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Abstract 

Individuals with a schizophrenia-spectrum disorder (SSD) and those at familial high-risk (FHR) 

for SSDs experience social difficulties that are related to neural abnormalities in the network of 

brain regions recruited during theory of mind (ToM). Prior work with these groups has focused 

almost exclusively on characterizing involvement of these regions in ToM. Here, we examine 

the representational content of these regions using multivariate pattern analysis. We analyzed 

two previously collected datasets of SSD, FHR, and control participants who, while undergoing 

fMRI, completed the false-belief task in which they read stories describing beliefs or physical 

representations (e.g., photographs). Univariate and multivariate analyses were performed in 

regions-of-interest to evaluate group differences in task-based activation and representational 

content, respectively. Compared to non-SSD, SSD showed reduced decoding accuracy for the 

category of mental states in right temporo-parietal junction (RTPJ)—which was related to false-

belief accuracy—and dorsal medial prefrontal cortex (DMPFC), and reduced involvement of 

DMPFC for mental state understanding. FHR showed no differences in decoding accuracy or 

involvement compared to non-FHR. Given prior studies of disrupted neural involvement in FHR, 

and the lack of decoding differences observed here, the onset of illness may involve processes 

that corrupt how mental state information is represented.   
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Introduction 

Our ability to form meaningful social relationships, and stay socially connected to others 

carries profound consequences for our health and well-being (House et al., 1988; Holt-Lunstad 

et al., 2015; Yang et al., 2016; Holt-Lunstad et al., 2017; Snyder-Mackler et al., 2020). 

Successfully navigating the social world and forming such connections hinges upon our ability to 

attribute and reason about the mental states (i.e., beliefs, desires, intentions) of others—a 

process known as theory of mind (ToM). The importance of ToM is well illustrated in cases 

where ToM is impaired. One such case is schizophrenia spectrum disorders (SSD), which are 

associated with marked and persistent impairments on behavioral measures of ToM (Bora et al., 

2009; Ventura et al., 2015). In support of the notion that ToM facilitates successful social 

interaction, the extent of these behavioral impairments are cross-sectionally and longitudinally 

associated with the extent of social functioning impairments (Couture et al., 2006; Fett et al., 

2011; Schmidt et al., 2011; Horan et al., 2012), which too are marked and persistent for those 

with an SSD (Velthorst et al., 2017). Increasing research has demonstrated that ToM 

impairments are not merely the result of factors secondary to the illness (e.g., socioeconomic 

consequences, medication); individuals at familial high-risk for schizophrenia (FHR)—i.e., those 

with a first-degree relative with the illness—also demonstrate ToM impairments (Bora and 

Pantelis, 2013; Lavoie et al., 2013), as well as accompanying deficits in social functioning 

(Tarbox and Pogue-Geile, 2011). Given that FHR are far more likely to develop an SSD than 

non-FHR individuals (Gottesman, 1991; Rasic et al., 2014), these findings suggest that ToM 

impairments are present prior to illness onset, and may even contribute to illness onset (Tarbox 

and Pogue-Geile, 2008; Kim et al., 2011); a notion reflected in prominent etiological theories of 

SSD (van der Gaag, 2006; Hoffman, 2007; Selten et al., 2017). 

Towards better understanding the nature of ToM impairment in SSD and FHR, and 

identifying associated neurobiological markers of SSD-related risk and conversion, increasing 

work has evaluated the functional properties of the neural network subserving ToM in these 
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groups. This network—often called the “ToM network”—most commonly includes right and left 

temporo-parietal junction (RTPJ, LTPJ), right superior temporal sulcus (RSTS), medial 

prefrontal cortex (MPFC), and precuneus (PC) (Mar, 2011; Schurz et al., 2014; Molenberghs et 

al., 2016). Specifically, these brain regions show preferential activation for mental state versus 

non-mental state information across a variety of tasks (e.g., requiring explicit, conscious mental 

state reasoning, and implicit, spontaneous mental state attribution), presented through a variety 

of modalities (e.g., reading vignettes, watching videos). In SSD, these regions respond 

abnormally to mental state information (Kronbichler et al., 2017; Jáni and Kašpárek, 2018). Two 

recent meta-analyses found that compared to non-SSD, SSD showed reduced ToM-related 

neural activity in MPFC, PC, and aspects of temporal cortex, as well as increased ToM-related 

activity in TPJ (Kronbichler et al., 2017; Jáni and Kašpárek, 2018), although several studies 

have also found reduced TPJ activity (Walter et al., 2009; Lee et al., 2011; e.g., Das et al., 

2012; Dodell-Feder, Tully, et al., 2014; Lee et al., 2016). Increasing work has also shown ToM-

related neural abnormalities in FHR (Marjoram et al., 2006; de Achával et al., 2012; Dodell-

Feder, DeLisi, et al., 2014a; Villarreal et al., 2014; Mohnke et al., 2016; Herold et al., 2018). A 

recent qualitative review found altered ToM-related neural activity in FHR groups characterized 

by both hypo- and hyper-activation in these same regions of the ToM network (Kozhuharova et 

al., 2020).  

When taken together, these data provide strong support for the view that the ToM 

network is functionally altered in the schizophrenia spectrum from latent liability to manifest 

illness. However, mixed findings regarding the major locus (e.g., TPJ versus MPFC) and nature 

(e.g., hyper- versus hypo-activation) of the abnormality in both SSD and FHR make it difficult to 

draw strong conclusions regarding how the network changes from latent liability to manifest 

illness, and what becomes altered, in an information-processing sense, in the schizophrenia 

spectrum. Moreover, the existing literature largely addresses a single idea—namely, that 

regions of the ToM network show aberrant levels of involvement in mental state attribution; that 
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is, specific regions show more or less activation during ToM in SSD and FHR compared to 

healthy control participants. An alternative, uninvestigated possibility is that beyond aberrant 

levels of involvement, the representational content of these regions is disturbed; that is, the 

information about mental states contained or processed in these regions is somehow corrupted. 

And, further, that changes from latent liability to manifest illness may be best characterized by 

relative changes in activation and/or representational content.  

