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The use of ABCD (ray-transfer) matrices to analyze wave propagation through paraxial optical systems, with
emphasis on imaging systems, is described. It is shown how to find the image, Fourier transform, and exit pupil
planes. Different forms of the propagation integrals are given. The propagation integral for an imaging system,
which includes an aperture stop, is derived. The relationships between the aperture stop and the exit pupil and the
impulse response of a paraxial imaging system are derived. © 2024 Optica Publishing Group. All rights, including for text

and datamining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

ABCD (ray-transfer) matrices were used in paraxial geometrical
optics to simplify calculations of the first-order properties of
systems in the context of rays. In 1970, Collins [1] showed how
to use ABCD matrices to calculate the propagation of paraxial
optical fields through complicated optical systems using a single
propagation integral. This contrasts with the laborious proc-
ess of numerically propagating through each optical element
and over the distances between successive optical elements.
Hence, Collins’s ABCD propagation is highly advantageous
for analyzing the propagation through any paraxial, symmetric
optical system except for the simplest free-space propagation
calculations. In this paper, we are primarily concerned with the
propagation integrals for imaging, in which case some inter-
esting aspects emerge. Although the use of ABCD matrices for
optical propagations has long appeared in Siegman’s Lasers [2],
it is curiously absent from other popular textbooks [3,4] and
appeared only in the most recent 2017 edition of Goodman’s
Introduction to Fourier Optics [5]. The power of the approach
makes it worthy of greater notice, and its use for imaging has
been particularly hidden from sight.

In this paper, after briefly defining the key ABCD matrices,
we review the propagation integral and then show under what
circumstances it reduces to a Fourier transforming equation and
to an imaging equation, and how it can predict the locations of
both Fourier planes and image planes. We derive an alternative,
convolutional form of ABCD propagation, which is particularly
useful for imaging. This convolutional form is usually most
efficiently computed with two Fourier transforms (FTs) for a
general ABCD system, so we refer to it as the double-FT version
of ABCD propagation. Next, we introduce an aperture stop into
a multi-element system and derive the impulse response of the
system, first in terms of the aperture stop and then in terms of

the exit pupil of the system, which is the image of the aperture
stop, as seen from image space.

What is said in this paper about ABCD propagation integrals
can be readily applied to propagations by fractional Fourier
transforms [6] and linear canonical transforms [7], since they
are special cases of ABCD propagation integrals using different
parameterizations [8].

For the sake of simplicity, in this paper we restrict our atten-
tion to symmetric optical systems, although anamorphic optics
can be handled as well [1].

2. ABCD RAY-TRANSFER MATRICES

For a rotationally symmetric paraxial system, a ray of light in
the y−z plane, at a particular axial distance z, is specified by
its ray height y and its reduced angle θ̂ , which is the physical
ray angle θ times the index of refraction of the medium. Use of
the reduced, rather than the actual, angles simplifies the math
[2]. Furthermore, in the paraxial approximation, we consider
ray slopes and angles to be the same thing. ABCD matrices
encapsulate a pair of linear equations for y and θ̂ of a ray exiting
a system in terms of y and θ̂ of the corresponding ray entering
the system. In the paraxial approximation, a small angle (�1
rad) is assumed, with the angle, in radians, being equal to the
tangent of the angle and the sine of the angle. Following ([5],
Appendix B), and as illustrated in Fig. 1, if a ray with height y1

and reduced angle θ̂1 enters a system, then the ray with height y2

and reduced angle θ̂2 that exits the system is given by

y2 = Ay1 + B θ̂1

θ̂2 =C y1 + Dθ̂1, (1)

or, in matrix form,
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(possibly complicated
optical system)
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Fig. 1. Rays into and out from an ABCD system.

[
y2

θ̂2

]
=

[
A B
C D

] [
y1

θ̂1

]
, (2)

where A, B , C , and D are the coefficients of the ray-transfer
matrix, also referred to as the ABCD matrix.

