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Adults and children recruit a specific network of brain regions when engaged in “Theory of

Mind” (ToM) reasoning. Recently, fMRI studies of adults have used multivariate analyses to

provide a deeper characterization of responses in these regions. These analyses charac-

terize representational distinctions within the social domain, rather than comparing re-

sponses across preferred (social) and non-preferred stimuli. Here, we conducted

opportunistic multivariate analyses in two previously collected datasets (Experiment 1: n ¼
20 5e11 year old children and n ¼ 37 adults; Experiment 2: n ¼ 76 neurotypical and n ¼ 29 5

e12 year old children diagnosed with Autism Spectrum Disorder (ASD)) in order to char-

acterize the structure of representations in the developing social brain, and in order to

discover if this structure is disrupted in ASD. Children listened to stories that described

characters’ mental states (Mental), non-mentalistic social information (Social), and causal

events in the environment (Physical), while undergoing fMRI. We measured the extent to

which neural responses in ToM brain regions were organized according to two ToM-rele-

vant models: 1) a condition model, which reflected the experimenter-generated condition

labels, and 2) a data-driven emotion model, which organized stimuli according to their

emotion content. We additionally constructed two control models based on linguistic and
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narrative features of the stories. In both experiments, the two ToM-relevant models out-

performed the control models. The fit of the condition model increased with age in neu-

rotypical children. Moreover, the fit of the condition model to neural response patterns was

reduced in the RTPJ in children diagnosed with ASD. These results provide a first glimpse

into the conceptual structure of information in ToM brain regions in childhood, and sug-

gest that there are real, stable features that predict responses in these regions in children.

Multivariate analyses are a promising approach for sensitively measuring conceptual and

neural developmental change and individual differences in ToM.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional fMRI analyses compare the average magnitude of

response to different experimental conditions in order to

discover which brain regions are recruited for a given cogni-

tive task. For example, hundreds of fMRI experiments

converge to show that human adults have brain regions that

respond preferentially when they consider others’ minds e

i.e., their beliefs, desires, and emotions (for reviews, see

Carrington & Bailey, 2009; Adolphs, 2009). These regions

include bilateral temporoparietal junction (TPJ), precuneus

(PC), and medial prefrontal cortex (MPFC). While many social

tasks recruit the entire network of brain regions, and re-

sponses in these regions are correlated even in absence of a

task (e.g., Fox et al., 2005; Greicius, Krasnow, Reiss, & Menon,

2003), the response in the RTPJ in particular has been shown

to be selective, responding more when participants consider

people’s mental states relative to other kinds of representa-

tions (e.g., photographs; Saxe & Kanwisher, 2003; Saxe &

Wexler, 2005), internal states (e.g., pain, hunger, fatigue;

(Bruneau, Pluta, & Saxe, 2012; Lombardo et al., 2010;

Richardson, Lisandrelli, Riobueno-Naylor, & Saxe, 2018; Saxe

& Powell, 2006; Spunt, Kemmerer, & Adolphs, 2015)), and

non-mentalistic social information (e.g., a person’s physical

appearance or enduring relationships; Saxe & Powell, 2006;

Mitchell, Banaji, & Macrae, 2005). As such, the RTPJ has been

hypothesized to be particularly important for “Theory of

Mind” (ToM) reasoning e our use of an intuitive, structured

theory that relates others’ actions to their internal, often un-

observable, mental states (Gopnik & Wellman, 1992).

However, one limitation of univariate fMRI studies is that,

even among neurotypical adults, the magnitude of response

isn’t particularly sensitive to distinctions within the preferred

stimulus category. For example, the RTPJ has high responses

while processing beliefs regardless of whether they are true or

false, or justified or unjustified (D€ohnel et al., 2012; Young,

Nichols, & Saxe, 2010b). Thus, univariate fMRI analyses are

not sensitive to a key question: what aspects of mental states

organize and drive responses within ToM brain regions?

Addressing this questionmay be particularly important for

characterizing neural correlates of theory of mind develop-

ment. As children get older, they increasingly make concep-

tual distinctions between and based on mental states. For

example, while the causal relationship between goals and

emotions seems to be understood quite early in development
(Repacholi & Gopnik, 1997; Skerry & Spelke, 2014), children

become increasingly aware of causal relations between beliefs

and emotions in middle childhood (e.g., after age four years;

Harris, Johnson, Hutton, Andrews,&Cooke, 1989; Pons, Harris,

& de Rosnay, 2004; Ruffman & Keenan, 1996; Wu & Schulz,

2018). Four-to five-year-old children who correctly report

that Little Red Riding Hood (falsely) believes that her grand-

mother is in the bed nevertheless report that Little Red Riding

Hood will feel afraid when she enters her grandmother’s

home e missing the link between Little Red Riding Hood’s

false belief and her emotion (Bradmetz & Schneider, 1999).

The ability to explicitly distinguish and label the emotions of

characters in stories likewise improves throughout middle

childhood (Nelson, Widen, & Russell, 2006; Widen, 2016). One

intriguing possibility is that as children master new concep-

tual distinctions between mental states (Gopnik & Wellman,

1992; Koster-Hale & Saxe, 2013), these distinctions also

become reflected in neural response patterns in ToM brain

regions. If neural response patterns do reflect the conceptual

organization of mental states in childhood, they may also

provide a window into the nature of theory of mind deficits in

neurodevelopmental disorders like autism.

Multivariate approaches have recently been employed to

characterizewithin-category distinctions in neural population

responses (Cohen et al., 2017; Kriegeskorte & Kievit, 2013;

Kriegeskorte, Mur, & Bandettini, 2008; Norman, Polyn, Detre,

& Haxby, 2006). While most prevalent in studies of the

ventral visual stream (e.g., Haxby et al., 2001), several fMRI

studies of adults have used multivariate methods to discover

featuresofmental states that evokedistinctpatternsofactivity

in ToM brain regions (Carter, Bowling, Reeck, & Huettel, 2012;

Koster-Hale, Bedny, & Saxe, 2014; Koster-Hale et al., 2017;

Koster-Hale, Saxe, Dungan, & Young, 2013; Tamir, Thornton,

Contreras, & Mitchell, 2016), and to test hypotheses about the

content and structure of representations about other people

(Hassabis et al., 2013; Thornton & Mitchell, 2017a; 2017b), and

their emotions (Jastorff, Huang, Giese, & Vandenbulcke, 2015;

Kim et al., 2015; Peelen, Atkinson, & Vuilleumier, 2010;

Thornton, Weaverdyck, & Tamir, 2019). For example, Skerry

and Saxe (2015) identified three plausible models for the orga-

nization of emotion representations, based on prior research:

emotion representations could be organized by (1) valence and

arousal [the “circumplex”model (Barrett, 2006; Russell, 1980)],

(2) six “basic” emotions (Cohenet al., 2017;Du, Tao,&Martinez,

2014; Ekman, 1992), or (3) abstract event appraisals [e.g., “Did a

https://doi.org/10.1016/j.cortex.2019.11.021
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character’s emotion involve an event that would or might

occur in the future?”; “Did this situation involve a change in

(character’s) knowledge or belief about something?”

(Ellsworth, 2013; Scherer, 1999, pp. 637e663)]. They found that

response patterns in ToM brain regions were best captured by

the appraisal model. Neural responses in ToM brain regions to

20 distinct emotions could be classified successfully using this

model (Skerry & Saxe, 2015).

To date, though, similar methods have not been applied to

capture conceptual change during development. Pediatric

fMRI studies typically use univariate measures, like the

magnitude and selectivity of the response in ToM brain re-

gions. By age three, ToM brain regions are functionally distinct

e they are more correlated with other ToM brain regions than

with regions in other functional networks (Richardson et al.,

2018; Xiao, Geng, Riggins, Chen, & Redcay, 2019). Responses

in ToM brain regions gradually become more selective for

reasoning about mental states, relative to non-mentalistic

social descriptions (Gweon, Dodell-Feder, Bedny, & Saxe,

2012; Saxe, Whitfield-Gabrieli, Scholz, & Pelphrey, 2009) and

bodily sensations, like pain, during childhood (Richardson

et al., 2018) and adolescence (Richardson, 2019). Increasing

sensitivity to category boundaries e i.e., the distinction be-

tween preferred and non-preferred stimuli e appears to be

one aspect of developmental change in ToM brain regions.

Can multivariate approaches capture developmental change

or differences in the (within-category) structure of mental

state representations?

Initial evidence suggesting that multivariate approaches

may be sensitive to differences in the structure of mental

state representations comes from studies of adults diag-

nosed with Autism Spectrum Disorder (ASD), which is a

neurodevelopmental disorder characterized by enduring

and disproportionate deficits in social and communicative

skills (American Psychiatric Association, 2013). While so-

cial cognitive deficits are a diagnostic feature of this dis-

order, and several behavioral studies find evidence for

disproportionate deficits on social cognitive tasks in in-

dividuals with ASD (e.g., Baron-Cohen, 2000), there is also

evidence for variability in the extent of social cognitive

deficits, as captured by behavioral tasks (Byrge, Dubois,

Tyszka, Adolphs, & Kennedy, 2015; Lombardo et al., 2016;

Pierce et al., 2016). And, despite substantial effort, robust,

replicable neural correlates of ASD remain elusive (for re-

views, see Pelphrey, Shultz, Hudac, & Vander Wyk, 2011;

Pelphrey, Adolphs, & Morris, 2004). For example, a recent

large-scale study did not find any differences in a range of

structural brain measures (e.g., cortical thickness, area,

and volume, and cerebellar-subcortical measures) between

individuals with ASD (n ¼ 925, 5e64 years old) and healthy

controls (Kaufmann et al., 2019). Similarly, in a relatively

large sample of adults, Dufour et al. (2013) did not find any

differences in univariate responses in ToM brain regions

between neurotypical adults (n ¼ 462) and adults diagnosed

with ASD (n ¼ 31) during a ToM task (Dufour et al., 2013).