This distinction between involvement and information is one that has borne important 

insights into neural function in SSD (Yoon et al., 2008), other disorders characterized by social 

impairment, such as autism spectrum disorder (Gilbert et al., 2009; Coutanche et al., 2011; 

Koster-Hale et al., 2013; Richardson et al., 2020), and the ToM network more generally (Skerry 

and Saxe, 2015; Tamir et al., 2016; Koster-Hale et al., 2017). In line with providing 

complementary yet distinct information about neural function, a key distinction between studies 

of neural involvement and information are the statistical frameworks they are based on (Hebart 

and Baker, 2018). While activation-based studies of neural involvement typically rely on 

univariate analysis to test for differences between conditions in a single voxel or single region 

(in which activation magnitudes are averaged across voxels), studies of representational 

content are multivariate in nature, and evaluate the pattern of neural activity in response to 

different stimuli across voxels within a given region (Haynes and Rees, 2006; Kriegeskorte and 

Bandettini, 2007; Mur et al., 2009; Hebart and Baker, 2018). These multivoxel activity patterns 

are subjected to classifiers (e.g., linear support vector machine) to determine whether 

experimental conditions are discriminable; that is, whether there’s sufficient information 

contained in the activity patterns allows for accurate decoding of condition. By jointly analyzing 

multiple voxels, this approach, termed multivoxel or multivariate pattern analysis (MVPA), 

affords better sensitivity at detecting condition or group differences than standard univariate 

analysis (Haynes and Rees, 2006; Norman et al., 2006; Hebart and Baker, 2018), and has been 

shown to exhibit regional sensitivity to experimental conditions that go undetected with standard 
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activation-based univariate analysis (Kriegeskorte et al., 2006; Raizada et al., 2010). Despite 

prior work demonstrating the utility of using MVPA to characterize neural representations of 

visual objects in SSD (Yoon et al., 2008), and, separately, the representation of social 

information in ToM-related brain regions (Skerry and Saxe, 2015; Tamir et al., 2016; Koster-

Hale et al., 2017), to our knowledge, there has yet to be a study using MVPA towards 

characterizing the ToM network in SSD and FHR. 

Thus, here, we evaluate whether and how the representational content of mental state 

information is disturbed in SSD and FHR towards better characterizing ToM-related functional 

abnormalities in the schizophrenia spectrum, and possible changes in the ToM network from 

latent liability to manifest illness. Towards that goal, we re-analyzed data from two prior task-

based fMRI studies of the ToM network in SSD and FHR (Dodell-Feder, DeLisi, et al., 2014a; 

Dodell-Feder, Tully, et al., 2014). Both participant groups performed the false belief task (Saxe 

and Kanwisher, 2003; Dodell-Feder et al., 2011), which is one of the most widely-used tasks in 

neuroimaging studies of ToM (Schurz et al., 2014; Molenberghs et al., 2016) known to robustly 

recruit the ToM network, and has been used in prior neuroimaging studies of SSD and other 

clinical populations (Dufour et al., 2013; Dodell-Feder, Tully, et al., 2014). In the false-belief 

task, participants read and answer true/false questions about two stories types: (a) those 

describing outdated (i.e., false) beliefs, and (b) those describing outdated physical depictions of 

the world (i.e., as might occur in an outdated photograph or map). Both story types require the 

concurrent representation of a representation (i.e., a belief or photograph/map/painting) and 

reality, and so, in theory, are similar in non-ToM-related task demands (e.g., working memory). 

The two story types are also similar in linguistic features such as number of words, Flesch 

Readability, causal content (i.e., the extent to which a story conveys causal information as 

indexed by causal verbs, which is related to story coherence and comprehensibility), lexical 

concreteness (i.e., mean concreteness of the content words), among other linguistic features, 

and are also similar in conceptual features including the extent to which the story provoke 
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thinking about physical objects and causal interactions between those objects, and the ease of 

mentally visualizing the story events. On the other hand, false-belief stories provoke greater 

thinking about mental states (e.g., beliefs, desires, emotions) and social information (e.g., social 

status and social roles) (see Dodell-Feder et al. (2011) for a more detailed description of the 

stories). These features make the task well-suited to addressing questions related to mental 

state understanding. We perform both univariate and multivariate ROI analyses in a priori 

regions and exploratory whole-brain analysis towards evaluating activation-based and 

information-based alterations in the schizophrenia spectrum. Further, we explore brain-behavior 

associations, evaluating the relation between univariate activity, multivariate pattern information, 

false belief task performance, and symptoms. 

Methods 

Participants 

The current study involved re-analyzing two previously acquired datasets. As these 

studies were designed and conducted to address a separate set of hypotheses, the analyses 

described herein should be considered exploratory, and were not preregistered. The 

schizophrenia dataset included 38 participants between the ages of 18-58 years; 20 individuals 

with schizophrenia (n=16, 80%) or schizoaffective disorder (n=4, 20%; hereafter, SSD) and 18 

non-schizophrenia control participants (non-SSD) with no current or past Axis I disorder or first-

degree relative with a psychotic disorder (Table 1). All participants were administered the 

Structured Clinical Interview for DSM-IV Disorders (First et al., 2002) to assess psychiatric 

illness, the Weschler Abbreviated Scale of Intelligence to assess IQ (two-subtest form, 

Wechsler, 2011), as well as several other measures not analyzed for the purposes of the 

current study. SSD and non-SSD participants did not differ in demographic characteristics or IQ. 

SSD participants were also administered the Positive and Negative Syndrome Scale (PANSS) 

to assess current symptom severity (Kay et al., 1987). For a more detailed description of these 

participants, please see Dodell-Feder et al. (Dodell-Feder, Tully, et al., 2014).  
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The familial high risk (FHR) dataset included 20 individuals with two or more relatives 

with a psychotic-spectrum disorder (at least one of which was a first-degree relative with 

schizophrenia or schizoaffective disorder) and 19 controls (non-FHR) with no family history of 

psychotic disorder, psychiatric hospitalization, or suicide. All participants were between the ages 

of 20-35 years (Table 1). Personal and family history of psychiatric illness was assessed with 

the Diagnostic Interview for Genetic Studies (Nurnberger, 1994) and Family Interview for 

Genetic Studies (Maxwell, n.d.), respectively. All participants were additionally assessed with 

the Structured Interview for Prodromal Syndromes (Miller et al., 2003) to assess psychotic 

symptoms. Exclusion criteria for all participants included current or past history of psychotic 

disorder or treatment with antipsychotic or mood-stabilizing medications. Given that familial risk 

status is associated with increased prevalence of psychiatric illness (Erlenmeyer-Kimling, 1997; 

Chang et al., 2002; Faridi et al., 2009; Dean et al., 2010), participants were not excluded for 

current or past history of psychiatric illness in order to increase external validity. However, only 

a minority of participants met lifetime criteria for a non-SSD psychiatric illness (n=9 FHR, n=2 

non-FHR). FHR and non-FHR participants did not differ in demographic characteristics or IQ. 