For simplicity, we employ only the two most basic ABCD
matrices. For propagating an axial distance z in a medium with a
constant refractive index n, the matrix is

Mz =

[
Az Bz

Cz Dz

]
=

[
1 z/n
0 1

]
, (3)

and for propagating through a thin lens of focal length f ,
embedded in a medium with refractive index n1, the matrix is

M f =

[
A f B f

C f D f

]
=

[
1 0
−n1

f 1

]
. (4)

If mirrors are employed instead of lenses, then this equation
holds for the unfolded version of the system with the mir-
rors. The matrix for a system, consisting of a combination of a
sequence of lenses and spacings, is given by the matrix product of
the basic 2× 2 matrices for the individual lenses and spacings.
From the two equations above it is readily seen that the deter-
minant of these two basic matrices is unity. Hence, the matrix
for a system made up of an arbitrary combination of them has a
determinant that is unity:

AD− BC = 1, (5)

which is generally true for ABCD matrices. Hence, each matrix
consisting of four values is completely specified by any three
of them, and the fourth value can be computed from the other
three. Siegman ([2], Table 15.1) provides matrices for a few
other paraxial optical elements.

3. SINGLE-FOURIER TRANSFORM ABCD
PROPAGATION INTEGRAL

As derived by Collins [1,2,5], given the ABCD matrix for an
arbitrary complicated ABCD paraxial system, the field U2 at the
output plane of the system is given in terms of the field U1 at the
input plane of the system by, using Goodman’s notation [5],

U2(x , y )=
e ikL0

iλB

∫∫
∞

−∞

dξdηU1(ξ, η)

× exp

{
iπ
λB

[
A
(
ξ 2
+ η2

)
− 2(ξ x + ηy )+ D

(
x 2
+ y 2

)]}
,

(6)

U2(x , y )=
e ikL0

iλB
exp

[
iπD
λB

(
x 2
+ y 2

)]

×

∫∫
∞

−∞

dξdη

{
U1(ξ, η) exp

[
iπ A
λB

(
ξ 2
+ η2

)]}

× exp

[
−i2π
λB

(ξ x + ηy )
]
,

(7)

where L0 is the optical path length through the center of the
system along the optical axis, k is the wave number, and λ is
the wavelength (assumed to be monochromatic). The second
form above emphasizes that, aside from one quadratic-phase
exponential factor inside the integral and a second outside the
integral, this paraxial propagation integral includes, at its core, a
Fourier transform. In this paper, we refer to this as the single-FT
version. Note that for free-space propagation through a medium
with unity index of refraction, A= D= 1, and B = z, the
propagation distance, and the integral becomes the familiar
Fresnel transform,

U2(x , y )=
e ikz

iλz

∫∫
∞

−∞

dξdηU1(ξ, η)

× exp

{
iπ
λz

[
(x − ξ)2 + (y − η)2

]}

=
e ikz

iλz
exp

[
iπ
λz

(
x 2
+ y 2)]

×

∫∫
∞

−∞

dξdη

{
U1(ξ, η) exp

[
iπ
λz

(
ξ 2
+ η2)]}

× exp

[
−i2π

λz
(ξ x + ηy )

]
.

(8)

In this paper, we use the e−iωt sign convention, that is, the
phase becomes larger with longer propagation distances.

It is also possible for the ABCD coefficients to be com-
plex valued [9,10]. If one were to have a Gaussian amplitude
transmittance (like an apodization) within the system, then
its ABCD matrix is similar to that of the transmittance of a
lens, but with a pure imaginary C component. That changes a
quadratic-phase exponential into a Gaussian amplitude func-
tion. In this paper, we will restrict our attention to real-valued
ABCD coefficients.

4. FOURIER TRANSFORMING

When A= 0, the quadratic-phase exponential within the
integral of Eq. (7) becomes unity, and the integral becomes an
optical Fourier transform of the input field, with output spatial
frequencies ( fx , f y )= (x/λB, y/λB). Note that we need not
worry about B being equal to zero when A= 0 because that is
prevented by Eq. (5). A characteristic of this Fourier transform
is that a bundle of parallel rays (i.e., a tilted plane wave) entering
the system focuses to a point in the output plane of the system.
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Fig. 2. Fourier transforming when A= 0, D 6= 0. The box
indicates the left and right edges of the system.