A few studies suggest that multivariate analyses may be

more sensitive to neural correlates of social deficits in ASD

than traditional fMRI analyses. Koster-Hale et al. (2013)

measured response patterns in social brain regions in

neurotypical (NT) adults and adults with ASD as they read
narratives in which someone caused harm to another in-

dividual. In NT adults, distinct response patterns were

evoked for harm caused accidentally versus intentionally

in RTPJ. That is e responses in the RTPJ to stories in which

an individual caused harm intentionally looked more

similar to responses to other stories that described inten-

tional harm, relative to those that described accidental

harm. This distinction was not present in the response

pattern in adults diagnosed with ASD (Koster-Hale et al.,

2013). Other studies have provided evidence for disrupted

response patterns in ASD during attention and mentalizing

tasks (Gilbert, Meuwese, Towgood, Frith, & Burgess, 2009),

and for a correlation between symptom severity and clas-

sification of faces (versus houses) based on response pat-

terns in the fusiform gyrus (Coutanche, Thompson-Schill,

& Schultz, 2011). Note, though, that in another study,

multivariate analyses failed to find differences in response

patterns between neurotypical adults and adults with ASD

during spontaneous processing of emotional facial ex-

pressions (Kliemann et al., 2018). Still, multivariate

measures of within-category representations could plau-

sibly be more sensitive measures of differences in con-

ceptual representation, both in neurotypical development

and in ASD.

Here, we conducted opportunistic analyses of two previ-

ously collected pediatric fMRI datasets in order to test whether

multivariate approaches are sensitive to the rich within-

category structure of mental state representations in chil-

dren. We used representational dissimilarity matrices (RDMs;

Kriegeskorte et al., 2008) in order to measure the pairwise

dissimilarity between responses to 24 unique, orally pre-

sented child-directed story stimuli originally written to fall

into three experimental conditions: Mental (containing

explicit descriptions of characters’ mental states: beliefs, de-

sires, emotions), Social (containing descriptions of people and

their relationships, but not mental states), and Physical

(containing descriptions of causal events in the world, but not

people), in brain regions preferentially recruited for mental

state reasoning. We then constructed four a priori model

RDMs that captured dissimilarity between the stories ac-

cording to (1) experimenter-generated condition labels

(Mental, Social, Physical), (2) emotion content, (3) linguistic

features, and (4) narrative features. We chose to use relatively

simple ToM-relevant models given the content of the story

stimuli, which were written for prior studies and not designed

to isolate or vary by ToM-relevant features, and given other

methodological limitations of our experiment (at most 24

unique, and complex, story stimuli, with no repetitions, per

participant).

Our overarching goal was to test whether multivariate

patterns (a proxy for representations) in ToM brain regions

change with age, correlate with ToM task performance, and

vary by ASD diagnostic status, in childhood. In Experiment 1,

we tested whether this experimental paradigm (24 stimuli,

each presented only once) allowed for any meaningful mea-

surement of neural population patterns (RDMs). We tested

the hypothesis that condition label and emotion models

would capture response dissimilarity in ToM brain regions e

specifically the right temporoparietal junction e better then

the control (linguistic, narrative) models, and tested for

https://doi.org/10.1016/j.cortex.2019.11.021
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developmental differences between children (n ¼ 20, 5e12

years old) and adults (n ¼ 37). Our a priori region of interest

was RTPJ, given the highly selective response profile in adults

(e.g., Saxe & Powell, 2006), and prior evidence that develop-

mental change in response selectivity correlates with ToM

task performance in childhood (Gweon et al., 2012). We

additionally conducted exploratory analyses in the full ToM

network [left TPJ, precuneus (PC), and middle medial pre-

frontal cortex (MMPFC)]. We also explored multiple possible

models of neural activity patterns: two motivated by a prior

fMRI study of emotion representations in adults (Skerry &

Saxe, 2015): a circumplex model (Barrett, 2006; Russell,

1980) and an event appraisal model (Ellsworth, 2013;

Scherer, 1999, pp. 637e663), and two that included both

condition and emotion features, in a fixed or weighted

fashion (Khaligh-Razavi, Henriksson, Kay, & Kriegeskorte,

2017). In Experiment 2, we repeated analyses from Experi-

ment 1 in a large sample of neurotypical children (n ¼ 76,

5e12 years old), as well as a smaller sample of children

diagnosed with Autism Spectrum Disorder (ASD; n ¼ 29, 5e12

years old). We tested for developmental change in model fits

with age and with ToM behavioral score in the neurotypical

sample (given the relatively large sample size), and sepa-

rately tested for disrupted or disordered response patterns in

children diagnosed with ASD.
2. Methods

2.1. Preregistration

In addition to reporting information about our participant

demographics, tasks, and analyses, we report how we deter-

mined our sample size, all data exclusions, all inclusion/

exclusion criteria, whether inclusion/exclusion criteria were

established prior to data analysis, all manipulations, and all

measures in the study.

Because this study involved conducting opportunistic an-

alyses of datasets collected between 2009 and 2012, the study

procedures were not pre-registered. However, the study pro-

cedures in Experiment 2 directly replicated those initially

designed for and used in Experiment 1 (Gweon et al., 2012). In

order to constrain analysis decisions and to make specific

procedures and hypotheses clear, study analyses were pre-

registered via the Open Science Framework (OSF; https://osf.

io/wzd8a; includes preprocessing procedures, region of in-

terest selection and definition, motion exclusion and treat-

ment procedures, calculation of neural response similarity;

Asendorpf et al., 2013; Munaf�o et al., 2017). Analyses were

pre-registered specifically for the large sample of neurotypical

children (Experiment 2). Exploratory and unplanned analyses

are specifically marked as such in the results section, and

discrepancies are detailed in the Supplementary Materials.

2.2. Participants

The current study involved conducting opportunistic ana-

lyses on previously acquired datasets. As such, sample sizes

in the current study were determined based on the number

of participants collected for multiple previously conducted
studies and pre-registered thresholds for participant exclu-

sion. Sample sizes for the previous studies were not pre-

registered, and were determined based on sample size

standards at the time (i.e., 2009e2012) and availability of

eligible participants.

Experiment 1 was conducted on a previously collected

sample of neurotypical adults (n ¼ 37, 18e65 years old) and

children [n ¼ 20 5.1e11.5 year olds, M(SD) age ¼ 8.5(1.8) years,

10 females, 1 left-handed] who completed the story fMRI task.

Adults were initially recruited for different studies, and

included sighted and right-handed individuals (n ¼ 24) and

congenitally blind individuals (n ¼ 13, 3 left-handed, 2 ambi-

dextrous but right hand preferred). A subset of the sighted

adults (n ¼ 16) wore a blindfold during the scan because they

were recruited as a control sample for studies on plasticity in

the visual cortex in individuals who are blind. Results of uni-

variate analyses of the children and adults in Experiment 1

have been previously published (Bedny, Richardson, & Saxe,

2015; Gweon et al., 2012).

Experiment 2 participants were 76 neurotypical children

[NT; 16 females, M(SD) age ¼ 8.6(2.0) years, range: 5.3e12.6

years, handedness: 4 left-handed, 1 ambidextrous, 10 NA], and

29 children diagnosed with Autism Spectrum Disorder [ASD; 4

females, M(SD) age ¼ 9.5(1.7), range: 5.6e12.9 years, handed-

ness: 3 left-handed, 1 ambidextrous, 4 NA]. Criteria for ASD

status included both a clinical diagnosis of autism, Asperger’s,

or PDD-NOS (DSM-IV) by a specialist in neurodevelopmental

disorders, and a classification of ‘autism’ or ‘autism spectrum

disorder’ on the Autism Diagnostic Observation Schedule

(ADOS; Lord et al., 2000) conducted by a research-reliable

administrator. All children who participated in Experiment 2

had a standardized IQ score >80, as measured by the non-

verbal Kaufman Brief Intelligence Test (KBIT-2; Kaufman,

1997). An additional 7 neurotypical children and 25 children

diagnosed with ASD were recruited but excluded from ana-

lyses due to not completing at least two functional runs of the

fMRI experiment (n ¼ 3 NT, n ¼ 7 ASD), excessive motion

during the scan (n¼ 4 NT, n¼ 17 ASD), or incidental findings in

the structural MRI data (n ¼ 1 ASD). Experiment 2 data have

not previously been published.

Neurotypical children were recruited using local

parenting listservs, promotional activities, and flyers at li-

braries and museums. Children diagnosed with ASD were

recruited using existing clinical databases (Simons Simplex

Collection, SFARI, Autism Consortium). All participants

were recruited from the New England area, were native

speakers of English, and had no other known neurological

or cognitive disabilities. All children gave written assent,

and their parents gave written informed consent, in

accordance with the requirements of the Committee on the

Usage of Humans as Experimental Subjects at MIT.

2.3. Behavioral battery

Child participants completed a custom-made theory of mind

behavioral battery. This task assessed participants’ ability to

make predictions and provide explanations about the beliefs,

desires, actions, and emotions of various characters in a story.

The ToM concepts included in this booklet were largely drawn

from work describing the successive ToM achievements in

https://osf.io/wzd8a
https://osf.io/wzd8a
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early childhood (Wellman & Liu, 2004), with the addition of

questions involving reasoning about moral blameworthiness.

ToM booklet stimuli are available via OSF (“Booklet 1” on

https://osf.io/cbw6f/), and have been described in a prior study

(Gweon et al., 2012). The ToM behavioral battery was video-

recorded and coded offline by an undergraduate research as-

sistant; the summary score of this measure is calculated as

the proportion of questions answered correctly.

Experiment 2 participants additionally completed a mea-

sure of non-verbal IQ (KBIT-II Matrices task; Kaufman, 1997).

Age-standardized IQ scores were calculated based on the

provided protocol.

2.4. FMRI experiment

Participants listened to English stories involving characters

and their mental states (Mental condition), characters and

their appearance or social relationships (Social condition), or

descriptions of physical objects and events in the world

(Physical condition). This experimental paradigm was

designed for use with children, and has been described in

prior publications (Bedny et al., 2015; Gweon et al., 2012). The

story stimuli are publicly available (https://osf.io/cbw6f/).

Each story was read by one of three female speakers in child-

directed prosody. Stories were matched across condition for

number of words (M ¼ 52.5 words), number of sentences (4.7),

length (20s), and Flesch Reading Ease Level (M ¼ 85.7). Story

properties were quantified using CohMetrix (http://tool.

cohmetrix.com/; McNamara, Louwerse, Cai,& Graesser, 2013).