For a more detailed description of these participants, please see Dodell-Feder et al. (Dodell-

Feder, DeLisi, et al., 2014a). 

Additional exclusion criteria for all studies included being a non-native English speaker, 

IQ<70, neurological or major medical illness, history of head trauma, and MRI contraindicator. 

Both studies were approved by the Harvard University Committee on the Use of Humans 

Subjects.  

FMRI Experiment: False-Belief Task 

 All participants performed an optimized version of the false-belief task (Dodell-Feder et 

al., 2011, derived from Saxe and Kanwisher, 2003) while undergoing fMRI. In this task, 

participants read two types of short stories: (a) False Belief (FB) stories described a character’s 

false (i.e., outdated) belief (e.g., “The morning of the high school dance, Barbara placed her 
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high heel shoes under the dress and then went shopping. That afternoon, her sister borrowed 

the shoes and later put them under Barbara’s bed.”), and (b) False Physical Representation 

(FPR) stories described outdated physical states in the world as depicted in photographs, maps, 

and paintings (e.g., “Old maps of the islands near Titan are displayed in the Maritime Museum. 

Erosion has since taken its toll, leaving only the three largest islands.”). Following each story, 

participants are presented with a true/false question (e.g., FB: “Barbara gets ready assuming 

her shoes are under the dress”; FPR: “Near Titan today, there are many islands”). The full 

stimulus set and presentation code is available online (http://saxelab.mit.edu/use-our-efficient-

false-belief-localizer). 

 Participants saw a total of 10 stories per condition divided into two functional runs (5 

stories per condition per run). The order of stories was pseudo-randomized in two orders, which 

were seen in approximately equal amounts between participant groups. Stimuli were presented 

visually in white text on a black background in the following sequence: fixation on a central 

cross for 12 s, story for 11 s, and true/false question for 6 s (each run ended with an additional 

12 s of fixation). MATLAB and the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007) 

were used to present the task and collect behavioral responses.  

MRI Data Acquisition 

 All MRI data were acquired with a 3T Siemens TimTrio scanner at Harvard University. A 

32-channel head coil was used to collect the SSD dataset, and a 12-channel coil was used to 

collected the FHR dataset. Anatomical images were acquired with a T1-weighted multi-echo 

MPRAGE sequence in 176 sagittal slices (voxel size=1 mm3). Functional data were acquired 

with a T2*-weighted echo-planar imaging sequence with parallel imaging (acceleration factor=2, 

47 slices, voxel size=3 mm3, TR=2560 ms, TE=30 ms, flip angle=85°) for the SSD dataset, and 

a T2*-weighted echo-planar imaging sequence (40 slices, voxel size=3 mm3, TR=2560 ms, 

TE=30 ms, flip angle=85°) for the FHR dataset. In both sequences, the first several volumes 
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consisted of dummy scans that were discarded prior to analysis to allow for steady-state 

magnetization.  

MRI Data Analysis 

 Preprocessing. Both datasets were re-preprocessed in SPM12 

(http://www.fil.ion.ucl.ac.uk/spm) using the same preprocessing steps and parameters. 

Functional images were re-aligned to the first image of the first run, co-registered to the 

anatomical scan, normalized to the MNI template, and smoothed using an 8 mm FWHM 

Gaussian kernel. Prior work has shown that spatial smoothing does not decrease the sensitivity 

of MVPA (Op de Beeck, 2010). We used the Artifact Detection Tools (ART; 

https://www.nitrc.org/projects/artifact_detect/, Whitfield-Gabrieli et al., 2011) to identify signal 

artifacts (timepoints with signal that exceeded 3 SD of the global signal) and motion artifacts 

(timepoints that exceeded the prior timepoint in composite motion by 1 mm), which were 

included as nuisance regressors in the univariate analyses (see below).  

 Regions-of-interest. Regions-of-interest (ROIs) were defined from an independent 

dataset reported in Dufour et al. (Dufour et al., 2013) of 462 neurotypical participants who 

completed the false belief task (available at http://saxelab.mit.edu/use-our-theory-mind-group-

maps). Specifically, ROIs were defined as 6 mm spheres around peak coordinates from a 

whole-brain random-effects analysis of FB>FPR (voxel-level threshold t>3, k>10): dorsal medial 

prefrontal cortex (DMPFC; MNI coordinate center x, y, z: 2, 54, 22), left temporo-parietal 

junction (LTPJ; -48, -56, 22), precuneus (PC; 2, -56, 36), right superior temporal sulcus (RSTS; 

58, -10, -14), and right temporo-parietal junction (RTPJ; 54, -52, 22; see Figure 1A). These 

regions have been demonstrated by meta-analysis to be most consistently recruited by the false 

belief task (Schurz et al., 2014). Restricting our analyses to these five regions specifically 

allowed us to test our hypotheses in areas defined a priori as being selective for mental state 

information, and reduced the number of tests we performed, limiting the possibility of Type I 

error. 
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 Univariate analysis. False belief task data were first analyzed at the individual-subject 

level in the whole brain using a general linear model (GLM), which included a term for condition 

convolved with the standard hemodynamic response function, and nuisance regressors for the 

movement parameters and movement and signal outlier timepoints identified by ART. Data 

were high-pass filtered at 128 s. Individual subject contrasts were generated for each condition 

versus baseline and FB>FPR.  

Data were submitted to ROI and whole-brain analysis. Findings from the SSD dataset 

were reported in Dodell-Feder et al. (Dodell-Feder, Tully, et al., 2014). We note that a different 

set of ROIs were used in that study. To make these prior findings more comparable with the 

multivariate findings reported in the current study, we re-ran the univariate ROI analysis with the 

same ROIs used in the current study, and report these findings in the supplementary materials 

(no differences were observed between the ROI analysis performed in the original study and the 

current study). For the FHR dataset, we conducted ROI analysis using the Dufour et al. (Dufour 

et al., 2013) ROIs, and a performed a second-level random-effects whole-brain analysis 

comparing FHR to non-FHR with a two-sample t-test. These data are reported in the 

supplementary materials. For both datasets, ROI analysis was conducted by extracting the beta 

values for FB>baseline and FPR>baseline contrasts, and submitting these values to repeated-

measures ANOVAs that included terms for group, condition, and their interaction. Follow-up 

tests to evaluate between group differences in condition were conducted with Welch’s t-tests 

(Delacre et al., 2017). These tests and follow-up tests on extracted univariate and multivariate 

(see below) ROI values were performed in R Statistical Software (R Core Team, 2018). 

