
repeated the RSA when left handers’ brain hemispheres were
flipped to counteract putative left lateralized language effects,
which made little difference (Supplementary Fig. 9).

For the identity decoding analysis (Fig. 6) we generated broadly
similar conclusions when analyses were repeated using the verbal
and attribute models in isolation (Supplementary Fig. 10) on
either 50 or 200 informative voxels per ROI (Supplementary
Figs. 11 and 12), and when analyses excluded participants with
weak model-to-brain correlations (Supplementary Fig. 13), and
when analyses were performed within female/male participant
subgroups (Supplementary Figs. 14 and 15).

Discussion
This study has decoded individual identity from brain activity
elicited during the imagination of a set of common situations.
Importantly, this has provided evidence that fMRI can measure
brain activity with sufficient signal to quantify meaningful
interpersonal differences in the neural representation of complex
imagined events. In parallel, we have shown that the repre-
sentational structure of person-specific fMRI signal can be pre-
dicted using the current personalized verbal and attribute models.
This constitutes a critical advance beyond the one-size-fits-all
approach that has typically been applied to predict fMRI data
based on group-level models derived from internet data46–53.
Whilst such group-level models have high signal-to-noise-ratio
for capturing population-level commonalities, they cannot dis-
tinguish individuals, and they cannot predict person-specific
variance across fMRI representations of multiple stimuli as we
have done here.

This study revealed that fMRI activation patterns in left/right
medial parietal cortex, left temporoparietal junction, left dorso-
lateral prefrontal cortex, ventral and medial prefrontal cortex, and
anterior temporal lobe reflected the representational structure of
individual participants’ personal descriptions/ratings of their
imagined scenarios. This distribution of regions closely resembles
the layout of the established core episodic recollection and
simulation network6–8. Our results are probably best considered
to reflect a mixture of recollection and simulation. However, the
two are practically difficult to disambiguate here and even some
of the scenarios that participants reported as being recollections
of real events may have reflected a conflation of information
across multiple related episodes68 (as might be particularly pre-
valent in our more routine experimental scenarios, such as
driving, housework and cooking).

In particular, we found that medial parietal cortex (MPC: pre-
cuneus and posterior cingulate) encoded person-specific repre-
sentations strongly. MPC is routinely activated in episodic
recollection/simulation and also in the perception of scenes and
space10–13,69. MPC is believed to play a role in segmenting events
from continuous experience and encoding abstract cross modal
event representations during recall16,17. Other recent work has
revealed that imagined places, contexts and people can all be dis-
criminated from fMRI activation within MPC19–23 and that MPC—
temporal lobe connectivity reflects the content of ongoing thought70

and memory recall22. Our study adds to this by revealing that MPC
representations of complex imagined events are person-specific and
can be predicted using the current verbal/attribute models.

The left temporoparietal junction (LTPJ: posterior mid tem-
poral cortex, inferior parietal cortex, angular gyrus and mid
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Fig. 6 Individual identity can be decoded from fMRI activity elicited during the imagination of common scenarios. Each bar illustrates the percentage of
times that participant-specific models better predicted the same participant’s fMRI representations than another participants’ fMRI data (see main text for
details). This test was repeated for each pairwise combination of the 26 participants. The eight ROIs illustrated were identified in our initial ROI-based
analysis. Complete results for all ROIs are in Supplementary Table 2. To provide context for the neural-decoding accuracy values, we ran a comparative
pairwise decoding analysis in absence of fMRI data based on the verbal and attribute models alone (e.g., P1-verbal vs. P1-attribute and so on). This yielded
an accuracy of 83% (p= 0.0001). Source data are provided as a Source Data file.
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occipital gyrus) also strongly encoded person-specific informa-
tion. Besides sharing a role in event segmentation and
simulation16,17, LTPJ has been linked to the so-called auton-
oetic71 conscious subjective experience associated with remem-
bering episodes from a first-person perspective13,72, as well as
bodily self-consciousness73. Indeed, a novelty of the current
approach was the initiative to model imagined scenarios from
participants’ first-person perspectives. However, whilst this
approach proved successful, future work will be necessary to
evaluate what role perspective played here. For instance, our
participants did not additionally describe/rate scenarios from a
third-person perspective, so we cannot be sure that such a model
would not have worked just as well. We hope to elaborate on this
in the future.