After each story (20s), participants were asked, “Does this

come next?” (1.5s) They then heard a clip containing the story

ending or the ending of an unrelated story (3s), followed by an

6.5s pause during which they responded to the prompt by

pushing one of two buttons (“Yes” or “No”). This was followed

by an encouragement clip: “Way to go!” for correct responses,

or “Let’s try another!” for incorrect responses (5s). Half of the

presented stories were followed by the correct ending (“Yes”

response). Incorrect endings were drawn randomly from all

other English story conditions. Analyses of the fMRI data

including only hemodynamic responses during the initial 20s

story.

Stimuli were presented in Matlab 7.6 (Exp. 1) or Matlab

2010a (Exp. 2) running on an Apple MacBook Pro. Participants

heard 24 stories (8 per condition) across four 6.6-min runs.

Participants also heard 8 clips of instrumental music and 8

stories read in a foreign language; these conditions were

excluded from the present analyses. Each run included ten

36s blocks (2 per condition), as well as 12s of rest at the

beginning, halfway point, and end. The order of conditions in

each run was palindromic [e.g., (rest) A B C D E (rest) E D C B A

(rest)] and counterbalanced across runs. Stories were coun-

terbalanced across runs and participants. A colorful swirl

image was presented visually during the stories, as well as

during the rest period. During the prompt, story ending, and

response portion of the experiment, an image of a check (left)

and an “X” (right) was displayed to encourage participants to

answer the question, and to remind them which buttons

corresponded to “yes” and “no” answers. Participants were

introduced to the task and completed five practice trials prior

to the scan.
During the scan, child participants were monitored by an

experimenter in the control room and a second experimenter

who stood next to the scanner bore. If the participant moved

noticeably during the scan, this experimenter would place her

hand on the child’s leg, as a reminder to stay still.

Attention to the storieswas verified bymeasuring accuracy

(proportion of questions answered correctly) on the “Does this

come next?” task. Accuracy was calculated using trials from

included functional runs and conditions only (trials from runs

excluded due to excessivemotion were not analyzed). Overall,

participants performed well on this task, indicating good

attention to the stories [M(SE) Accuracy Exp. 1: Children:

.92(.02), Adults: .99(.004); Exp. 2: NT Children: .88(.02), ASD

Children: .90(.03)]. In Experiment 1, adults weremore accurate

than children (effect of age: b ¼ �.76, t ¼ �4.2, p ¼ .0001); there

were no effects of condition (bs<|.14|, ts<|.1|, ps>.3) and the

condition-by-age group interaction was not significant. In

Experiment 2, there was a significant positive effect of age on

performance among neurotypical children (n ¼ 76; b ¼ .39,

t ¼ 4.7, p ¼ 1.2 � 10�5), no effect of condition (bs < .13, ts<1.1,
ps>.3), and no significant condition-by-age interactions. In the

full sample, there was no main effect of group (NT vs ASD:

b ¼ �.11, t ¼ �.59, p ¼ .56) or condition (bs < |.09|, ts < |1|,

ps > .3), and the group-by-condition interactions were not

significant.

2.5. FMRI data acquisition

Prior to the fMRI scan, child participants watched a movie of

their choice in a mock scanner while practicing lying still on

their back and listening to a recording of scanner sounds for

10e15 min. If participants moved during the mock scan, their

movie paused for three seconds, reminding and training

them to stay still. Mock scanning often reduces participant

motion, especially among pediatric samples (de Bie et al.,

2010).

Whole-brain structural and functional MRI data were ac-

quired on a 3-T Siemens Tim Trio scanner located at the

Athinoula A. Martinos Imaging Center at MIT. Experiment 1

participants used the standard Siemen’s 12-channel head

coil. Experiment 2 participants used one of two custom 32-

channel phased-array head coils made for younger (n ¼ 18

NT, n ¼ 4 ASD) or older (n ¼ 37 NT, n ¼ 20 ASD) children (Keil

et al., 2011) or the standard Siemens 32-channel head coil

(n ¼ 19 NT, n ¼ 4 ASD; coil information not available for n ¼ 2

NT, n ¼ 1 ASD). T1-weighted structural images were collected

in 128 (Exp. 1) or 176 (Exp. 2) interleaved sagittal slices with

1.33 mm (Exp. 1) or 1 mm isotropic voxels (Exp. 2; GRAPPA

parallel imaging, acceleration factor of 3; adult coil: FOV:

256 mm; pediatric coils: FOV: 192 mm). Functional data were

collected with a gradient-echo EPI sequence sensitive to

Blood Oxygen Level Dependent (BOLD) contrast in

3 � 3 � 4mm (Exp. 1) or 3 mm isotropic (Exp. 2) voxels in 30

(Exp. 1) or 32 (Exp. 2) interleaved near-axial slices aligned

with the anterior/posterior commissure, and covering the

whole brain (EPI factor: 64; TR: 2s, TE: 30 msec, flip angle: 90�).
Prospective acquisition correction was used to adjust the

positions of the gradients based on the participant’s head

motion one TR back (Thesen, Heid, Mueller, & Schad, 2000).

198 volumes were acquired in each run, and functional data

https://osf.io/cbw6f/
https://osf.io/cbw6f/
http://tool.cohmetrix.com/
http://tool.cohmetrix.com/
https://doi.org/10.1016/j.cortex.2019.11.021
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were acquired across four runs. Four dummy scans were

collected to allow for steady-state magnetization.

2.6. FMRI data analysis

2.6.1. Preprocessing
All preprocessing decisions, including procedures for

excluding timepoints and participants due to motion, were

pre-registered. FMRI data were analyzed using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm) and custom software written in

Matlab. Functional imageswere registered to the first image of

the first run; that image was registered to each participant’s

anatomical scan, and each participant’s anatomical scan was

normalized to a common brain space (Montreal Neurological

Institute (MNI) template). All data were smoothed using a

Gaussian filter (5 mm kernel).

Motion artifact timepoints were identified using the ART

toolbox (https://www.nitrc.org/projects/artifact_detect/;

Whitfield-Gabrieli, Nieto-Castanon, & Ghosh, 2011) as time-

points for which there was 1) more than 2 mm of motion in

any direction relative to the previous timepoint or 2) a fluc-

tuation in global signal that exceeded a threshold of three

standard deviations from the mean global signal. Runs were

excluded from analyses if one-third or more of the timepoints

collected were identified as motion artifact timepoints, and

participants were excluded from all analyses if they had fewer

than two runs of usable data (Exp. 2: n ¼ 4 NT, n ¼ 17 ASD). In

both experiments, the total number of motion artifact time-

points was highly correlated with mean translation (hence-

forth, “motion”) e i.e., the average amount of motion (mm) in

x, y, z directions between each image, including images

identified as motion artifacts (Exp. 1: r ¼ .58, p ¼ 2.8 � 10�6,

Exp. 2: r ¼ .75, p < 2.2 � 10�16).

We tested whether motion differed by variables of interest

in each experiment. In Experiment 1, motion did not differ by

age group [M(SD) Children ¼ .12(.06), Adult ¼ .10(.04), Cohen’s

d ¼ �.39 (small)]. In Experiment 2, motion was uncorrelated

with age and ToM among neurotypical children [age:

r(74) ¼ e.14; ToM: r(73) ¼ .13], and did not differ between NT

children and children with ASD [M(SD) NT ¼ .15(.07),

ASD ¼ .14(.07), Cohen’s d ¼ �.04 (negligible)]. See

Supplementary Figure 1 for a visualization of motion by

experiment and sample, and Supplementary Table 1 for

amount ofmotion per participant in Experiment 2. Despite not

differing by the variables of interest (age, group), motion was

included as a covariate in all linear regression models that

tested for between-subject and between-group differences in

model fits. Note that any within-subject or within-group

comparison of model fits cannot be driven by motion, as the

models are fit to the exact same neural data.

A final strategy for combating potential contamination of

motion artifact was to generate five aCompCor regressors

(Behzadi, Restom, Liau, & Liu, 2007) from individual white

matter masks (eroded by two voxels, to avoid partial

voluming), and to include these regressors in the models that

estimated betas per item and condition (see section 2.6.2,

below). FMRI data were high-pass filtered (threshold: 1 cycle/

128 sec) in order to remove low-frequency fluctuations in the

fMRI signal, after interpolating over artifact timepoints (Carp,

2013; Hallquist, Hwang, & Luna, 2013).
2.6.2. Models for multivariate and univariate analyses
We used two general-linear models to analyze BOLD activity

of each participant as a function of (1) item, for multivariate

analyses, and (2) condition, for supplementary univariate

analyses. Data were modeled in SPM8 using a standard he-

modynamic response function (HRF). Boxcar regressors for

each (1) item or (2) condition were convolved with the stan-

dard HRF, and nuisance covariates were included for run ef-

fects, motion artifact timepoints, and signals of no interest

(five aCompCor regressors; Behzadi et al., 2007).
2.6.3. Defining individual regions of interest
Given the small amount of data per participant, and the high

dimensionality of fMRI data, feature selection was used to

identify voxels likely to contain relevant information (De

Martino et al., 2008; Pereira, Mitchell, & Botvinick, 2009).

Within each ROI search space, we defined individual ROIs as

the 80 voxels with the highest T-value to an all stories

(MSP) > rest contrast, within 10mmsphere hypothesis spaces.

This univariate selection procedure helps to eliminate high-

variance, noisy voxels (Mitchell et al., 2004), eliminates dif-

ferences in the number of voxels across ROIs and participants,

and is orthogonal to subsequent multivariate analyses. The

choice of 80 voxels was pre-registered (https://osf.io/wzd8a)

and based on prior work that conductedmultivariate analyses

to characterize responses in ToM brain regions (Kliemann

et al., 2018; Skerry & Saxe, 2014). Hypothesis spaces were

10 mm spheres drawn around peak coordinates for 462 neu-

rotypical adults to a theory ofmind localizer task, as described

in Dufour et al., 2013. These hypothesis spaces are publicly

available for download (http://saxelab.mit.edu/use-our-

theory-mind-group-maps).
2.6.4. Neural representational dissimilarity matrices
We calculated a neural representational dissimilarity matrix

(RDM) for the story stimuli (n ¼ 24), per subject and region of

interest (bilateral TPJ, MMPFC, and PC). To do so, we extracted

T-values from each voxel within each ROI to each item, and

calculated the Euclidean distance (square root of distance*-

distance) between each pair of stories, across all voxels.