This agrees with the fact that the Fourier transform of a constant
or of a linear-phase function (a plane wave) is a Dirac delta func-
tion. An example of such a system is one starting at a distance d
before a thin lens of focal length f and ending in the plane at a
distance z= f beyond the lens (i.e., in the back focal plane of
the lens), as shown in Fig. 2. The ABCD matrix for this system is
given by[

1 f
0 1

] [
1 0
−1/ f 1

] [
1 d
0 1

]
=

[
0 f
−1/ f 1− d/ f

]
. (9)

The Fourier relationship is also seen by examining Eq. (1)
which, with A= 0, yields y2 = B θ̂1 = f θ̂1 in this case, which
indicates that the output ray height is independent of the input
ray height and is proportional to the input ray angle. This
Fourier transform has an additional quadratic phase term out-
side the integral, proportional to D/B = (1− d/ f )/ f , unless
d = f as well, in which case the external quadratic-phase factor
disappears ([5], Ch. 6). This external quadratic-phase term
means that a point source (Dirac delta function) in the input
plane will result in a quadratic-phase factor in the output plane,
which is the paraxial approximation of a spherical wave coming
from a distance B/D= f 2/( f − d) before the output plane
(or focusing to a distance |B/D| after the output plane if B/D
has a negative value).

If D= 0 as well as A= 0, which is the special case in Fig. 2
for d = f , and illustrated in Fig. 3, the quadratic phase expo-
nentials both inside and outside the propagation integral vanish,
and we have just a simple Fourier transform, aside from a
multiplicative constant. Then Eq. (1) yields θ̂2 =C y1, which
indicates that the output ray angle is independent of the input
ray angle and depends only on the input ray height, as shown in
Fig. 3(b). As a result, a point source in the input plane results in a
tilted plane wave in the output.

5. DOUBLE-FOURIER TRANSFORM/
CONVOLUTION/TRANSFER-FUNCTION
VERSION

Understanding imaging from Eq. (1) is straightforward: for
B = 0, y2 = Ay1, and the output ray height is independent of
the input ray angle and is simply proportional to the input ray
height, with proportionality constant A. That is, the output
is an image of the input with magnification A. Obtaining an
imaging equation from Eq. (6) or (7) requires more finesse. This

(a)

(b)

Fig. 3. Fourier transforming when A= 0, D= 0. (a) Plane waves
focus to points. (b) Points expand to plane waves.

is aided by converting the general single-FT ABCD propagation
integral into a convolution, which can be computed using a
Fourier-domain transfer function. To achieve this, we com-
plete the squares of the exponentials inside the integral, which
involves bringing an exponential outside the integral, giving

U2(x , y )=
e ikL0

iλB
exp

[
iπ
λB

(
D− A−1) (x 2

+ y 2)]

×

∫∫
∞

−∞

U1(ξ, η)

× exp

{
iπ A
λB

[
(ξ − x/A)2 + (η− y/A)2

]}
dξdη.

(10)

The integral can now be recognized as a convolution of
the input field with a quadratic-phase exponential. Using
(D− A−1)/B =C/A from Eq. (5), we can rewrite this as

U2(x , y )=
e ikL0

A
exp

[
iπC
λA

(
x 2
+ y 2)] {U1(ξ, η)

∗
A

iλB
exp

[
iπ A
λB

(
ξ 2
+ η2)]}

ξ=x/A
η=y/A

, (11)

where ∗ denotes convolution. In this form, we see that a general
ABCD propagation can be expressed as a convolution with the
ABCD impulse response given by the expression to the right
of the ∗ symbol above, but then, in addition, multiplying the
resulting convolution by the constant and the quadratic-phase
exponential in front of the convolution integral. Because one
can compute a convolution of two functions by Fourier trans-
forming each function, taking the product of their Fourier
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transforms and inverse Fourier transforming, we can write

U2(x , y )=
e ikL0

A
exp

[
iπC
λA

(
x 2
+ y 2)] {F−1

{
F[U1(ξ, η)]

× exp

[
−iπλB

A

(
f 2
x + f 2

y

)]}}∣∣∣∣ ξ=x/A
η=y/A

,

(12)

whereF denotes a forward Fourier transform,

F [U1(ξ, η)]=
∫∫

∞

−∞

U1(ξ, η) exp
[
−i2π

(
fxξ + f yη

)]
dξdη,

(13)
and where

F
{

A
iλB

exp

[
iπ A
λB

(
ξ 2
+ η2

)]}
= exp

[
−iπλB

A

(
f 2

x + f 2
y

)]
.