Left Dorsolateral prefrontal cortex (DLPFC: mid frontal) also
reflected individual differences. DLPFC is typically associated
with cognitive control processes that regulate thought and actions
according to task goals/personal interests38,74,75. Thus, DLPFC is
likely to have helped regulate the activation and suppression of
scenario memories on cue, possibly by deactivating memory
codes in the hippocampus76,77. It is interesting (though not
unexpected20) that DLPFC would encode detailed scenario
representations given its putative role in cognitive control. One
possibility is that these representations were read from other
brain regions to help inform task prioritization. Alternatively,
representations could be indirect, reflecting the differential
engagement of control processes invoked in the recall/simulation
of different modalities of information. Future work exploring the
dynamics of information flow between regions may help to
clarify this.

The hippocampus, which is a key hub of episodic memory13

and simulation2, was conspicuous by its absence from our results.
The hippocampus has been described in terms of providing a
spatial scaffolding for episodic memory that indexes the neo-
cortical components that code perceptual, emotional, and con-
ceptual content of experience and provide a sense of autonoetic
consciousness13. In light of this, it is reasonable to suppose that
the current attribute/verbal models may better predict the
reconstructed neocortical perceptual/emotional/conceptual con-
tent than the hippocampal scaffolding. This said, close inspection
of our results (Supplementary Tables 1 and 2) reveals that hip-
pocampal (and parahippocampal) ROIs did significantly reflect
personal scenario representations prior to correction for multiple
comparisons.

In addition, our searchlight analyses identified clusters in: (1)
Ventromedial prefrontal cortex, which has recently been found to
encode the identity of known people, places and whether they
were liked when fictitious meetings are imagined7, and more
generally is thought to play a role in encoding self-reference78,
emotional information79, and remote (years-old) episodic
memories13,15. (2) Dorsomedial prefrontal cortex, which has been
associated with inferring traits of other people78, and has recently
been shown to encode collective memories reflecting sociocultural
group membership24. (3) The anterior temporal lobe, which is
thought to be a key semantic memory hub80.

It is noteworthy that beyond the anterior temporal lobe, most,
if not all of the regions uncovered in our analysis, and more
generally most of the core episodic recollection/simulation net-
work6–8 overlaps with the brain’s semantic system79. Whilst it has
always been acknowledged that episodic and semantic memory
share a close relationship, they have classically been distinguished
on phenomenological grounds70,81,82: Episodic memories are
characterized by an awareness of the self, situated somewhere at a
unique time and place, whereas semantic memories reflect the
sort of general knowledge found in an encyclopedia that lacks a
personal space-time context. Since their initial distinction70, the

boundaries between the two have become increasingly fuzzy both
in terms of theory and also their neural correlates83,84. One
proposal is that this is because episodic memories bind together
familiar semantic concepts (e.g., people, items, places) within an
episode-specific sensory and spatiotemporal context83. Indeed,
this is roughly what our modeling approach has recreated in
integrating generic word-level semantic vector representations
with scenario-level experiential attributes.

The broader relevance of the success of the current approach is
to ground the proposal that it is now practical to study the neural
correlates of both episodic and semantic memories within the
same unified predictive modeling framework. The verbal and
attribute models deployed here were constructed from much the
same parts that we49,52,53 (and others46–48,50,51) have used to
predict semantic brain activity elicited in language comprehen-
sion. In particular, in a separate study, performed on different
participants, we have shown how word-level attribute vectors can
be integrated with GloVe vectors (both group-level) to predict
fMRI activity elicited in (third-party) sentence comprehension.
This revealed a “semantic network” of regions that is broadly
similar to the episodic simulation network of this study. A dif-
ference was that semantic predictions were relatively more
accurate in temporal and inferior frontal regions49,52,53 than in
medial parietal cortex (contrary to the case here). However, the
key point is that the same modeling basis can be adapted to
predict brain activity in the phenomenologically different settings
of episodic simulation and language comprehension. A potential
advantage of such a unified approach would be to enable features
that are believed to differentiate episodic/semantic memory
(time/place/autonetic awareness) to be explicitly encoded in a
predictive model and evaluated on their ability to predict brain
activity elicited in episodic/semantically oriented task contexts.