Extracting T-values (rather than beta estimates) increases

classification performance of linear support vector machines

(Misaki, Kim, Bandettini, & Kriegeskorte, 2010) and effectively

noise-normalizes the neural RDM (Walther et al., 2016). We

normalized each subject’s RDM by subtracting the minimum

and dividing by the range of values, per subject. See

Supplementary Figure 2 for a visualization of average neural

RDMs per experiment, sample, and ROI.

The noise ceiling was calculated per region of interest and

experiment by creating an average neural RDM across all but

one participant (per experiment), calculating the Kendall tau

correlation between this average RDM and the neural RDM

from the left out participant, and iterating across participants.

Regions in which the noise ceiling was significantly above

chance in Experiment 2 (n ¼ 105) were included in statistical

analyses; this resulted in excluding DMPFC and VMPFC (see

Supplementary Figure 3 for noise ceilings per ToM ROI,

experiment, and sample). Importantly, the noise ceiling did

not differ by variables of interest in either experiment: in

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://www.nitrc.org/projects/artifact_detect/
https://osf.io/wzd8a
http://saxelab.mit.edu/use-our-theory-mind-group-maps
http://saxelab.mit.edu/use-our-theory-mind-group-maps
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Experiment 1, the noise ceiling did not differ by age group

[RTPJ:effect of age group: b ¼ .23, t ¼ .80, p ¼ .43, effect of

motion: b ¼ .03, t ¼ .25, p ¼ .81;all analyzed ROIs:effect of age

group: b ¼ .04, t ¼ .30, p ¼ .76, effect of ROI (LTPJ): b ¼ �.05,

t ¼ �.29, p ¼ .77, effect of ROI (PC): b ¼ .35, t ¼ 2.0, p ¼ .049,

effect of ROI (MMPFC): b ¼ �.54, t ¼ �3.1, p ¼ .003, effect of

motion: b ¼ �.07, t ¼ �1.1, p ¼ .30, no group-by-ROI in-

teractions]. In Experiment 2, the noise ceiling did not differ by

age or ToM among neurotypical children [RTPJ:effect of age:

b ¼ .03, t ¼ .29, p ¼ .78, effect of motion: b ¼ �.28, t ¼ �2.5,

p ¼ .01, no age-by-motion interaction; effect of ToM: b ¼ .06,

t ¼ .56, p ¼ .58, effect of motion: b ¼ �.32, t ¼ �2.8, p ¼ .007, no

ToM-by-motion interaction;all analyzed ROIs:effect of age:

b ¼ .08, t ¼ 1.2, p ¼ .25, effects of ROIs: bs<|.16|, ts<|1.2|, ps>.2,
effect of motion: b ¼ �.19, t ¼ �2.6, p ¼ .01, no significant in-

teractions; effect of ToM: b¼ .09, t¼ 1.3, p¼ .21, effects of ROIs:

bs<|.19|, ts<|1.4|, ps>.18, effect of motion: b ¼ �.35, t ¼ �3.0,

p ¼ .003, ROI (MMPFC)-by-motion interaction: b ¼ .32, t ¼ 2.3,

p ¼ .02, all other interactions were non-significant]. The noise

ceiling did not differ between neurotypical children and chil-

dren with ASD (RTPJ:effect of group: b ¼ �.01, t ¼ �.06, p ¼ .95,

effect of motion: b ¼ �.22, t ¼ �2.2, p ¼ .03, no group-by-
Fig. 1 e Model and RTPJ Representational Dissimilarity Matrices

four planned models (top row) and four exploratory models (bott

to 24 unique, orally presented story stimuli. The condition mod

written to fall into (Mental, Social, Physical). Stories were rated

posted on Amazon’s Mechanical Turk, and linguistic features w

model that uses both emotion and condition features to repres

Emotion-Condition) used a non-negative least squares algorithm

best predict the average neural RDM in the Experiment 1 samp

dissimilarity scale ranges from 0 (similar) to 1 (dissimilar). b) A
motion interactions; all analyzed ROIs: effect of group:

b¼ .11, t¼ .80, p¼ .42, effects of ROIs: bs < |.14|, ts < |1.2|, ps >.2,
effect of motion: b ¼ �.19, t ¼ �3.1, p ¼ .002, no significant

interactions). This suggests that age, ToM, and group effects

on model fits are unlikely to be driven by differences in the

reliability of the neural RDMs.

2.6.5. Departures from preregistered fMRI analyses
FMRI analyses were pre-registered on the Open Science

Framework (OSF; https://osf.io/wzd8a). Based on prior studies

relating neural development to theory of mind in children

(Gweon et al., 2012; Sabbagh, Bowman, Evraire,& Ito, 2009), we

planned to conduct our primary fMRI analyses on right tem-

poroparietal junction (RTPJ) and dorsomedial prefrontal cor-

tex (DMPFC), and to conduct exploratory analyses of

responses in other ToM brain regions. However, upon calcu-

lating the noise ceiling for each ToM brain region and sample,

we found that we could not reliably estimatemodel fits to data

extracted from DMPFC or VMPFC (Supplementary Figure 3).

Subsequent statistical analyses of the model fits for these re-

gions were not conducted; though see Supplementary Figures

6, 8, and 10 for a visualization of model fits in these regions.
(RDMs). a) Model RDMs. We measured the extent to which

om row) captured dissimilarity in neural response patterns

el reflected the conditions that the stimuli were originally

on emotion, circumplex, and appraisal features in studies

ere measured using CohMetrix. The “EC” model refers to a

ent dissimilarity across stories. The WEC (Weighted

to weight each emotion and condition feature, in order to

le (per ROI; the RTPJ-derived model is shown here). The

verage RTPJ RDMs, per experiment and sample.

https://osf.io/wzd8a
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Additional departures from the pre-registered analyses are

described in the Supplemental Materials.

2.7. Model representational dissimilarity matrices
(RDMs)

2.7.1. Planned model RDMs
To test whether ToM-relevant features capture the pattern of

activity (and developmental change) in ToM brain regions, we

created a two model RDMs: (1) a condition label RDM, which

reflected binary Mental, Social, and Physical condition labels,

and (2) an emotion feature RDM, which used adult Amazon’s

Mechanical Turk ratings of seven emotions: embarrassed,

joyful, surprised, angry, disappointed, afraid, and hopeful. We

compared the fit of these RDMs to two control models: (1) a

linguistic features RDM, created using Coh-Metrix (http://tool.

cohmetrix.com/; McNamara et al., 2013) ratings of three lin-

guistic features: (1) word count, (2) number ofwords before the

main verb (a measure of syntactic simplicity, and often

correlated with working memory demands), and (3)

concreteness (a measure of semantic cohesion/ease of un-

derstanding), and (2) a narrative features RDM, created using

adult MTurk ratings of three narrative features: engagingness,

ease of imagination or visualization, and amount of magic/

fantasy. See Fig. 1 for a visualization of the models.

Emotion and narrative feature ratings were acquired via

Amazon’s Mechanical Turk. Adults (n ¼ 25 unique workers)

read a single story per “HIT,” and were asked to use a Likert

scale (1e7) to indicate “How much does someone in the story

feel [emotion]?” A single HIT asked a worker to rate all seven

emotions per story. The order of emotions was randomized

across the 24 stories/HITs.Workerswere then asked to rate (in

order): (1) “How engaging was the story?”, (2) “How easy was it

to imagine or visualize the story?”, and (3) “To what extent

does this story involve magic and/or fantasy?”. Finally,

workers were prompted to type the second-to-last word of the

story into a blank box; ratings were analyzed if workers

passed this quality control item. Workers were allowed to

provide ratings for as many of the (24) stories as they wanted,

and completed an average of 15 HITs (standard

deviation ¼ 9.4). Each story was rated by 14e16 unique

workers [M(SD) ¼ 15.6(.58)].

Adult emotion and narrative feature ratings were used

such that the model RDMs theoretically reflected the mature

representational dissimilarity space of the story stimuli.

Therefore, we expected that developmental change among

children would manifest as increases in the fit of the neural

RDMs to the condition and emotion models, with age.

Model RDMs, like neural RDMs, were generated by calcu-

lating the Euclidean distance between each story across all

ratings/features, and normalizing this distance. Our a priori

RDMs were at most moderately positively correlated (Cond-

Emo: r ¼ .16, Cond-Ling: r ¼ .02, Cond-Narr: r ¼ �.03, Emo-

Ling: r ¼ .13, Emo-Narr: r ¼ .12, Ling-Narr: r ¼ .09; see

Supplementary Figure 4 for correlations between all planned

and exploratory model RDMs).

2.7.2. Exploratory model RDMs
We additionally constructed four exploratory model RDMs

after conducting initial analyses using the a priori models in
Experiment 1, in order to determine if we could find a model

that better captured response patterns in ToM brain regions,

and that was more sensitive to developmental change with

age (Fig. 1). The four exploratory models included two based

on a prior fMRI study in adults (Skerry & Saxe, 2015): (1) a

circumplex model based on valence and arousal features

(Barrett, 2006; Russell, 1980), and (2) an emotion appraisal

model based on 38 emotion appraisal features (Ellsworth,

2013; Scherer, 1999, pp. 637e663). Valence, arousal, and

emotion appraisal features were acquired via an independent

Amazon’s Mechanical Turk study. Adults (n ¼ 81 unique

workers) read a single story per “HIT”, and used a Likert scale

(1e7) to rate 38 emotion appraisal statements, as well as

valence and arousal. Workers could provide ratings for as

many of the stories as they wanted, and rated 7 stories on

average (standard deviation ¼ 8.0). Each story was rated by

21e25 unique workers [M(SD) ¼ 24.4(.1.1)]. Because the fMRI

stimuli used here were not developed with these features in

mind, and the features are quite specific (e.g., “Did this story

involve events consistent with a character’s personality or

self-concept?”), we calculated the split-half reliability of rat-

ings across 100 random split-half iterations, per feature, and

only included features that had good reliability (mean r > .8;

34/38 emotion appraisal features and 2/2 circumplex features)

in the emotion appraisal and circumplex RDMs.