 Multivariate analysis. MVPA was conducted in MATLAB using The Decoding Toolbox 

(Hebart et al., 2015). Our primary aim was to characterize group differences in classification 

accuracy in regions of the brain selective for mental state information. Towards that goal, for 

each participant, we submitted the beta images for FB and FPR generated from the first-level 

GLMs described above to a leave-one-out cross-validation scheme using a linear support vector 
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machine as a classifier. This generated a single accuracy-minus-chance (chance=50%) value 

per ROI per participant. These values were compared against zero within each group using a 

one-sample t-test, and then between groups using a two-sample Welch’s t-test. We report false-

discovery rate (FDR) adjusted p-values (i.e., q-values) adjusting for 5 ROI tests conducted 

within-groups and between-groups. Effect sizes were calculated as Cohen’s d along with bias-

corrected-and-accelerated (BCa) 95% CIs generated from 10,000 bootstrap samples with the 

package bootES (Kirby and Gerlanc, 2013). We interpreted these effect sizes using 

conventional benchmarks (Cohen, 1988). To better understand the nature of group differences, 

we followed-up significant between group differences by evaluating the within-condition pattern 

correlations. Following Haxby et al. (2001), we did this by splitting the data in half for each 

condition, calculating the beta value for each voxel within the ROI for each condition, and then 

evaluating the correlation between betas in each voxel of the ROI for each condition. This 

analysis generated four values for each ROI—the correlation between voxels for FB in SSD; the 

correlation between voxels for FB in non-SSD; the correlation between voxels for FPR in SSD; 

the correlation between voxels for FPR in non-SSD—which were transformed using Fisher’s r-

to-z transformation, and then compared between groups using Welch’s t-tests. Given that we 

used a different headcoil and acquisition parameters for the SSD and FHR dataset, we did not 

perform direct statistical comparisons between the SSD and FHR datasets for any analysis. 

 To investigate whether there were differences in classification accuracy in regions 

outside of the ToM network, we performed an exploratory whole-brain searchlight analysis using 

searchlights with a 4-voxel radius around the center voxel. Searchlights were passed through 

the whole-brain on a voxel-by-voxel basis, and classification was performed within each 

searchlight with the classification value (accuracy-minus-chance) being assigned to the center 

voxel. This created whole-brain classification maps for each participant representing the local 

information content around the center of each searchlight. These maps were analyzed at the 

group-level by conducting one-sample t-tests within each group, and two-sample t-tests to 
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compare local classification accuracy between groups. All images were thresholded at a voxel-

wise p<.001 and a cluster-wise FWE-corrected p<.05. Data were visualized with Surf Ice 

(https://www.nitrc.org/projects/surfice/). 

 Brain, Behavior, and Symptom Associations. To assess the behavioral and clinical 

impact of the neural measures, we evaluated the associations between univariate activity (using 

the FB-FPR contrast estimate for univariate activity), multivariate pattern information, false belief 

task accuracy, and symptoms. In order to reduce the number of tests and limit Type I error, we 

did this only in the dataset and ROIs in which we found group differences in either multivariate 

or univariate neural outcomes. All analyses were conducted using Pearson r correlations, and 

are accompanied by BCa 95% CIs generated from 10,000 bootstrap samples. We consider a 

finding to be unexpected under the null hypothesis when q<.05. Given that we find group 

differences in two ROIs, for task performance correlations, we corrected for 4 tests (2 ROIs x 2 

conditions [FB, FPR]); for symptoms, we corrected for 6 tests (2 ROIs x 3 symptom categories 

[positive, negative, disorganized]). We evaluated the association between the neural measures 

and task accuracy across all participants given that we did not expect the relation between brain 

and task performance to differ as a function of diagnostic status (e.g., Hawco et al., 2019). For 

any association that was found to be unexpected under the null hypothesis, we evaluated 

whether the brain-task accuracy association was moderated by group by regressing task 

accuracy on the interaction of group and brain. For brain-symptom associations, we conducted 

these only within the clinical group because the PANSS was not administered to non-SSD 

participants. We conducted two follow-up analyses on associations that survived FDR-

correction. First, we evaluated whether the brain-behavior association was specific to that 

behavioral variable (i.e., whether there was a difference brain-FB accuracy versus brain-FPR 

accuracy, and brain-positive symptom versus brain-negative symptom versus brain-

disorganized symptom associations) by evaluating the 95% CI of the difference between the 

correlations using the method described in Zou (2007). Second, we evaluated the relative 
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variance explained in the behavioral outcome by univariate activity versus multivariate pattern 

information with multiple linear regression.  

Results 

Univariate Results 

 Results of all univariate analyses are reported in the Supplementary Materials, and the 

whole-brain analysis of the SSD dataset is reported in Dodell-Feder et al. (Dodell-Feder, Tully, 

et al., 2014). Briefly, ROI analysis revealed a group by condition interaction in DMPFC 

characterized by reduced neural activity for FB and FPR stories in SSD versus non-SSD 

(Supplementary Table 1, Supplementary Figure 1). Whole-brain analysis similarly revealed 

reduced neural activity for FB versus FPR in MPFC (Dodell-Feder, Tully, et al., 2014). In 

contrast, ROI and whole-brain analysis revealed no differences in neural activity for FB versus 

FPR between FHR and non-FHR (Supplementary Table 2, Supplementary Figure 2).  

Multivariate Results 

 Our main question concerned how mental state information was represented within 

ToM-related regions across the SSD and SSD-risk groups. First, we evaluated whether the 

ROIs distinguished between mental state and non-mental state information within each group by 

evaluating classification accuracy. Non-SSD participants showed above chance classification 

accuracy in all ROIs (Table 3, Figure 1B). SSD participants similarly showed above chance 

classification in all ROIs except for DMPFC. Comparing the classification accuracies between 

groups, the non-SSD group showed higher accuracy across all ROIs, with effect sizes ranging 

from small in PC to large in RTPJ (Figure 1C). The between-group difference in classification 

accuracy was unexpected under the null hypothesis in DMPFC and RTPJ. Given the sensitivity 

of MVPA analyses to movement, we evaluated whether group differences in movement might 

have been driving the differences in pattern discriminability. Neither translation nor rotation 

differed between the groups, rotation: t(30)=1.16, p=.255, d=.35, 95% CI [-.31, 1.02], translation: 

t(25)=1.06, p=.297, d=.26, 95% CI [-.40, .92]. Further, neither mean translation nor rotation were 
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correlated with pattern discriminability in either ROI, DMPFC and translation r(36)=.06, 95% CI 