Indeed, the notion of deploying unified episodic/semantic
models could be relevant to other cognitive domains. It has been
suggested84 that episodic and semantic memory systems are
anchored on the default network85. The default network
encompasses multiple interwoven systems86 that are active in
ongoing thoughts29 such as remembering, envisioning the future
and making social inferences. Studies attempting to characterize
ongoing thought have typically applied “multidimensional
experience sampling”, where participants repeatedly rate the
nature of their current thoughts on multiple dimensions29 (e.g.,
whether thought is detailed, in images or verbal, related to the
past or future…). Not only do within-participant thought samples
covary with concurrent default network activity30,38, but indivi-
dual differences in resting-state network activity profiles predict
trait-level individual differences in thought profiles sampled
outside the scanner at a later occasion70, as well as other psy-
chometric traits37. Thus, accepting that ongoing thought includes
episodic recollection/simulation, we hypothesize that individual
differences in the current fMRI measures/models will to an extent
reflect individual differences in thought profiles sampled in the
wild, and that both measures will combine to predict individual
differences in personality and other stable psychometric traits.
We also hypothesize that the current neural measures and verbal/
attribute models could provide new ways to predict individual-
differences in ongoing thought at a state-level, tracking how the
“meaning” of internal monologues86,87 and/or the “experience” of
daydreaming unfolds over time, and possibly even may forecast
how novel future events will be experienced (see also refs. 56,88,89

for image-based computational models of visual imagery).
Beyond basic science, we contend that the current methods

could contribute to clinical studies where the ability to detect
individual differences is essential at various levels. This could be
in helping to characterize and diagnose disorders associated with
episodic memory and imagery deficits e.g., Alzheimer’s
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disease90,91, schizophrenia92, and depression93, and perhaps even
personalizing treatments and predicting outcomes (e.g.,
refs. 94,95). This study would suggest the current approach is
feasible for use in healthy agers at least. How the current results
extend to younger adults remains untested. We naturally expect
interpersonal differences to also be discernable in younger adults’
fMRI data (who are less prone to neural atrophy96,97). However,
we also anticipate there will be systematic differences associated
with socioecological factors, life experience, and neurophysiol-
ogy97. In particular we hypothesize that younger adults’ fMRI
data will be characterized by the presence of relatively more
episodic features, based on behavioral studies showing that older
adults’ verbal descriptions of past98 and future-hypothetical99

scenarios contain more semantic details (not specific in time and
place), and fewer episodic details (specific in time and place).

In conclusion, this study has both revealed and predicted
meaningful interpersonal differences in fMRI activity elicited as
personal experiences were imagined. Firstly, we hope that our
approach will help provide a unified modeling foundation for
future studies seeking to predict interpersonal differences in the
neural correlates of episodic and semantic memory as well as
other related cognitive domains. Secondly, we hope that our
approach will improve the predictive power of future fMRI stu-
dies by demonstrating how person-specific between-stimulus
variation can be modeled and explained in terms of model fea-
tures/scenarios. Finally, we hope that that this work presents a
step towards future methods that enable detailed information
elicited in mental imagery to be read directly from the brain.

Methods
The study was approved by the University of Rochester research subject review
board (RSRB00067540). All participants were required to understand the experi-
mental procedure and give their consent by signing an informed consent form.

Participants. Thirty healthy older adults with normal cognition, indexed by Tel-
ephone Interview for Cognitive Status (TICSTM) ≥ 31, were recruited for the study.
Participants had adequate visual (normal or corrected to normal vision) and
auditory acuity for testing, were English-speaking, and community dwelling. Of the
30 participants, 26 yielded viable fMRI data: 2 participants failed to attend fMRI
and 2 attended but failed to complete the experiment. Of the 26 participants
included in analysis, 5 were left handed and 17 were female. Mean ± SD age was 73
± 7 years old.

Scenario stimuli. We identified 20 common scenarios that we anticipated: (1)
would have diverse experiential characteristics e.g., whether they are actively or
passively experienced, social or asocial, indoors or outdoors etc; and (2) that dif-
ferent participants would have different experiences of e.g., in their degree of
activity and social engagement, in venue and so on. This was with the goal of
generating sufficient statistical structure in both model and neural data, such that
both scenarios and participants would be distinguishable. The number of scenarios
was restricted to 20 to meet experimental and scanning time constraints (see also
the Experiential attribute model section below). Participants were asked to “vividly
imagine themselves in each scenario” prior to providing a brief “sentence-length”
description of that scenario. They were later requested to re-imagine the same
scenario whilst undergoing fMRI. Scenarios were first read to participants, and later
displayed during fMRI in the following form: “A X Scenario”, or “An X Scenario”
where X is a placeholder for: resting, reading, writing, bathing, cooking, housework,
exercising, internet, telephoning, driving, shopping, movie, museum, restaurant,
barbecue, party, dancing, wedding, funeral, festival.