The other two exploratory models were constructed based

on the a priori condition and emotion models. Given that

these two models explained some variance in neural re-

sponses and outperformed the control models in Experiment

1, and were only moderately positively correlated (r ¼ .16), we

hypothesized that an optimal combination of the features

from each might explain the most variance in neural re-

sponses. We constructed an exploratory RDM using both

emotion (7) and condition (3) features [a “Emotion-Condition”

(EC) model], and a weighted emotion-condition (WEC) model

(Khaligh-Razavi et al., 2017), using a non-negative least

squares algorithm (Jozwik, Kriegeskorte, & Mur, 2016) to find

single-dimension RDM weights that best predicted the

average neural RDM, per ROI, in the Experiment 1 sample.

Weights were estimated iteratively on 22/24 stimuli, predict-

ing the fit on the left out 2 stimuli. See Supplementary Figure 5

for a visualization of features.

2.8. Statistical analyses

2.8.1. Individual region of interest analyses
First, we compared each model RDM’s fit to the RDM of the a

priori ROI (RTPJ) to chance (0), using one-tailed Wilcoxon

signed rank tests. We subsequently directly compared the fit

of different models, first in the RTPJ (using Wilcoxon signed

rank tests), and then in mixed effects linear regressions that

included data from all ROIs (R/LTPJ, PC, MMPFC) and tested for

a main effect of and interaction by ROI. Non-significant

interaction terms were removed from regressions. These re-

gressions included subject ID as a random effect, in order to

account for non-independence of data across ROIs.

In Experiment 1, we tested for age-related change by

directly comparing model fits across children (n ¼ 20) and

adults (n ¼ 37). In Experiment 2, we (i) conducted sensitive

tests for age- and ToM-related change in model fits in a large

http://tool.cohmetrix.com/
http://tool.cohmetrix.com/
https://doi.org/10.1016/j.cortex.2019.11.021
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sample of neurotypical children (n ¼ 76; using continuous

variables for age and ToM), and (ii) tested for a group differ-

ence inmodel fits between neurotypical children and children

diagnosed with Autism Spectrum Disorder (n ¼ 29).

2.8.2. Exploratory searchlight analysis
We conducted a searchlight analysis in the combined neuro-

typical child sample (n ¼ 96, across Exp. 1 and Exp. 2) to

complement the ROI analyses, and to ensure that unpredicted

effects did not go unnoticed.We defined a 9mm radius sphere

surrounding every voxel within a grey matter mask (125575

spheres total), and identified the 80 voxels with the highest t-

values to the all stories (Mental/Social/Physical) > Rest

contrast within each sphere. We extracted T-values from

these 80 voxels to each item, and calculated the Euclidean

distance between each pair of stories, across voxels, and

normalized the resulting RDM.We then calculated the Kendall

tau correlation between each neural RDM and the condition
Table 1 e Statistical Results for Direct Comparisons of Model Fit
values, t-values, and p-values) for linear mixed-effects regressio
models (Condition, Emotion) to the control models (Linguistic, N
each other. Regressions tested for an effect of model (e.g., Cond
which indicate fit to neural RDMs, and included region of intere
(RTPJ) was the reference ROI. Regressions also tested for signific
terms were removed from regressions (greyed cells). Significant

Condition vs Linguistic Experiment 1

Model (Ling) b ¼ e.46, t ¼ e5.3, p ¼ 1.8 � 10¡7

ROI (LTPJ) b ¼ .01,t ¼ .09, p ¼ .93

ROI (MMPFC) b ¼ �.09, t ¼ �.73, p ¼ .47

ROI (PC) b ¼ .18, t ¼ 1.5, p ¼ .14

Model (Ling) � ROI (LTPJ)

Model (Ling) � ROI (MMPFC)

Model (Ling) � ROI (PC)

Condition vs Narrative Experiment 1

Model (Narr) b ¼ e.65, t ¼ e7.5, p ¼ 3.1 � 10¡13

ROI (LTPJ) b ¼ .08, t ¼ .63, p ¼ .53

ROI (MMPFC) b ¼ .12, t ¼ .97, p ¼ .33

ROI (PC) b ¼ .16, t ¼ 1.3, p ¼ .19

Model (Narr) � ROI (LTPJ)

Model (Narr) � ROI (MMPFC)

Model (Narr) � ROI (PC)

Emotion vs Linguistic Experiment 1

Model (Ling) b ¼ e.43, t ¼ e5.0, p ¼ 7.9 � 10¡7

ROI (LTPJ) b ¼ �.05, t ¼ �.44, p ¼ .66

ROI (MMPFC) b ¼ �.18,t ¼ �1.5, p ¼ .14

ROI (PC) b ¼ �.04, t ¼ �.36, p ¼ .72

Emotion vs Narrative Experiment 1

Model (Narr) b ¼ e.60, t ¼ e7.0, p ¼ 9.7 � 10¡12

ROI (LTPJ) b ¼ �.0006, t ¼ �.005, p ¼ .996

ROI (MMPFC) b ¼ .006, t ¼ .05, p ¼ .96

ROI (PC) b ¼ �.11, t ¼ �.88, p ¼ .38

Condition vs Emotion Experiment 1

Model (Emo) b ¼ �.02, t ¼ �.21, p ¼ .83

ROI (LTPJ) b ¼ �.01, t ¼ �.11, p ¼ .91

ROI (MMPFC) b ¼ �.09, t ¼ �.71, p ¼ .48

ROI (PC) b ¼ �.02, t ¼ �.12, p ¼ .90

Model (Emo) � ROI (LTPJ)

Model (Emo) � ROI (MMPFC)

Model (Emo) � ROI (PC)
and emotion model RDMs. We created an image of the z-

scored Kendall tau correlation values assigned to each voxel

per subject, and conducted a whole-brain random effects

analysis on the resulting images in order to visualize voxels

that show activity correlated with each model. Analyses were

corrected for multiple comparisons by estimating the false-

positive rate via 5,000 Monte Carlo permutations using the

SnPM toolbox for SPM5 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm5/), at p < .05.

2.9. Data and resource availability

Because these data were collected up to ten years ago, and

prior to the normalization of data sharing, the conditions of

our ethics approval did not include public archiving of indi-

vidual raw MRI or behavioral data. That is, participants and

parents of participants did not agree to their data being shared

publicly. Individuals seeking access to any raw data should
s in Experiments 1 and 2. Full statistics (standardized beta
ns comparing the model fit of the planned ToM-relevant
arrative), and comparing the two ToM-relevant models to
ition vs Linguistic) on the Kendall tau correlation values,
st (ROI) as a covariate. The right temporoparietal junction
ant Model-by-ROI interactions; non-significant interaction
results at a p < .05 threshold are shown in bold text.

Experiment 2 (NT) Experiment 2 (ASD)

b ¼ e.40, t ¼ e5.3, p ¼ 1.8 � 10¡7 b ¼ .07, t ¼ .31, p ¼ .76

b ¼ e.23, t ¼ e2.2, p ¼ .03 b ¼ .77, t ¼ 3.2, p ¼ .002

b ¼ �.10, t ¼ �.91, p ¼ .36 b ¼ .43, t ¼ 1.8, p ¼ .08

b ¼ .09, t ¼ .88, p ¼ .38 b ¼ .22, t ¼ .93, p ¼ .35

b ¼ e1.2, t ¼ e3.5, p ¼ .0005

b ¼ e.78, t ¼ e2.3, p ¼ .02

b ¼ �.29, t ¼ �.86, p ¼ .39

Experiment 2 (NT) Experiment 2 (ASD)

b ¼ e.75, t ¼ e5.1, p ¼ 5.5 � 10¡7 b ¼ .04, t ¼ .16, p ¼ .87

b ¼ �.17, t ¼ �1.1, p ¼ .27 b ¼ .89, t ¼ 3.9, p ¼ .0001

b ¼ �.25, t ¼ �1.7, p ¼ .10 b ¼ .50, t ¼ 2.2, p ¼ .03

b ¼ �.05, t ¼ �.32, p ¼ .75 b ¼ .26, t ¼ 1.1, p ¼ .26

b ¼ .28, t ¼ 1.3, p ¼ .18 b ¼ e1.1, t ¼ e3.6, p ¼ .0004

b ¼ .60, t ¼ 2.8, p ¼ .005 b ¼ �.58, t ¼ el.8, p ¼ .07

b ¼ .22, t ¼ 1.1, p ¼ .29 b ¼ �.32, t ¼ �.99, p ¼ .33

Experiment 2 (NT) Experiment 2 (ASD)

b ¼ e.19, t ¼ e2.6, p ¼ .009 b ¼ �.16, t ¼ �1.3, p ¼ .21

b ¼ �.15, t ¼ �1.4, p ¼ .15 b ¼ �.19, t ¼ e1.1, p ¼ .27

b ¼ �.02, t ¼ �.18, p ¼ .86 b ¼ �.19, t ¼ e1.1, p ¼ .28

b ¼ .10, t ¼ 1.0, p ¼ .32 b ¼ �.11, t ¼ �.65, p ¼ .51

Experiment 2 (NT) Experiment 2 (ASD)

b ¼ e.22, t ¼ e3.1, p ¼ .002 b ¼ �.09, t ¼ �.73, p ¼ .47

b ¼ .04, t ¼ .42, p ¼ .68 b ¼ �.11, t ¼ �.61, p ¼ .54

b ¼ .12, t ¼ 1.2, p ¼ .24 b ¼ �.08, t ¼ �.43, p ¼ .67

b ¼ .08, t ¼ .78, p ¼ .44 b ¼ �.12, t ¼ �.67, p ¼ .51

Experiment 2 (NT) Experiment 2 (ASD)

b ¼ e.18, t ¼ e2.3, p ¼ .02 b ¼ .09, t ¼ .41, p ¼ .68

b ¼ �.07, t ¼ �.68, p ¼ .50 b ¼ .74, t ¼ 3.2, p ¼ .002

b ¼ �.13, t ¼ �1.2, p ¼ .24 b ¼ .41, t ¼ 1.8, p ¼ .07

b ¼ �.01, t ¼ �.13, p ¼ .90 b ¼ .21, t ¼ .93, p ¼ .35

b ¼ e.73, t ¼ e2.3, p ¼ .02

b ¼ �.48, t ¼ �1.5, p ¼ .14

b ¼ �.39, t ¼ �1.2, p ¼ .23

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
https://doi.org/10.1016/j.cortex.2019.11.021
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Fig. 2 e Model Fits in Experiment 1. Plots show the mean Kendall tau correlation (y-axis) between each model (x-axis) and