[-.27, .37], p=.735, DMPFC and rotation, r(36)=.11, 95% CI [-.22, .42], p=.509, RTPJ and 

translation r(36)=.04, 95% CI [-.29, .35], p=.820, RTPJ and rotation r(36)=-.21, 95% CI [-.50, 

.11], p=.197. Another possibility is that multivariate differences are being driven largely by 

differences in univariate activity. To address this possibility, we re-evaluated group differences 

with ANCOVAs, controlling for univariate activation. The group difference in DMPFC pattern 

discriminability was reduced to a trend level of significance, F(1, 35)=3.33, p=.077, η2=.08, 

although the effect size based on the marginal means was medium in size, d=.64, with a 95% 

CI, [-.04, 1.31], largely overlapping with that of the non-adjusted model, [.18, 1.66]. When 

controlling for univariate activity, the impact of group on pattern discriminability in RTPJ 

remained statistically significant, F(1, 35)=7.54, p=.009, η2=.12, with a large effect size, d=.90, 

95% CI [.21, 1.60], similar in magnitude to the non-adjusted model, d=1.04, 95% CI [.37. 1.69]. 

This suggests that univariate differences may be contributing to multivariate patterns differences 

in DMPFC, but not in RTPJ. 

 To better understand the source of the group difference in pattern discriminability, we 

evaluated group differences in within-condition pattern correlations. In DMPFC, pattern 

correlations values were similar and did not differ between groups for FB or FPR (Table 5). In 

RTPJ, pattern correlations values were similar and did not differ between groups for FB; 

however, we did observe a medium-sized difference in pattern correlations for FPR, t(34)=2.15, 

p=.039, d=-.70, 95% CI [-1.37, -.003], such that SSD exhibited higher pattern correlations than 

non-SSD (Table 5). Looking within each group, pattern correlations did not differ between FB 

and FPR in SSD, t(19)=1.60, p=.125, dz=.36, 95% CI [-.13, .85], as they did in non-SSD, 

t(17)=2.50, p=.023, dz=.59, 95% CI [.04, 1.08], suggesting that SSD participants may be treating 

physical information like mental state information. One explanation for these findings is that 

group differences, or a lack thereof, may be attributable to noisier, less consistent patterns in 

SSD for either or both conditions. We tested for this possibility by examining homogeneity of 
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variance in pattern correlations for each condition using Levene’s test; however, no group 

differences emerged, Fs<=1.29, ps>=.264.  

  The non-FHR and FHR groups showed classification accuracies above chance in all 

ROIs (Table 4, Figure 1B). Although accuracy was higher in the non-FHR versus FHR group 

across all ROIs, with effect sizes ranging from trivially small in RTPJ to medium in RSTS (Figure 

1C), none of these differences were unexpected under the null hypothesis.  

 Next, we used whole-brain exploratory searchlight analysis to address whether there 

were regions outside of the a priori ROIs that differed in classification accuracy as a function of 

group. In line with the ROI analysis, both the non-SSD and SSD group showed above chance 

classification in the ToM network, with the SSD group showing a smaller area of MPFC, located 

in the ventral aspect, that decoded condition (Supplementary Table 3, Figure 2A). A direct 

comparison of the groups revealed that compared to the SSD group, the non-SSD group 

showed greater classification accuracy in RTPJ as well as a region in anterior middle temporal 

gyrus (Table 6). There were no SSD>non-SSD classification differences. 

 Both the non-FHR and FHR group also showed above chance classification accuracy in 

the ToM network, with the FHR group showing a smaller area of MPFC that decoded condition 

(Supplementary Table 4, Figure 2B). Compared to FHR, non-FHR showed higher classification 

accuracy in a cluster spanning superior to middle frontal gyrus, and a cluster located primarily in 

left cerebellum that extended into fusiform gyrus (Table 6). There were no FHR>non-FHR 

classification differences. 

Brain, Behavior, and Symptom Associations 

 To better understand the behavioral and clinical significance of the differences in 

DMPFC and RTPJ in the SSD dataset, we evaluated the associations between univariate 

activity (i.e., the FB-FPR contrast estimate), multivariate pattern information, task performance, 

and symptoms. On task performance, greater pattern discriminability was associated with better 

performance on the FB condition, r(31)=.53, 95% CI [.17, .77], q=.007, and this was not 
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moderated by group, β=-.56, 95% CI [-1.50, .37], p=.229. Task accuracy, either on the FB or 

FPR condition, was not associated with pattern discriminability in DMPFC, r(31)<=.07, and 

although we observed positive associations between FB accuracy and univariate activity in 

DMPFC, r(31)=.37, and RTPJ, r(31)=.41, at an uncorrected level (p<.05), neither association 

survived FDR correction. The association between RTPJ pattern discriminability and FB 

accuracy was larger in magnitude than the association between RTPJ pattern discriminability 

and FPR accuracy, r(31)=.18, 95% CI [-.17, .50], q=.547, 95% CI of the correlation difference 

[.03, .65], meaning that increased pattern discriminability in RTPJ might specifically support 

false belief reasoning as opposed to reasoning about representations more generally. Further, 

the variance in FB accuracy accounted for by pattern discriminability, β=.41, 95% CI [.06, .76], 

p=.023, was above and beyond that accounted for by univariate activity, which was not 

associated with FB accuracy when taking multivariate pattern discriminability into account, 

β=.19, 95% CI [-.17, .54], p=.295.  

 On symptoms, we observed negative associations between RTPJ pattern discriminability 

and positive, r(18)=-.52, and disorganized symptoms, r(18)=-.49, at an uncorrected level 

(p<.05), but neither association survived FDR-correction. We also observed a positive 

association between DMPFC univariate activity and negative symptoms, r(18)=.45, at an 

uncorrected level, which too did not survive FDR-correction. All other associations were not 

unexpected under the null hypothesis. 

Discussion 

 The majority of task-based fMRI research on ToM in SSD and FHR have examined a 

single question: whether regions in the ToM network shows aberrant of levels of involvement 

during mental state reasoning (i.e., hypo- or hyper-activation). Using univariate analysis, these 

studies have consistently shown that levels of activation between SSD, FHR, and controls group 

are different (Kronbichler et al., 2017; Kozhuharova et al., 2020). However, there are other 

questions to be asked regarding how latent liability for an SSD and manifest illness impacts the 
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functional properties of the ToM network. Answers to these other questions may shed more light 

on the neurobiological processes at work in the development of an SSD and the social 

difficulties it brings. MVPA, which characterizes regional representational content, may be useful 

in this regard as it has in other studies of neural function in SSD (Yoon et al., 2008). 