Experiential attribute model. To characterize participants’ imagined experience of
the different scenarios we identified 20 experiential attributes. These were selected
from a broader set of 65 attributes, which had recently been introduced to model
semantic representation using peoples’ ratings of their sensory/motor/affective/
cognitive experiences with words and their referents45. e.g., “Please rate the degree
to which your restaurant scenario involves human speech sounds”. The 65 attri-
butes were cut down to 20 to meet experimental constraints such that participants
could read, imagine, describe and rate the 20 scenarios comfortably within a 2-h
time frame. The 20 attributes were selected to broadly span the different domains
of experience that were originally identified by Ref. 45. However, the final choice
was ultimately based on the current authors’ intuitions of which attributes were
most relevant for the current scenarios, as guided by prior experience using the 65

attributes to model fMRI data49,51,52. The attributes are listed as follows: bright,
color, motion, touch, audition, music, speech, taste, head, upperlimb, lowerlimb,
body, path, landmark, time, social, communication, cognition, pleasant, unplea-
sant. On rating each scenario, the participant was reminded of their personal verbal
description of the scenario. A standard description of each attribute was provided
to guide ratings, along with examples of words that would receive high and low
scores (selected from the original templates introduced by ref. 45, and listed in
detail in Supplementary Table 6). Each attribute rating was normalized within each
participant, by subtracting the mean rating for the attribute (across 20 scenarios),
and dividing by the standard deviation.

Verbal model. To quantitatively model participants’ verbal descriptions of their
imagined scenarios, we applied a state-of-the-art and freely downloadable dis-
tributional semantic model of word-level meaning (GloVe44). GloVe represents
words as 300 dimensional vectors (see main text in “Results” section for more
details). We cut out content words from participants’ verbal descriptions of sce-
narios, and mapped each content word to the corresponding GloVe vector. We
then combined word-vectors together to model entire scenario descriptions
through pointwise addition.

fMRI stimulus presentation. Stimuli were presented on a screen in black Arial
font (size 50) on a gray background that participants viewed while in the scanner.
fMRI was scanned during a single uninterrupted session in which the 20 scenario
stimuli were presented five times over (five runs). Scenario order was randomized
within each run. Scenario stimulus prompts (e.g., “A dancing scenario”) remained
on screen for 7.5 s (3 TRs). The participants had been instructed to re-imagine
themselves in the given scenario only when the stimulus prompt was on screen and
clear their mind after it disappeared. There was a 7.5 s (3 TR) delay prior to the
next scenario presentation, during which time a fixation cross was displayed. Runs
were separated by a 15 s interval, in which a second by second countdown was
displayed (e.g., “Starting run 2 in 13 s”), which was followed by 7.5 s of fixation
cross preceding the first stimulus of the run. The 26 participants who successfully
completed scanning all reported that they had been able to imagine the scenarios
on prompt.

MRI data collection parameters. Imaging data were collected at the Rochester
Center for Brain Imaging using a 3 T Siemens Prisma scanner (Erlangen, Ger-
many) equipped with a 32-channel receive-only head coil. The fMRI scan began
with a MPRAGE scan (TR/TE= 1400/2344 ms, TI= 702 ms, Flip Angle= 8°,
FOV= 256 mm, matrix= 256 × 256 mm, 192 sagittal slices, slice thickness =1 mm,
voxel size 1 × 1 × 1mm3). fMRI data were collected using a gradient echo-planar
imaging (EPI) sequence (TR/TE= 2500 ms/30 ms, Flip Angle= 85°, FOV= 256
mm, 90 axial slices, slice thickness= 2 mm, voxel size 2 × 2 × 2 mm3, number of
volumes= 639).