individual neural RDMs, per ROI (RTPJ, LTPJ, PC, MMPFC). Filled squares represent means calculated from adults (n ¼ 37);

open circles represent means calculated from children (n¼ 20). Lines surrounding mean values indicate standard error from

the mean. ToM-relevant (Condition, Emotion) models are shown in red/pink; control (Linguistic, Narrative) models are

shown in blues. The shaded area indicates exploratory models, which included a model based on abstract appraisal

features (App, purple), a circumplex model based on valence and arousal (Circ, yellow), and models that included both

emotion and condition features [EC, hot pink; W (weighted) EC, maroon].
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contact the last author (Rebecca Saxe; saxe@mit.edu). Access

will be granted to individuals who complete a formal data

usage agreement through the Committee on the Use of

Humans as Experimental Subjects (COUHES) atMIT. Summary

data, analysis code, and stimuli are publicly available for

download (https://osf.io/cbw6f/).
3. Results

3.1. Experiment 1

In Experiment 1, we first tested whether the experimental

paradigm allowed for any meaningful measurement of neural

patterns expressed in representational dissimilarity matrices,

given that these were opportunistic re-analyses of existing

data collected on an experiment that was not designed with

multivariate analyses inmind (i.e., relatively few stimuli, with

no repetitions). Despite these limitations, we found evidence

that ToM-relevant features organized neural response pat-

terns in ToM brain regions. In the RTPJ, patterns of neural

activity were correlated with both the condition and emotion

models, significantly better than chance [Wilcoxon Signed-

rank tests, chance ¼ 0;Cond:M(SE) ¼ .03(.01), W ¼ 1130,

p ¼ .003;Emo:.05(.01), W ¼ 1298, p ¼ .0009]; the linguistic and

narrative control models did not differ significantly from

chance[Ling:.003(.01), W¼ 739, p¼ .76;Narr:�.01(.01), W¼ 560,

p ¼ .98]. The emotion and condition models did not differ in

their fit to the RTPJ RDM (W ¼ 648, p ¼ .22; two-tailed). The

condition and emotion models each performed significantly

better than either control model (Cond vs Ling: W ¼ 1120,
p ¼ .004;Cond vs Narr:W ¼ 1225, p ¼ .0003;Emo vs Ling:

W¼ 1241, p¼ .0005;Emo vsNarr:W¼ 1319, p¼ 4.6� 10�5). The

same pattern of results was found across all ToM ROIs (mixed

effects linear regressions, see Table 1 for full statistics). Across

all ROIs, the two ToM-relevantmodels did not differ in their fit

to the neural RDMs (Table 1).

We then tested for group differences in the fit of the two

ToM-relevant feature models, based on age group (adult

vs child). In the RTPJ, there were no differences in the fit of

either model [Cond: M(SE) Adult ¼ .03(.01), Child ¼ .03(.02);

Emo: Adult ¼ .05(.01), Child ¼ .04(.02); effect of age group:

bs < .04, ts<.14, ps>.8; controlling for motion]. Similarly, there

was no effect of age group on the fit of these models across all

ROIs (effects of age group: bs<|.21|, ts<|1.2|, ps>.2, effects of

ROIs: bs<|.25|, ts<|1.4|, ps>.17). However, there was an age-by-

ROI interaction such that the conditionmodel fit was higher in

children, relative to adults, in MMPFC, relative to RTPJ (b ¼ .70,

t ¼ 2.1, p ¼ .04). See Fig. 2.

3.1.1. Exploratory model RDMs
Given the initial results, we exploredwhether a different set of

ToM-relevant features would outperform our a priori models.

We constructed four new exploratorymodels: (1) a circumplex

model based on valence and arousal features (Barrett, 2006;

Russell, 1980), (2) a model based on abstract appraisal fea-

tures of events (Barrett, 2006; Russell, 1980) used in a prior

study of adults (Skerry & Saxe, 2015), (3) a model that used

both emotion and condition features (from the planned

models), and (4) a weighted emotion-condition feature model,

which was constructed by estimating RDM weights for the

three condition labels in addition to the seven emotion

mailto:saxe@mit.edu
https://osf.io/cbw6f/
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features (Khaligh-Razavi et al., 2017). We testedwhether these

models provided better fits of the neural RDMs than the a

priori condition and emotion models, and whether these

models were more sensitive to developmental change in ToM

responses with age.

3.1.2. Circumplex model
The circumplex model did not perform above chance in RTPJ

[M(SE) ¼ e.01(.01), W ¼ 654, p ¼ .92]. In the RTPJ and across all

ROIs, the circumplex model performed significantly worse

than both the condition and emotion models [Cond vs Circ:

RTPJ: W ¼ 1198, p ¼ .001 (two-tailed); all ROIs: b ¼ �.52,

t ¼ �6.0, p ¼ 5.1 � 10�9; Emo vs Circ: RTPJ: W ¼ 1372, p < .0001;

all ROIs: b ¼ �.49, t ¼ �5.9, p ¼ 7.7 � 10�9]. The circumplex

model fit did not differ between children and adults in RTPJ

[M(SE) Adult ¼ �.02(.01), Child ¼ .002(.02); effect of age group:

b ¼ .23, t ¼ .82, p ¼ .41], or across all ROIs (b ¼ .25, t ¼ .87,

p ¼ .39). There was an age group-by-ROI effect such that the

circumplex model fit the response in LTPJ (relative to RTPJ)

worse in children (b ¼ �.81, t ¼ �2.4, p ¼ .02), and an age-by-

ROI (LTPJ)-by-motion interaction (b ¼ .69, t ¼ 2.1, p ¼ .04).

3.1.3. Appraisal model
The appraisal model performed marginally above chance in

RTPJ [M(SE) ¼ .02(.01), W ¼ 999, p ¼ .09]. In the RTPJ, the

appraisal model performed worse than the emotion model

(W ¼ 1136, p ¼ .01), and did not differ significantly from the

condition model (W ¼ 932, p ¼ .28). Across all ROIs, the

appraisal model performed marginally worse than both the

condition and emotion models (Cond vs App: b ¼ �.16,

t ¼ �1.9, p ¼ .05; Emo vs App: b ¼ �.14, t ¼ �1.7, p ¼ .10). The

appraisal model fit did not differ between children and adults

in RTPJ [M(SE) Adult ¼ .02(.01), Child ¼ .02(.02); effect of age

group: b ¼ �.01, t ¼ �.03, p ¼ .97], or across all ROIs (b ¼ .07,

t ¼ .42, p ¼ .68).

3.1.4. Emotion-condition (EC) model
Given that the condition and emotion models fit ToM re-

sponses best in Experiment 1, we constructed an exploratory

model based on both emotion and condition features. This

model performed significantly better than chance in RTPJ

[M(SE) ¼ .05(.01), W ¼ 1316, p ¼ .00005], but did not differ from

the a priori ToM-relevantmodels in RTPJ (Cond vs EC:W¼ 642,

p ¼ .20, Emo vs EC: W ¼ 695, p ¼ .30) or across all ROIs [Cond

vs EC: b ¼ �.0006, t ¼ �.007, p ¼ .99; Emo vs EC: b ¼ .02, t ¼ .23,

p¼ .82, effect of ROI (PC): b ¼ �.23, t¼ �2.0, p¼ .04]. There was

no difference in the fit of the EC model between children and

adults in the RTPJ [M(SE) Adult¼ .05(.01), Child¼ .04(.02); effect

of age group: b ¼ .03, t ¼ .11, p ¼ .91], or across all ROIs

(b ¼ �.18, t ¼ �1.1, p ¼ .30).

3.1.5. Weighted emotion-condition (WEC) model
Like the EC model, the WEC model performed significantly

better than chance in RTPJ [M(SE) ¼ .04(.01), W ¼ 1290,

p ¼ .0001], but did not significantly outperform the ToM-

relevant models based on condition (W ¼ 713, p ¼ .49) or

emotion (W¼ 936, p¼ .39) features alone. The same pattern of

results was apparent across all ROIs [Cond vs WEC: b ¼ .12,

t ¼ .76, p ¼ .45, model-by-ROI (PC) interaction: b ¼ �.51,

t ¼ �2.2, p ¼ .03; Emo vsWEC: b ¼ �.07, t ¼ �.88, p ¼ .38, effect
of ROI (PC): b ¼ �.26, t ¼ �2.3, p ¼ .02, no model-by-ROI in-

teractions]. The weighted EC model did not outperform the

(unweighted) EC model in RTPJ (W ¼ 950, p ¼ .33), or across

ROIs (b¼�.09, t¼�1.1, p¼ .27). Therewas no difference in the

fit of the WEC model between children and adults in the RTPJ

[M(SE) Adults¼ .04(.01), Children¼ .04(.02); effect of age group:

b ¼ .11, t ¼ .40, p ¼ .70], or across all ROIs [b ¼ .09, t ¼ .48,

p ¼ .64; ROI (PC)-by-motion interaction: b ¼ .37, t ¼ 2.2, p ¼ .03,

no other interactions]. See Supplementary Figure 5 for a

visualization of feature weights, per ROI.

For a visualization of model fits in DMPFC and VMPFC, see

Supplementary Figure 6. For a visualization of the model fits

per average neural RDM, see Supplementary Figure 8.

Given that the condition and emotion models both out-

performed the control models, but did not perform better

when combined (despite not being very correlated with one

another: r ¼ .16), in Experiment 2 we used our initial a priori

RDMs in confirmatory analyses, and continued to treat the

four new RDMs as exploratory.

3.2. Experiment 2

In Experiment 2we tested the same hypotheses as Experiment

1, in a large sample that includedmore variability in age and in

ToM behavior (n ¼ 76 neurotypical and n ¼ 29 children diag-

nosedwith an Autism SpectrumDisorder, ages 5-12 years old).

Given the results of Experiment 1, our confirmatory hypoth-

eses for Experiment 2 were that 1) emotion and condition

models would fit neural responses from ToM brain regions

better than chance, and outperform the linguistic and narra-

tive controlmodels, in neurotypical children, 2) the fit of either

or both of thesemodels would increase with age or behavioral

ToM performance among neurotypical children. Additionally,

Experiment 2 enabled us to test if the fit of either or both of

these models differed between neurotypical children and

children diagnosed with Autism Spectrum Disorder.