Here, using MVPA, we assessed ToM-related activation patterns in a group of SSD and 

FHR participants who performed the same well-validated ToM task while undergoing fMRI. 

MVPA of ToM ROIs showed that compared to non-SSD participants, SSD showed reduced 

classification accuracy in two regions of the ToM network thought to constitute a core mental 

state understanding network (Schurz et al., 2014; Molenberghs et al., 2016): DMPFC and RTPJ. 

In other words, the pattern of information in DMPFC and RTPJ for the category of mental states 

was less discriminable in SSD than it is in non-SSD participants suggesting that in SSD, mental 

information is not privileged in brain regions that are typically highly specialized for representing 

such information. Further, this difference could not clearly be explained by differences in 

univariate activation (although it reduced the multivariate difference in DMPFC to a trend level of 

significance) or because the SSD data were noisier (e.g., due to in-scanner motion). In RTPJ, 

the analysis of pattern correlations revealed a more highly stable, consistent response to FPR in 

SSD versus non-SSD that was equal in magnitude to the FB response. In consideration of this 

finding, one possibility is that the source of reduced pattern discriminability in SSD is due to 

SSD representing non-mental information in the same way they represent mental state 

information. If RTPJ treats physical information like mental information, this may help to explain 

reports of increased mind perception (Gray et al., 2011; Raffard et al., 2016), and “hyper-ToM” 

(i.e., inappropriately ascribing mental states to others) in psychosis and certain psychotic-like 

experiences (i.e., paranoia, delusional ideation; Russell et al., 2006; Fyfe et al., 2008; Montag et 

al., 2011; Clemmensen et al., 2014). The fact that we observed more differences in multivariate 

pattern information versus univariate activity—in which we saw reduced activity for FB in SSD 
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vs non-SSD—may reflect the fact that multivariate approaches afford better sensitivity at 

detecting differences as shown in other work (Kriegeskorte et al., 2006; Raizada et al., 2010).  

Exploratory whole-brain searchlight analysis were partially consistent with these ROI 

findings revealing reduced decoding accuracy in RTPJ and RSTS in SSD versus non-SSD. 

These findings somewhat parallel those from studies of autism spectrum disorder, which is 

similarly characterized by marked ToM and social functioning deficits (Pinkham et al., 2019). 

Specifically, studies of ASD have shown altered patterns of neural activity in RTPJ and MPFC 

during social cognitive tasks (Gilbert et al., 2009; Koster-Hale et al., 2013; Richardson et al., 

2020), suggesting that altered representation of mental state information may be a 

transdiagnostic marker of social dysfunction.  

It remains an open question as to why in SSD, DMPFC and RTPJ pattern discriminability 

would be reduced, and, as suggested by the pattern correlation analysis, why in RTPJ, physical 

information would be represented in a similar manner as mental information. One possibility is 

that early social skills deficits, social anhedonia, and social withdrawal—characteristics that 

describe individuals who later develop SSD (Kwapil, 1998; Tarbox and Pogue-Geile, 2008; 

Radua et al., 2018)—reduces the quantity and quality of early social exposure in a way that 

prevents the specialization of ToM-related brain regions that occurs in typically developing youth 

(Saxe et al., 2009; Gweon et al., 2012; Bowman et al., 2019). In partial support of this idea, pre-

SSD individuals show progressive cortical thickness reductions in brain regions implicated in 

ToM, specifically MPFC and posterior temporal cortex (Cannon et al., 2015), which may impact 

the functional specialization of these regions. This may also speak to why we saw a difference 

in DMPFC and RTPJ, and not other regions of the network; that is, in line with these other 

findings, the pathophysiology of SSD may specifically affect these regions and the functional 

networks that they, in part, comprise, such as the default mode network which too is disrupted in 

at-risk groups (Dodell-Feder, DeLisi, et al., 2014b; Karcher et al., 2019).  
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In contrast to SSD, we found no evidence of altered representational content for mental 

state information in FHR. Specifically, the activation patterns for the category of mental states in 

the a priori ROIs were equally discriminable in FHR as they were in non-FHR. The exploratory 

whole-brain searchlight analyses demonstrated reduced decoding accuracy in FHR compared 

to non-FHR in right superior to middle frontal gyrus and left cerebellum extending into fusiform 

gyrus. It is unclear what to make of these findings given that the role of these regions during 

mental state understanding is unknown. We note that we did not observe differences in the 

univariate analyses either, which is in contrast to prior work showing altered involvement of ToM 

brain regions (Kozhuharova et al., 2020). This might reflect intact involvement of these regions 

in the context of false belief reasoning, but not others involving more complex social scenarios 

(de Achával et al., 2013; Dodell-Feder, DeLisi, et al., 2014a; Mohnke et al., 2016). There are 

several reasons as to why the MVPA findings in FHR diverge from those in SSD. First, 

disrupted neural representation of mental state information may only occur in pre-SSD (i.e., 

prodromal) and manifest illness, not simply in those at elevated risk due to a constitutional or 

acquired vulnerability factor. Second, there may exist differences in pattern discriminability in 

FHR that are simply smaller than those observed in SSD, and we were underpowered to detect 

them. Third, FHR differences might have been obscured by a methodological difference 

between the FHR and SSD studies. Because of the small number of FHR participants, and the 

methodological differences between the FHR and SSD studies, the between-sample differences 

should be interpreted with caution and replicated. 

An important issue concerns the behavioral consequences of disrupted pattern 

information and/or activity; that is, to what extent do disruptions to representation or activation 

account for the social cognitive deficits and symptoms observed in the schizophrenia-spectrum? 

Towards addressing this question, we evaluated the associations between univariate activity, 

multivariate pattern discriminability, false belief task performance, and symptoms. On task 

performance, we found that only RTPJ pattern discriminability in the SSD dataset was 
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associated with FB accuracy, and not task accuracy more generally. Further, pattern 

discriminability explained variance in FB accuracy above and beyond that explained by RTPJ 

univariate activity suggesting particular importance of representational information for false 

belief understanding. This finding is consistent with other work demonstrating that pattern 

discriminability in RTPJ for intentional versus unintentional acts is associated with the extent to 

which mental states are weighted when making moral judgments (Koster-Hale et al., 2013), and 

other work in SSD showing that pattern discriminability in regions recruited during visual object 

processing is associated with task performance (Yoon et al., 2008). In contrast to task 

performance, the neural measures were not associated with symptoms at a corrected level. 