MRI preprocessing. SPM 12 was used to preprocess participants’ structural and
functional MRI data. Structural scans were co-registered and warped to a common
anatomical template in MNI space. The first 10 functional scans during which time
steady-state equilibrium was achieved were discarded from the fMRI data. This
resulted in the deletion of fMRI volumes associated with the very first (randomly
selected) scenario prompt. Thus, a single scenario per participant was represented
by 4 rather than 5 fMRI replicates, but otherwise the scenario was treated the same
in analyses. The remaining scans were slice-time corrected, motion-corrected, co-
registered to their normalized structural images, and then warped to MNI space by
applying the same transformation which normalized their structural image. fMRI
data was resampled at 3 × 3 × 3 mm3.

Six head motion parameters (translation on x, y, z axes, and yaw, pitch and roll,
see Supplementary Fig. 18) and linear trend were voxel-wise regressed out from the
fMRI data within each of the 5 runs. Specifically, prior to regression, each vector of
voxel activation, and each vector of the nuisance parameters (motion/trend) was z-
scored within each run by subtracting the vector-wise mean and dividing by the
vector-wise standard deviation. A separate multiple regression was computed to
predict voxel activation from the nuisance parameters. Finally, the residuals arising
from the regression for each voxel were taken forward to use in computing the
scenario representations that would form the basis of our subsequent analyses.
Individual scenarios were represented by voxel-wise averaging across the four fMRI
volumes (of residuals) spanning the period 5 to 15 s after stimulus onset (at 15 s the
next stimulus prompt was displayed). The point of onset at 5 s was selected because
the hemodynamic response associated with imagination was likely to peak at the
very earliest at 5 s post stimulus presentation (the visual response to the written
stimulus would be expected to peak at around 5 s, with recall/imagination following
later). The interval of 4 volumes were measured to allow for between-participant
and between-scenario differences in hemodynamic response profiles. Such
hemodynamic differences could arise from a mixture of differences in neural
response latencies associated with consciously retrieving scenarios from memory
and bringing them to mind, reliving the multisensory experience of the simulated
scenario (which could play out for different durations for different scenarios/
people), and subsequently suppressing the imagined scenario.
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Besides having observed averaging activation to be an effective strategy in other
researchers’ studies of active thought35,46 and in our own work on mental
simulation/active thought56,88,100, we chose the averaging approach in favor of a
canonical HRF-based approach because we were not confident that some of the
assumptions made by the canonical approach would hold for the current task
(which relies on participants to consciously coordinate their recall/imagination, as
opposed to say testing for automatic perceptual responses). In particular, the
canonical HRF approach would both assume and predict precisely the same neural
response profile (including peak response latency and response duration) for each
participant and each scenario. This would be modeled by convolving a time series
marking the stimulus display periods with a fixed canonical hemodynamic
response function. We were initially cautious about this assumption based on our
own experience as dedicated participants undertaking different mental simulation
studies of a similar ilk, where we have found it difficult to rigorously synchronize
our conscious imagination to stimulus onsets and disappearances. To follow up
these hunches we performed a preliminary investigation into the degree of
interpersonal variation in hemodynamic responses for the current data.

Results of this investigation are included in Supplementary Figs. 19–21.
Qualitative inspection suggests that there was indeed substantial interpersonal
variability in both the latency and duration of participants’ hemodynamic response
profiles. For example, some participants appear to have responded rapidly in
imagining scenarios and also appear to have cleared their minds relatively sharply.
Other participants appear to have responded more slowly and to have kept mental
simulations going on for longer. Thus, modeling each participants’ activation using
the same HRF would have captured some participants’ neural response profiles well
and others poorly. As the goal of this study was to capture interpersonal variation,
we opted for the averaging approach in attempt to avoid biasing our results to
reflect only the subset of participants who exhibit canonical responses. We do plan
to pursue the nature of these interpersonal (and potentially inter-scenario)
differences in neural response dynamics in future work. However, for the time
being the current averaging approach provides a practically effective solution to the
current problem that lacks the assumption of common peak response latencies and
durations across participants. For the future, we note that there may be benefits to
including the temporal derivative of the HRF in computation, as was suggested by a
reviewer.

fMRI Voxel selection (within regions of interest). Because not all fMRI voxels
contain informative signal, we estimated which ones were likely to be informative
using a commonly used strategy introduced by ref. 46. This identifies stable voxels
that had a similar response pattern across each run of 20 scenarios. For each
participant, and separately for each voxel, we took each pair of runs, and computed
the inter-run Pearson correlation in activation across the 20 scenarios. This
resulted in 10 correlation coefficients per voxel (derived through intercorrelating
the five runs) that were r-to-z transformed. A single stability metric for each voxel
was derived by taking the mean of the 10 coefficients.