3.2.1. Behavioral battery: theory of mind
Children with ASD performed worse on the ToM behavioral

task than neurotypical children [M(SE) proportion correct:

ASD: .77(.04), NT: .87(.01); effect of group: b ¼ �1.0, t ¼ �5.6,

p ¼ 1.7 � 10�7], and performance on the task improved with

age (b ¼ .40, t ¼ 4.3, p ¼ 4.3 � 10�5). There was also a group-by-

age interaction, such that age had a larger effect on perfor-

mance in children with ASD, relative to neurotypical children

(b¼ .52, t¼ 2.7, p¼ .008; see Supplementary Figure 9). Children

with ASD also had lower standardized non-verbal IQ scores

than neurotypical children [M(SE) ASD: 110(3.3), NT: 117(1.4),

effect of group: b ¼ �.48, t ¼ �2.2, p ¼ .03]; the same pattern of

results for ToM task performance was obtained when addi-

tionally controlling for non-verbal IQ.

3.2.2. Model fits in neurotypical children
In the neurotypical child sample (n ¼ 76), only the condition

model fit the RTPJ neural RDM better than chance [Cond:

M(SE) ¼ .03(.01), W ¼ 2233, p < .00005; Emo: .01(.01), W ¼ 1633,

p ¼ .19; Ling: �.003(.01), W ¼ 1362, p ¼ .70; Narr: �.01(.01),

W¼ 949, p¼ .996]. The conditionmodel fit the neural response

in the RTPJ of the neurotypical child sample significantly

better than both control models (Cond vs Ling: W ¼ 2020,

https://doi.org/10.1016/j.cortex.2019.11.021
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Fig. 3 e Model Fits in Experiment 2. Plots show the mean Kendall tau correlation (y-axis) between each model (x-axis) and

individual neural RDMs, per ROI (RTPJ, LTPJ, PC, MMPFC). Open circles represent means calculated from neurotypical

children (n ¼ 76); stars represent means calculated from children diagnosed with Autism Spectrum Disorder (ASD; n ¼ 29).

Lines surrounding mean values indicate standard error from the mean. ToM-relevant (Condition, Emotion) models are

shown in red/pink; control (Linguistic, Narrative) models are shown in blue. The shaded area indicates exploratory models,

which included a model based on abstract appraisal features (App), a circumplex model based on valence and arousal (Circ),

and models that included both emotion and condition features [EC, W (weighted) EC].
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p ¼ .002; Cond vs Narr: W ¼ 2318, p < .00001), and marginally

better than the emotion model (W ¼ 1740, p ¼ .08). The

emotion model performed better than the narrative control

model (W ¼ 1946, p ¼ .006), but did not significantly outper-

form the linguistic control model (W ¼ 1715, p¼ .10). See Fig. 3

for visualization of main results and Supplementary Figure 10

for model fits to average neural RDMs.

Across all ROIs, both the condition and emotion models

performed significantly better than both control models (see

Table 1 for full statistics), and the condition model out-

performed the emotion model (Table 1).

Does the extent to which ToM-relevant models fit neural

activity in ToM brain regions vary with age or ToM behavioral

score? In neurotypical children, the fit of the condition model

increased with age in the RTPJ (effect of age: b ¼ .29, t ¼ 2.6,

p ¼ .01, effect of motion: b ¼ �.06, t ¼ �.49, p ¼ .6), and across

all ROIs [effect of age: b¼ .31, t¼ 2.8, p¼ .007, effect of motion:

b ¼ �.03, t ¼ �.41, p ¼ .68, effects of ROIs: bs < |.26|, ts < |1.9|,

ps > .06, age-by-ROI (PC) interaction: b ¼ �.28, t ¼ �2.1, p ¼ .04,

other age-by-ROI interactions: bs < |.27|, ts < |2.0|, ps > .05, no

other interactions; see Fig. 5]. The effect of age on the condi-

tion model fit remained significant with a Bonferroni correc-

tion for multiple comparisons (two tests; a ¼ .025).

The emotion model fit did not change with age in the RTPJ

(effect of age: b¼ .01, t¼ .13, p¼ .90, effect of motion: b¼�.28,

t¼�2.4, p¼ .02) or across all ROIs [effect of age: b¼ .02, t¼ .14,

p ¼ .89, effects of ROIs: bs<|.06|, ts<|.4|, ps>.7, effect of motion:

b ¼ �.30, t ¼ �2.6, p ¼ .01, age-by-ROI (PC)-by-motion inter-

action: b ¼ �.26, t ¼ �2.1, p ¼ .04; all other interactions were

not significant].

There was no significant correlation between the fit of the

condition or emotion model fits and ToM behavioral score,

either in RTPJ (Cond: b ¼ �.07, t ¼ �.50, p ¼ .62; Emo: b ¼ .18,

t ¼ 1.4, p ¼ .17, controlling for age and motion), or across all
ROIs (Cond: b ¼ �.02, t ¼ �.25, p ¼ .81; Emo: effect of ToM:

b ¼ .003, t ¼ .04, p ¼ .97).

Because overall accuracy on the fMRI behavioral task

(which was orthogonal to ToM processes, and served to

ensure attention to the stories) increased with age among

neurotypical children in Experiment 2, in post-hoc analyses

we confirmed that the effect of age on the condition model fit

remained significant when additionally controlling for accu-

racy (RTPJ: effect of age: b ¼ .29, t ¼ 2.2, p ¼ .03, effect of ac-

curacy: b¼�.02, t¼�.12, p¼ .91; all ROIs: effect of age: b¼ .29,

t ¼ 2.3, p ¼ .02, effect of accuracy: b ¼ .04, t ¼ .43, p ¼ .67).

3.2.3. Exploratory searchlight analyses in neurotypical
children
To ensure that we did not miss unpredicted effects in other

brain regions, we conducted a whole-brain searchlight

analysis across all neurotypical children from Experiments

1 and 2 (n ¼ 96), in order to discover brain regions in which

response patterns correlated with the condition and

emotion models. The searchlight analysis revealed that

the condition model uniquely predicted response patterns

in ToM brain regions (see Fig. 4 for visualization, and

Supplementary Table 3 for details of results). While there

were not any significant clusters predicted by the emotion

model, small clusters in the right superior temporal sulcus

and premotor cortex were present at more lenient statistical

thresholds (p < .001, k ¼ 10, uncorrected; see Supplementary

Figure 11).

3.2.4. Model fits in children diagnosed with Autistic spectrum
disorder
In the ASD child sample (n ¼ 29), none of the model RDMs fit

the RTPJ RDM better than chance [Cond: M(SE) ¼ e.005(.01),

W ¼ 180, p ¼ .80; Emo: .002(.01), W ¼ 228, p ¼ .42; Ling:

https://doi.org/10.1016/j.cortex.2019.11.021
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�.00003(.01), W ¼ 206, p ¼ .60; Narr: e.003(.01), W ¼ 190,

p ¼ .72]. The condition and emotion models did not outper-

form the two control models in RTPJ (Cond vs Ling: W ¼ 212,

p ¼ .55; Cond vs Narr: W ¼ 221, p ¼ .47; Emo vs Ling: W ¼ 234,

p ¼ .37, Emo vs Narr: W ¼ 249, p ¼ .25); there was additionally

no difference in the fit of the condition and emotionmodels to

the RTPJ RDM (W ¼ 192, p ¼ .71); see Fig. 3.

Across all ROIs, the condition and emotion models did not

outperform the control models, and the condition model did

not outperform the emotion model. Interestingly, there were

significant model-by-ROI interactions such that the condition

model fit the neural data significantly better than the lin-

guistic and narrative control models in the LTPJ and MMPFC,

relative to the RTPJ (see Table 1 for full statistics and Fig. 5 for

visualization).

3.2.5. Direct comparisons between neurotypical children and
children with an ASD diagnosis
We directly compared the fit of the condition and emotion

models to the neural data across children with and without a

diagnosis of ASD. The condition model fit the RTPJ responses

in neurotypical children significantly better than children
Fig. 5 e Condition Model Fit per ROI (Experiment 2). All plots sh

between individual neural RDMs (per ROI) and the condition mo

(n ¼ 76, blue) and by b) group [x-axis; children diagnosed with

orange].

Fig. 4 e Searchlight Analysis for Condition Model Fit. An

exploratory searchlight analysis revealed that response

patterns in ToM brain regions correlated with the

condition model. Results have been corrected for multiple

comparisons (p < .05, SnPM). See Supplementary Table 3

for detailed information about the significant clusters.
diagnosed with ASD [M(SE) NT ¼ .03(.01), ASD ¼ �.005(.01);

effect of group: b ¼ �.56, t ¼ �2.7, p ¼ .009, effect of motion:

b ¼ �.17, t ¼�1.8, p¼ .08, no group-by-motion interaction; see

Fig. 5]. The significant group difference for the condition

model fit remained significant with a Bonferroni correction for

multiple comparisons (two tests; a ¼ .025), and when addi-

tionally controlling for non-verbal IQ (effect of group: b¼�.56,

t ¼ �2.5, p ¼ .015, effect of IQ: b ¼ .06, t ¼ .54, p ¼ .59, effect of

motion: b ¼ �.14, t ¼ �1.5, p ¼ .15). The fit of the emotion

model to RTPJ responses did not differ across children with

and without ASD [M(SE) NT¼ .01(.01), ASD¼ .002(.01); effect of

group: b ¼ �.13, t ¼ �.61, p ¼ .54, effect of motion: b ¼ �.21,

t ¼ �2.1, p ¼ .03, no group-by-motion interaction].