Prior work on the representational content of ToM brain regions has shown that activity 

patterns in RTPJ and MPFC contain granular mental state information well beyond what was 

tested here, including the social impact of a mental state (i.e., the degree to which a mental 

state influences social relationships) (Tamir et al., 2016; Thornton and Tamir, 2020), the 

epistemic context of a mental state (i.e., how a belief was formed and the justification for the 

belief) (Koster-Hale et al., 2017), as well as affective states, their valence, and the context in 

which an emotion occurs (Skerry and Saxe, 2015; Tamir et al., 2016; Koster-Hale et al., 2017; 

Thornton and Tamir, 2020). It has been suggested that representing these dimensions may 

facilitate social predictions (Tamir and Thornton, 2018; Thornton and Tamir, 2020); an idea 

supported by other work demonstrating that neural response in ToM brain regions can be 

characterized within a predictive coding framework (Carter et al., 2012; Koster-Hale and Saxe, 

2013; Tamir and Thornton, 2018; Thornton et al., 2019; Park et al., 2020; Richardson and Saxe, 

2020). This raises the intriguing possibility that altered representation of mental state 

information in SSD contributes to difficulty in making social predictions (e.g., Sterzer et al., 

2018), which in turn contributes to social dysfunction. Because we did not test the integrity of 

information within the ROIs for these other dimensions, nor their contribution to social 
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prediction, these ideas are speculative. However, they would be worth addressing in future 

research.  

Several limitations are notable. First, given the small sample sizes, we were adequately 

powered to detect large differences between groups (d=.92 with power=.80), and large 

associations between brain and behavior (r=.44 for brain-task accuracy associations and r=.61 

for brain-symptom associations with power=.80). This leaves open the strong possibility that 

there may be smaller yet clinically meaningful differences between groups or associations 

between brain and behavior that went undetected here, particularly in the FHR group. Second, 

we were unable to make direct statistical comparisons between SSD and FHR due to different 

acquisition parameters. Third, given that these data are cross-sectional, they can only suggest, 

but not directly speak to how the ToM network changes from states of risk to manifest illness. 

Lastly, we tested how information is represented for only one specific context of mental state 

reasoning, without examining other dimensions within the category of mental states. 

Conclusion 

We find that in SSD, core ToM brain regions demonstrate altered involvement and 

patterns of neural activity, including reduced discriminability between FB and FP, suggesting 

that the category of mental states are not represented with sufficient distinguishing details or 

characteristics. This this may be partially driven by SSD representing physical information as 

they do mental information. The extent of altered pattern information in SSD carries functional 

implications as well as it was shown here to impact performance on the FB task. In contrast, the 

ToM network in FHR can be characterized by altered involvement, but preserved informational 

content for the category of mental states. These data suggest that unlike aberrant involvement 

of these brain regions in ToM, which occurs in SSD risk states, the representation of mental 

states may be disrupted by the onset of illness, and not before. This notion should be more 

directly evaluated in future work using larger samples with longitudinal paradigms.  
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Figure Legends 

 

Figure 1. Multivariate ROI Analysis and Accompanying Effect Sizes. A) Depiction of ROIs. 

B) Accuracy-minus-chance percentage (chance=50%) for the SSD dataset (left panel) and FHR 

dataset (right panel). Case group (SSD, FHR) depicted in orange and control group (Non-SSD, 

Non-FHR) in gray. Error bars depict 95% confidence intervals. C) Cohen’s d effect sizes for 

case minus control with SSD–Non-SSD in blue and FHR–Non-FHR in red. Error bars depict 

BCa 95% confidence intervals derived from 10,000 bootstrap samples. Horizontal dashed gray 

lines represent effect size benchmarks corresponding to small, medium, and large effects. ROI 

= region-of-interest, DMPFC = dorsal medial prefrontal cortex, LTPJ = left temporo-parietal 

junction, PC = precuneus, RSTS = right superior temporal sulcus, RTPJ = right temporo-parietal 

junction.  

 

Figure 2. Whole-Brain Exploratory Searchlight Analysis. SSD dataset (A) and FHR dataset 

(B). The top panels depict the Control group (Non-SSD, Non-FHR), the middle panel depicts the 

Case group (SSD, FHR), and the bottom panel depicts the Control>Case comparison. No 

differences were observed for Case>Control in either dataset. All images are thresholded at a 

voxel-wise p<.001 and a cluster-wise FWE-corrected p<.05. Colorbars depict t values. R = right, 

L = left, A = anterior, P = posterior.  
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Table 1 

Participant Characteristics 

 SSD Dataset FHR Dataset 
 SSD Non-

SSD 
Group 
Difference 

FHR Non-
FHR 

Group 
Difference 

n 20 18  20 19  
Age, years 38.8 

(9.7) 
32.4 
(12.1) 

t(36)=1.78, 
p=.084 

27.2 
(3.9) 

26.1 
(3.9) 

t(37)=.91, 
p=.367 

Sex, 
Male/Female 
(n) 

12/8 12/6 c2 (1, 
N=38)=.18, 
p=.671 

14/6 15/4 c2 (1, 
N=39)=.07, 
p=.785 

Education, 
years 

15.0 
(2.3) 

14.2 
(2.6) 

t(36)=1.00, 
p=.326 

16.0 
(1.5) 

16.3 
(0.7) 

t(28)=0.71, 
p=.486 

IQ  108.7 
(13.4) 

107.4 
(10.7) 

t(36)=.03, 
p=.763 

115.6 
(10.7) 

118.3 
(11.4) 

t(35)=.76, 
p=.454 

PANSS        
Positive 15.6 

(5.7) 
     

Negative 11.8 
(4.1) 

     

Disorganized 7.6 
(4.0) 

     

SIPS        
Positive    2.8 

(2.5) 
0.1 
(0.3) 

t(19)=4.65, 
p<.001 

Negative    1.9 
(2.0) 

0.1 
(0.2) 

t(19)=4.03, 
p<.001 

Disorganized    2.1 
(1.6) 

0.4 
(0.6) 

t(24)=4.44, 
p<.001 

General    1.7 
(1.7) 

0.2 
(0.6) 

t(22)=3.45, 
p=.002 

Note. Values represent M (SD) unless otherwise noted. PANSS=Positive and Negative 
Syndrome Scale, SIPS=Structured Interview for Prodromal Syndromes, FB = False Belief, FPR 
= False Physical Representation. 
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Table 2 