We then parcellated fMRI data into 90 neuroanatomical ROIs using Automated
Anatomical Labeling61,62. We repeated all of our main analyses on the 100 most
stable voxels (marked by high positive coefficients) within each ROI, or all voxels in
the ROI if there were fewer than the desired number. Stable voxels were extracted
from each ROI, and vectorized. A single representation of each scenario was
computed by voxel-wise averaging activation across the 5 scenario replicates.
Activation in each voxel was then normalized by subtracting the mean and dividing
by the standard deviation of that voxel’s activation. To test the robustness of our
results to this particular parameterization, we repeated analyses on the 50 and 200
most stable voxels per ROI and obtained similar results, which are reported in
Supplementary Information.

Transformation of personal models and fMRI data to representational simi-
larity space. To test for a relationship between model and fMRI scenario repre-
sentations we applied Representational Similarity Analysis (RSA63). To set this up,
fMRI data and models were re-represented in similarity space. For each of the 26
participants, inter-scenario Pearson correlation matrices were computed separately
for the verbal and attribute models (yielding two 20*20 matrices). All correlation
coefficients were r-to-z transformed (arctanh). The procedure was repeated on each
participants’ fMRI data, and performed separately on each ROI to generate a total
of 90 correlation matrices per participant. The below diagonal matrix triangle
(similarity triangle) was segmented from all (model and fMRI) correlation matrices
(which are symmetric on the diagonal). Each similarity triangle was then vectorized
to form a similarity vector with 190 entries.

Multimodal similarity model construction. To construct a multimodal model
representation for each participant, their (personal) verbal and attribute similarity
vectors were normalized by z-scoring, i.e., subtracting the mean value (of the 190
entries) from each entry and dividing each entry by the standard deviation (across
the 190 entries). A multimodal representation was computed for each participant
by pointwise summation of the verbal and attribute similarity vectors.

Group-average (G-1) similarity model construction. To construct group-average
model representations that estimate population-level commonalities in scenario

representation, we pointwise averaged model similarity triangles corresponding to
the group members. Critically a different group-average model was built for each
test participant which excluded that test participant’s data. So, in a test of parti-
cipant 1’s fMRI, a group-level model (G-1) was built by averaging model similarity
triangles for participants 2 to 26 and so on. Note that group-level representations
could equally have been built by averaging individuals in model feature space prior
to computing similarity matrices, and this approach yields a similar outcome
(Supplementary Fig. 3).

Representational similarity analyses correlating fMRI data against model
data. To test for a relationship between model and brain data, Spearman’s cor-
relation was computed between model and brain similarity vectors. The arising
correlation coefficients provided a quantitative measure of the strength of match
between fMRI and model representations. The statistical significance of RSA cor-
relations was computed at an individual-level using a standard permutation testing
procedure63. Scenario order was randomly shuffled, rows and columns of the fMRI
correlation matrix (but not model matrix) were rearranged following the shuffled
order, the lower matrix triangles of both fMRI and model matrices were extracted,
vectorized and then compared to each other using Spearman correlation. This was
repeated 1000 times with different shuffles, and the 1000 resulting coefficients were
used to build a NULL distribution. Statistical significance was estimated as the
fraction of randomly shuffled correlation coefficients that were greater than or
equal to the unshuffled correlation coefficient. This produced a p-value for each
individual participant. For instance, the number of participants with permutation
p-values < 0.05 is listed in relevant figure captions and indicated by i* in Sup-
plementary Information plots.

ROI selection based on other participants’ data. Because many ROIs were
unlikely to represent information associated with the imagined scenarios (i.e., ROIs
that are outside the recollection/simulation network), we identified a subset of
regions on which to focus our primary individual differences analysis. Our initial
interest here was in establishing whether ROIs that represent common group-
average scenario structure are further characterized by person-specific idiosyn-
crasies. This was based on the natural assertion that despite person-specific idio-
syncrasies, different people would imagine different scenarios in a broadly similar
way (see also ref. 16). We first tested this assertion of cross-participant common-
ality by performing RSA to compare person-specific multimodal models between
each pair of participants. In total this test was performed on 325 pairwise com-
binations of the 26 individuals. This yielded a mean ± SD Spearman’s correlation
coefficient of 0.33 ± 0.11, which when r-to-z-transformed was significantly greater
than zero (t= 52.8, p < 1e−128). This supported our assertion that there were
indeed strong commonalities in scenario representation between individuals.