Across all ToM ROIs, there was a significant effect of group

such that the condition model fit the neural RDMs better in

neurotypical children, relative to children diagnosedwith ASD

[effect of group (ASD): b¼�.62, t¼�2.9, p¼ .005; effect of ROIs:

bs<|.26|, ts<|1.9|, ps>.06, effect of motion: b ¼ �.12, t ¼ �1.8,

p ¼ .08]. Additionally, significant group-by-ROI interactions

indicated that specifically in the ASD group, the fit of the

condition model to the RTPJ was worse than the fit of this

model to the LTPJ and MMPFC [group-by-ROI (LTPJ) interac-

tion: b ¼ 1.0, t ¼ 4.1, p ¼ .00005, group-by-ROI (MMPFC) inter-

action: b ¼ .74, t ¼ 2.9, p ¼ .004; group-by-ROI (PC) interaction:

b¼ .30, t¼ 1.2, p¼ .24]. The significant group difference for the

condition model fit remained significant with a Bonferroni

correction for multiple comparisons (two tests for two ToM

models; a ¼ .025), and the same pattern of results was ob-

tained when additionally controlling for non-verbal IQ. There

was no effect of ASD diagnosis on themodel fit of the emotion

model across ROIs [effect of group: b ¼ �.13, t ¼ �.62, p ¼ .54,

effect of motion: b ¼ �.31, t ¼ �2.7, p ¼ .007, effects of ROIs:

bs<|.05|, ts<|.35|, ps>.7, group-by-ROI interactions: bs<|.17|,
ts<|.7|, ps>.5, ROI (PC)-by-motion interaction: b ¼ .34, t ¼ 2.5,

p ¼ .01, ROI (LTPJ)-by-group-by-motion interaction: b ¼ �.67,

t ¼ �2.6, p ¼ .01, ROI (PC)-by-group-by-motion interaction:

b ¼ �.57, t ¼ �2.2, p ¼ .03, ROI (MMPFC)-by-group-by-motion
ow Kendall’s tau correlation values (y-axis) calculated

del by a) age (in years, x-axis), among neurotypical children

Autism Spectrum Disorder (ASD, n ¼ 29) are shown in
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interaction: b ¼ �.85, t ¼ �3.3, p ¼ .001, all other interactions

were not significant].

Given that we observed reduced fit of the condition model

to the RTPJ of children with ASD, we conducted exploratory

analyses to test whether any of the other models showed a

better fit in this group. We did not find any evidence for a

model that fit the neural data better in ASD (all group effects:

bs<|.21|, ts<|1|, ps>.3).

3.2.6. Examination of the contribution of univariate responses
Our results suggest that multivariate analyses were sensitive

to developmental change with age in the neurotypical chil-

dren, and to differences between neurotypical children and

children diagnosed with ASD. To address the possibility that

these results primarily reflect differences in univariate re-

sponses, we conducted supplementary analyses to test 1)

whether similar results were obtained with multivariate an-

alyses that used a dissimilaritymetric that is insensitive to the

univariate response (Pearson correlation distance, rather than

Euclidean distance; Walther et al., 2016), and 2) whether a

univariatemeasuree response selectivityewas also sensitive

to individual differences in ToM responses. Response selec-

tivity was calculated as the magnitude of response (average

beta) of the mental condition minus the magnitude of

response to the social condition, in the same ROIs used for

multivariate analyses (following the pre-registered procedure

for group ROIs; https://osf.io/wzd8a).

Overall, we observed similar results from multivariate

analyses that used Pearson correlation distance (see

Supplementary Materials and Supplementary Table 2 for full

statistics, and Supplementary Figure 7 for visualization of

model fits). Additionally, the univariate measure of response

selectivity did not increase significantly with age among

neurotypical children, and did not differ betweenneurotypical

children and children with ASD (Supplementary Figure 12).

Together, these results suggest that themultivariate approach

captures individual differences in ToM responses that may

not be detectable with univariate approaches.
4. Discussion

Almost all fMRI studies of theory of mind, and all fMRI studies

of theory ofmind in children, have used univariate analyses in

order to characterize response magnitude and selectivity in

ToM brain regions. Multivariate pattern analyses have the

potential to describe the development of the structure of

representational content within a stimulus category (e.g.,

mental states). This kind of description of neural responses

may be particularly important for capturing developmental

change or differences in the structural organization of ToM

concepts: i.e., individual differences in sensitivity to the con-

ceptual distinctions and causal relationships between mental

states. Here, we show that condition labels and emotion fea-

tures capture some of the pattern of activity in ToM brain

regions in children. Moreover, neural responses become

increasingly organized by condition labels with age in a rela-

tively large sample of neurotypical children. Additionally,

condition labels do not appear to organize neural response

patterns in the RTPJ in children diagnosed with Autism
Spectrum Disorder. These results suggest that there are real,

stable features that organize neural responses in ToM brain

regions in children, and that multivariate analyses can be

used tomeasure developmental change and differences in the

conceptual structure of theory of mind representations in

childhood.

Developmental change in ToM representations in child-

hood was best captured by the condition label model, which

indicated whether a story involved descriptions of mental

states (e.g., beliefs, desires, emotions), general social infor-

mation (e.g., personality traits, appearance, or enduring re-

lationships), or just descriptions of causal events in the world

(e.g., a tree growing fruit; a bird laying eggs). This model

marked the extent to which a story was about the mind, and

captured a distinction between preferred (Mental) and non-

preferred stimuli (Social, Physical) for ToM brain regions

typically characterized by univariate measures. Prior fMRI

studies of adults have provided similar evidence for distinct

response patterns for preferred and non-preferred stimuli. For

example, ToM brain regions have distinct neural response

patterns for stories that describe characters’ mental states

versus stories that describe physical events (Koster-Hale et al.,

2017). Here, response patterns in ToM brain regions were

increasingly organized according to the condition label model

among children, and remained organized by this model in

adults.

The condition model was not only sensitive to develop-

mental change in ToM neural response patterns, but it was

also sensitive to differences between neurotypical children

and children diagnosed with Autism Spectrum Disorder.

Specifically, the conditionmodel did not predict RTPJ response

patterns in children with ASD, and the condition model fit in

RTPJ was significantly worse in children with ASD, compared

to neurotypical children. Given our small sample of children

with ASD (n ¼ 29) and the heterogeneity of social deficits in

this disorder (Byrge et al., 2015; Lombardo et al., 2016; Pierce

et al., 2016), we report this result with caution. Nonetheless,

there are a few notable aspects of our approach that

strengthen our findings. First, we measured functional re-

sponses in children with ASD during social processing e

which is inherently challenging and not frequently done.

Second, participant motion and data quality were matched

between neurotypical children and children with ASD. Third,

we had a relatively large sample of neurotypical children to

use as a comparison group. And finally, we observed some

specificity in the group difference: that is, the model fits in

LTPJ andMMPFC in the ASD sample look similar to those in the

NT sample. If the observed group difference was driven by

(non-significant) differences in data quality or an undetected

confound, it is difficult to explain why response patterns in

RTPJ alone were disrupted in children with ASD. On the other

hand, it is possible that response patterns in RTPJ would be

particularly sensitive to the social cognitive differences be-

tween NT and ASD children, given its role in ToM reasoning

(Gweon et al., 2012; Young, Camprodon, Hauser, Pascual-

Leone, & Saxe, 2010a), and prior evidence for disrupted pat-

terns in RTPJ in adults with ASD (Koster-Hale et al., 2013). This

result raises several questions for future research. In partic-

ular, given that none of the planned or exploratory models

provided a good description of RTPJ response patterns in

https://osf.io/wzd8a
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children with ASD, what dimensions do predict these

response patterns?

A key goal of the current study was to go beyond the

condition labels, and describe the structure of representa-

tions within the category of mental states (beliefs, desires,

emotions). In addition to the condition label model, we con-

structed an emotion feature model based on ratings to seven

emotions. Like the condition model, the emotion model fit

neural responses in ToM brain regions better than models

based on linguistic and narrative features. In exploratory

analyses, we compared these two models to an abstract

event appraisal model derived directly from a prior fMRI

study of emotion representations in adults (Skerry & Saxe,

2015). In that study, the abstract event appraisal model out-

performed a model based on the six basic emotions (Cohen

et al., 2017; Du et al., 2014; Ekman, 1992) and a circumplex

model based on valence and arousal (Barrett, 2006; Russell,

1980) in predicting behavioral and response similarity in

ToM brain regions to verbal narratives (Skerry & Saxe, 2015).

Here, the condition and emotion models both fit neural re-

sponses in ToM brain regions better than the abstract event

appraisal model. One intriguing hypothesis is that responses

in ToM brain regions transition from being organized by

condition and emotion features in childhood, to abstract

event appraisals in adults. Our evidence does not provide

support for this hypothesis e the appraisal model fit did not

increase between childhood and adulthood (Experiment 1),

and the fit of the condition model actually increased with age

among children (Experiment 2). An alternative explanation is

that this difference in results is due to the methodological

constraints of the current experiment. The appraisal model

RDM characterizing the story stimuli in the current experi-

ment was most correlated with the circumplex model RDM e

which characterized the stories along valence and arousal

dimensions only. Experimental stimuli necessarily constrain

the extent to which different features can explain variance in

neural responses: if the stories did not vary in the extent to

which they evoked abstract event appraisals, then these

features cannot predict differences in neural responses

across stories. Thus, while the exploratory test of whether

abstract event appraisal features organize responses in ToM

brain regions in childhood could be considered a strong test

of the generalization of these features to other stimuli and

populations, this test was likely underpowered given our

experimental design. Additional research is needed to further

explore developmental change in the structure of mental

state representations.

Our results suggest that multivariate approaches are

promising for characterizing individual differences in the

structure and content of mental state representations in

children, but they also suggest the need for future studies that

are designed with these specific analyses in mind. The rela-

tively low model fits suggest that these analyses were up

against the limitations imposed by the experimental designd

i.e., the use of complex stimuli, the use of just a single pre-

sentation of each item for pattern analyses, and more gener-

ally the use of very little data per participant. These

limitations are in stark contrast to most multivariate fMRI

studies in adults, which typically measure response patterns

across several repetitions of the same stimulus, or at least
several stimuli per stimulus feature or category. Because the

multivariate results overall look very similar in adults and

children (Experiment 1), the small correlations observed be-

tween neural and model RDMs are likely due to experimental

limitations, rather than reflecting challenges specific to the

pediatric data. While collecting a large amount of data within

individual child participants is inherently difficult, future

studies may benefit from developing stimuli that target spe-

cific features or dimensions of mental states (Koster-Hale

et al., 2013, 2014; 2017).

A key benefit of multivariate analyses is that they char-

acterize features that drive neural response (dis)similarity. In

the domain of theory of mind, this benefit carries particular

weight. Theory of mind development involves refining dis-

tinctions between ToM concepts, and constructing an

increasingly sophisticated, flexible theory about the causal

relationships between them. Multivariate approaches pro-

vide a way to capture these structural changes in ToM rep-

resentations e which may be key for characterizing

development and disorders in ToM.
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