False Belief Task Performance 

 SSD Dataset FHR Dataset 
 SSD Non-

SSD 
Group 
Difference 

FHR Non-FHR Group 
Difference 

Accuracy, 
% 

      

FB 74.8 
(17.3) 

80.6 
(16.0) 

t(31)=.99, 
p=.329, 
da=.34 [-
.38, 1.05] 

88.5 (11.0) 90.1 (10.7) t(35)=.47, 
p=.642, d=.15 
[-.50, .82] 

FPR 79.9 
(15.3) 

82.2 
(14.3) 

t(31)=.45, 
p=.656, 
d=.16 [-.57, 
.83] 

86.7 (13.1) 90 (12.8) t(35)=.78, 
p=.442, d=.26 
[-.45, .93] 

Reaction 
Time, s 

      

FB 4.1 
(.6) 

3.4 
(.6) 

t(31)=3.35, 
p=.002, 
d=1.17 
[.35, 1.98] 

3.3 (.6) 2.9 (.5) t(34)=2.57, 
p=.015, d=.84 
[.19, 1.45] 

FPR 3.7 
(.5) 

3.5 
(.5) 

t(31)=1.31, 
p=.201, 
d=.45 
[=.26, 1.16] 

3.1 (.5) 3.0 (.5) t(34)=.91, 
p=.368, d=.30 
[-.41, .98] 

aCohen’s d values with 95% bias-corrected-and-accelerated CIs derived from 10,000 bootstrap 
samples.   



   
 

   
 

36 

Table 3 

ROI Classification Accuracy: SSD Dataset 

 SSD Non-SSD Group Difference 
 M [95% CI] Accuracy-

Above-Chance % 
One-Sample t-
test 

M [95% CI] Accuracy-
Above-Chance % 

One-Sample t-
test 

Cohen’s d 
[95% CI] 

Two-Sample t-
test 

DMPFC 6.3 [-4.4, 16.9] t(19)=1.23, 
q=.234 

27.8 [15.8, 39.8] t(17)=4.89, 
q<.001 

.92 [.18, 1.66] t(35)=2.82, 
q=.019 

LTPJ 26.3 [16.6, 35.9] t(19)=5.69, 
q<.001 

36.1 [25.5, 46.7] t(17)=7.16, 
q<.001 

.47 [-.21, 
1.19] 

t(35)=1.44, 
q=.197 

PC 27.5 [16.8, 38.2] t(19)=5.40, 
q<.001 

36.1 [25.5, 46.7] t(17)=7.16, 
q<.001 

.39 [-.28, 
1.07] 

t(36)=1.20, 
q=.238 

RSTS 15.0 [1.6, 28.4] t(19)=2.35, 
q=.037 

29.2 [17.7, 40.7] t(17)=5.36, 
q<.001 

.54 [-.12, 
1.25] 

t(36)=1.69, 
q=.167 

RTPJ 16.5 [2.4, 30.1] t(19)=2.46, 
q=.037 

41.7 [33.1, 50.2] t(17)=10.31, 
q<.001 

1.04 [.37, 
1.69] 

t(31)=3.28, 
q=.013 
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Table 4 

ROI Classification Accuracy: FHR Dataset 

 FHR Non-FHR Group Difference 
 M [95% CI] Accuracy-

Above-Chance % 
One-Sample t-
test 

M [95% CI] Accuracy-
Above-Chance % 

One-Sample t-
test 

Cohen’s d 
[95% CI] 

Two-Sample t-
test 

DMPFC 13.8 [2.7, 24.8] t(19)=1.23, 
q=.022 

23.7 [12.0, 35.4] t(18)=4.26, 
q<.001 

.42 [-.26, 
1.10] 

t(37)=1.30, 
q=.339 

LTPJ 31.3 [20.6, 41.9] t(19)=6.14, 
q<.001 

36.8 [27.5, 46.1] t(18)=8.32, 
q<.001 

.26 [-.39, .88] t(37)=.83, 
q=.516 

PC 25.0 [10.8, 39.2] t(19)=3.68, 
q=.003 

36.8 [27.5, 46.1] t(18)=8.32, 
q<.001 

.46 [-.15, 
1.03] 

t(32)=1.46, 
q=.339 

RSTS 17.5 [1.8, 33.2] t(19)=2.33, 
q=.031 

35.5 [25.4, 45.6] t(18)=7.39, 
q<.001 

.64 [.01, 1.24] t(32)=2.02, 
q=.257 

RTPJ 30.0 [17.1, 42.9] t(19)=4.86, 
q<.001 

31.6 [19.6, 43.5] t(18)=5.55, 
q<.001 

.60 [-.60, .70] t(37)=.19, 
q=.852 
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Table 5 
 
ROI Pattern Correlations 
 
  M (SD) Fisher r-to-z 

Value 
 

ROI Condition SSD Non-SSD Group Difference 
DMPFC     
 FB .98 (.54) .97 (.52) t(36)=.05, p=.961, d=-.02, 95% CI [-.66, .66] 
 FPR 1.10 (.57) 1.03 (.63) t(35)=.37, p=.716, d=-.12, 95% CI [-.80, .56] 
RTPJ     
 FB 1.25 (.45) 1.13 (.69) t(29)=.63, p=.533, d=-.21, 95% CI [-.83, .47] 
 FPR 1.04 (.54) .63 (.63) t(34)=2.15, p=.039, d=-.70, 95% CI [-1.37, -

.003] 
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Table 6 

Whole-Brain Searchlight Analysis Group Differences 

Dataset Contrast Region MNI 
Coordinates 
x, y, x 

Cluster 
Extent 
(voxels) 

Cluster p 
(FWE-
corrected) 

Peak t-
value 
(p<.001) 

SSD Non-
SSD>SSD 

RTPJ 66, -50, 22 165 <.001 5.13 

  Right Anterior 
Middle Temporal 
Gyrus 

60, 3, -34 52 .032 4.71 

 SSD>Non-
SSD 

No suprathreshold clusters 

FHR Non-
FHR>FHR 

Right 
Superior/Middle 
Frontal Gyrus 

26, 46, 16 270 <.001 5.44 

  Left 
Cerebellum/Left 
Fusiform Gyrus 

-34, -80, -20 281 <.001 4.51 

 FHR>Non-
FHR 

No suprathreshold clusters 

Note. Images were thresholded at a voxel-wise p<.001 and a cluster-wise FWE-corrected 
p<.05. 

 

 

 

 

 

 