Then, we isolated ROIs that reflected group-average representations across
participants to later test for person-specific information. We ran RSA between each
ROI and group-average models (that excluded the test participant) for each test
participant. This produced an RSA correlation coefficient for each ROI and each
participant. All correlation coefficients were r-to-z transformed. Then, for each
separate ROI, the set of coefficients corresponding to the 26 participants were
compared to zero using one sample t-tests (1-tailed, anticipating positive
correlation). This yielded a vector of 90 p-values. The 90 p-values were corrected
for multiple comparisons according to False Discovery Rate64 (FDR). FDR
corrected p-values corresponding to eight ROIs were under the conventional p=
0.05 threshold. These were: Precuneus_L, Precuneus_R, Cingulum_Post_L,
Occipital_Mid_L, Parietal_Inf_L, Temporal_Mid_L, Frontal_Mid_L, and
Angular_L. We considered these eight ROIs provisionally as candidates to take
forward to the next person-specific test.

However, before continuing forward, we tested whether this selection of ROIs
was reasonable from a different perspective. The above ROI selection approach
risks overlooking ROIs that might solely correlate with person-specific models (and
not the group-average models) and besides, also carries a risk of emphasizing
effects associated with the group-average models (if group-average models happen
to fit fMRI noise that is not subsequently captured by the personal models).
Therefore, we further tested ROI selection based on comparisons between other
participants’ fMRI data and their personal models. Specifically, to select ROIs for
an individual participant (e.g., P1), we computed RSA between every other
participant’s (e.g., P2 to P26) fMRI data and their corresponding personal models.
This was repeated for each ROI. RSA correlation coefficients were r to z
transformed. For each ROI, the set of 25 (n-1) coefficients were compared to zero
using one sample t-tests (one-tailed, anticipating positive correlation). This yielded
a vector of 90 p-values. The 90 p-values were FDR corrected and ROIs with
adjusted p-values < 0.05 were selected for that participant (e.g., P1). Repeating this
procedure across all participants resulted in 7/8 of the previously selected ROIs
being identified in every one of the 26 participants. The left-out ROI was
Angular_L which was selected in 20/26 participants. In addition,
Frontal_Med_Orb_L, Frontal_Sup_L were identified for every single participant,
alongside a mixture of other ROIs that differed between participants. To simplify
the interpretation and visualization of results we performed our forthcoming
analyses on the original fixed set of eight ROIs (rather than a different subset of
ROIs for each individual). A comprehensive listing of test statistics for all 90 ROIs
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is in Supplementary Table 1. Frontal_Med_Orb_L, Frontal_Sup_L are later
identified in our searchlight analysis.

Partial RSA between fMRI and personal models controlling for group-average
representations. To test for idiosyncratic person-specific correlations between
personal models and the corresponding participant’s fMRI data, we applied
Spearman partial correlation. Specifically, partial correlation was computed
between each participant’s fMRI similarity vector and their personal model simi-
larity vector whilst controlling for the corresponding group-average similarity
vector (where the group-average excluded the respective participant). To estimate
the statistical significance of partial RSA correlation coefficients at a single
individual-level we applied a permutation testing procedure101,102. The procedure
differs from case of the standard RSA correlation between fMRI and a single model,
where it is sufficient to shuffle the fMRI similarity vector as detailed in the previous
section. The difference arises because in the case of partial correlation (and mul-
tiple regression) shuffling the fMRI vector disrupts its relationship with both the
personal similarity vector and the control (group-average) similarity vector, rather
than just with the person-specific vector alone (which is desired). To this end, as
described in refs. 101,102 the relationship between the control vector and fMRI
vector can be regressed out from the fMRI vector to leave a vector of residuals. The
residuals can then be shuffled, and the control effect that was just previously
regressed out can then be added back onto the shuffled residual vector prior to
computing partial correlation.