(14)
Equations (11) and (12) are the alternative ABCD propaga-

tion integrals in terms of convolution with a quadratic-phase
exponential impulse response and in terms of a quadratic-phase
exponential Fourier-domain transfer function, respectively,
irrespective of whether imaging is performed. Equation (14)
shows the Fourier relationship between the impulse response
and the Fourier-domain transfer function. In this paper, we refer
to Eq. (12) as the double-FT version of the ABCD propagation
integral.

6. IMAGING WITH NO APERTURE STOP

For the special case of an imaging system, B = 0 [5], which
appears to be problematic with B appearing in two denomi-
nators in the convolution of Eq. (11). However, inspecting the
right hand side of Eq. (14), we see that as B approaches zero,
the right hand side of Eq. (14) approaches unity, which is well
behaved, and the Fourier transform of unity is the Dirac delta
function. Hence, when B = 0, U1 in Eq. (11) is convolved with
a Dirac delta function as the impulse response, which convolu-
tion gives a perfect magnified version of the input as the output.
Looking at it another way, replacing the exponential inside
the Fourier transform of Eq. (12) with unity, one performs a
forward then an inverse Fourier transform on U1, getting back
the same thing. But on account of the substitution ξ = x/A and
η= y/A, the output for B = 0, is the image

U2(x , y )=
e ikL0

A
exp

[
iπC

(
x 2
+ y 2

)
λA

]
U1

( x
A
,

y
A

)
,

(15)
which we see is not only a perfect magnified image of the input
field, with magnification M = A, but it also has an additional
quadratic phase term. An extra quadratic phase exponential
(which is a wavefront curvature term) is the norm for the imag-
ing of optical fields, although it is often ignored {[5], after
Eq. (6–34)}. It is important to keep these external quadratic-
phase terms when numerically or analytically propagating
optical fields when the phases of those fields matter, as would be
the case if that field is interfered with itself or another field or if
further propagation of the field is needed.

As an example, consider the single-thin-lens imaging system
illustrated in Fig. 4. For arbitrary z1 and z2, the ABCD matrix
for this system is(

1 z2

0 1

)(
1 0
−

1
f 1

)(
1 z1

0 1

)
=

(
1− z2

f z1 + z2 −
z1z2

f
−

1
f −

z1
f + 1

)
.

(16)

Given that B = 0 for an imaging system, setting the B coeffi-
cient in the right-hand side of Eq. (16) to zero and solving for z2

in terms of z1 and f , we obtain the imaging condition,

z2 =

(
1

f
−

1

z1

)−1

=
z1 f

z1 − f
. (17)

This is the well-known lens law. The magnification M, given
by the A coefficient, is

M = A= 1−
z2

f
=−

z2

z1
, (18)

where we used the expression for f obtained by solving Eq. (17)
for f ,

f = (z−1
1 + z−1

2 )−1
= z1z2/(z1 + z2). The quadratic-phase

factor associated with the image given by Eq. (15) has the
coefficient

C
A
=
−1/ f
−z2/z1

=−
1

M f
. (19)

With some algebra, this can be shown to be identical to the
product of the two terms under Eq. (6–33) in [5], including the
substitution of Eq. (6–35) in [5]. As the magnification given by
Eq. (18) is negative for imaging with a single positive thin lens,
that quadratic-phase factor in the image is equivalent to one
from a point source at a distance−M f = |M f | before the lens.
For a general ABCD imaging system, the quadratic-phase factor
can be that from a point source either before or after the image
plane depending on the sign of C/A.

Not all imaging systems have additional quadratic phase fac-
tors, the most well-known being the 4− f system. This is just a
concatenation of two systems, each form is shown in Fig. 3. Each
of these has the ABCD matrix given by Eq. (9) for the special
case of d = f , so the entire 4− f imaging system has the matrix[

0 f
−1/ f 0

] [
0 f
−1/ f 0

]
=

[
−1 0
0 −1

]
. (20)

From this we see that it is an imaging system, because its B =
0, has magnification A=−1, and has a quadratic phase propor-
tional to C/A= 0, that is, no quadratic-phase factor.

Fig. 4. Single thin lens imaging system having an object plane at
distance z1 before the lens of focal length f and the image plane at
distance z2 after the lens.
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7. IMAGING WITH AN APERTURE STOP

The preceding material in this paper has been known, but it
implicitly assumes lenses of infinite diameter or fields that are
negligible beyond the diameter of the lenses and aperture stops.
This section presents an analysis of a general ABCD imaging
system containing an aperture stop, which was not found in the
general case in the literature. We wish to derive the well-known
result that the impulse response of an imaging system is a scaled
version of the Fourier transform of the exit pupil of the system.
Therefore, one must derive both the impulse response and the
location and magnification of the exit pupil.