In more detail, each permutation was evaluated as follows: (A) All values in
fMRI, personal and group-average similarity vectors were ranked (as is standard in
Spearman correlation). (B) The ranked fMRI similarity vector from A was
regressed on the ranked group-average similarity vector. (C) The residuals arising
from B were permuted. To accomplish this, the vector of residuals was entered back
into the appropriate (triangular) positions of a 20 by 20 (inter-scenario) matrix.
The rows and columns of the residual matrix were then shuffled according to a
random order (as in RSA). The below diagonal matrix triangle of shuffled residuals
was extracted from the matrix and vectorized. (D) The group-average similarity
vector was projected back into fMRI similarity space by multiplication with the
beta-weights arising from the regression in B. (E) The result from D was added on
to the shuffled residual vector from C. (F) The partial correlation was computed
between the result from E and the ranked personal model similarity vector,
controlling for the ranked group group-average similarity vector.

Steps A to F were repeated 1000 times with different shuffles (in C), and the
1000 resulting coefficients were used to build a NULL distribution. Statistical
significance was estimated as the fraction of randomly shuffled correlation
coefficients that were greater than or equal to the unshuffled correlation coefficient.
The number of participants with permutation p-values < 0.05 is listed in relevant
figure captions and indicated by i* in Supplementary Information plots.

Searchlight RSA/partial RSA analog of anatomical ROI-based analysis. To
build a more precise picture of the neuroanatomical distribution of scenario
representations, we replicated the previous ROI analysis under a searchlight fra-
mework65 by passing a cube of voxels (radius 3 voxels, side 7 voxels, mean ± SD
number of gray matter voxels per cube ≈257 ± 56) throughout the brain (using the
implementation presented in ref. 66). RSA was computed within each searchlight
ROI of each participant’s brain, using group-average models and person-specific
models. RSA coefficients were r to z transformed (arctanh), and assigned to the
center of the searchlight ROI. Voxels that were common to all participants were
segmented, and one sample t-tests were applied at each voxel location to test
whether RSA coefficients were significantly greater than zero. FDR64 correction
was applied to p-values corresponding to all voxels (separately for the person-
specific test and the group-average test). We then computed partial correlation-
based RSA to test fMRI representations against person-specific models whilst
controlling for the corresponding group-average models. Partial correlations were
computed on the subset of ROIs that were identified as significant (p < 0.05, post
FDR adjustment) in the previous group-average model test and the resulting p-
values were FDR corrected.

Decoding individual identity from fMRI data. To further test whether person-
specific models could be applied to decode participant identity by identifying the
corresponding participants’ fMRI data from other peoples’, we repurposed an
algorithm that was initially introduced to decode word meaning46. Two partici-
pants were selected at a time, and similarity vectors for the two respective personal
models were cross-correlated with fMRI similarity vectors for the two participants.
This left four correlation-coefficients associated with both congruent (P1 vs. P1, P2
vs. P2) and incongruent (P2 vs. P1, P1 vs. P2) model vs. fMRI pairings. If fMRI
representational structure characterizes individuals, a closer match between an
individual’s neural data and their own model is expected. To test this, the four
correlation coefficients were r-to-z transformed, then the two congruent model-to-
fMRI coefficients were summed and the two incongruent coefficients were sum-
med. If the congruent sum was greater than the incongruent sum, decoding was
scored as correct (1), otherwise it was scored as incorrect (0). This pairwise match
was repeated for every combination of participant pairs (325), and the overall
decoding accuracy was quantified as the mean of the 325 scores. Operating at

random, a 50% success rate would have been expected. The statistical significance
of decoding accuracies was estimated using permutation testing: similarity vectors
for fMRI data only were randomly shuffled (so that participants became linked to
other individual’s neural data), and the entire decoding analysis was repeated
across all 325 pairs. The random shuffling procedure was repeated 10,000 times to
generate a NULL distribution of decoding accuracies, and the statistical significance
was estimated as the fraction of shuffled accuracies greater than or equal to the
unshuffled accuracy.

Statistics and reproducibility. fMRI and behavioral data collection were under-
taken a single time. In Supplementary Information we demonstrate the robustness
of the current analytic approach to changes in parameterization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Both preprocessed fMRI and model data to
recreate all analyses presented are available at: https://osf.io/2e7f4. https://doi.org/
10.17605/OSF.IO/2E7F4. Please contact the authors for (large) raw fMRI datasets. Source
data are provided with this paper.

Code availability
Matlab v2020a code to recreate all analyses and plot main and supplementary figures is
available at: https://osf.io/2e7f4.
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