First, consider a general (imaging or non-imaging) ABCD
system containing an aperture stop within the system. When
there is a significant aperture stop, then the input field from the
object must first be propagated to the plane of the aperture stop,
then multiplied by the stop (pupil) field (amplitude) transmit-
tance function P in that plane, and finally propagated from
there to the output plane, as illustrated in Fig. 5. [While making
revisions to this paper, I found that Collins proposed this same
approach in a presentation at an OSA Annual Meeting [11], but
the reference gives no details, and according to Google Scholar it
has had no citations].

The derivation can be performed in two ways. The first, as
described above, is to propagate the input field U1, perform the
multiplication, and then perform the second propagation. The
second is to follow the approach in [5] (Sect. 6.3) of propagating
a field from a point source in the input plane to the output plane,
having gone through the aperture stop, and identifying the
resultant field as the (coherent) impulse response of the system.
Here, we employ the second approach.

As in {[5], Eq. (6–28)]}, a system linear in optical field can be
expressed as the superposition integral

U3(u, v)=
∫∫

∞

−∞

h(u, v; ξ, η)U1(ξ, η) dξdη, (21)

where h(u, v; ξ, η) is the impulse response of the system, the
field at a point (u, v) in the output plane that arises from a point
source (Dirac delta function) at location (ξ, η) in the input
plane.

The point source U1(ξ, η)= δ(ξ − ξo , η− ηo ) located at
point (ξo , ηo ) in the input plane, inserted into the Eq. (7) for the

Fig. 5. Imaging with an aperture stop having amplitude transmit-
tance P . First, propagate through an ABCD subsystem having matrix
M1, then multiply by the transmittance of the aperture stop, and then
propagate with another ABCD subsystem having matrix M2.

first subsystem, yields a field impinging on the aperture stop,

U2(x , y ; ξo , ηo )=
e ikL01

iλB1
exp

[
iπD1

λB1

(
x 2
+ y 2)]

× exp

[
iπ A1

λB1

(
ξ 2

o + η
2
o

)]

× exp

[
−i2π

λB1
(ξo x + ηo y )

]
, (22)

where L01 is the axial optical path. We used the sifting property
of the delta function. Here, U2(x , y ; ξo , ηo ) is the specific
field in the (x , y ) plane due to a point source at (ξo , ηo )

in the input plane. The field immediately after the pupil is
U ′2(x , y ; ξo , ηo )=U2(x , y ; ξo , ηo )P (x , y ). The field in
the output plane is given by Eq. (7) again but substituting
U3(u, v; ξo , ηo ) for U2(x , y ; ξo , ηo ), U ′2(x , y ; ξo , ηo ) for
U1(ξ, η), and using matrix coefficient subscripts 2. Inserting
the expression for U ′2(x , y ; ξo , ηo ), we obtain the 4D (which
can in general be space-variant) impulse response

h(u, v; ξo , ηo )=U3 (u, v; ξo , ηo )

=
e ikL0

iλB2

1

iλB1
exp

[
iπD2

λB2

(
u2
+ v2)]

× exp

[
iπ A1

λB1

(
ξ 2

o + η
2
o

)]

×

∫∫
∞

−∞

exp

[
iπD1

λB1

(
x 2
+ y 2)]

× exp

[
−i2π

λB1
(ξo x + ηo y )

]

× P (x , y ) exp

[
iπ A2

λB2

(
x 2
+ y 2)]

× exp

[
−i2π

λB2
(xu + yv)

]
dxdy

=
e ikL0

iλB2

1

iλB1
exp

[
iπD2

λB2

(
u2
+ v2)]

× exp

[
iπ A1

λB1

(
ξ 2

o + η
2
o

)] ∫∫ ∞
−∞

P (x , y )

× exp

[
iπ
λ

(
D1

B1
+

A2

B2

) (
x 2
+ y 2)]

× exp

{
−i2π

λ

[(
ξo

B1
+

u
B2

)
x

+

(
ηo

B1
+
v

B2

)
y
]}

dxdy ,

(23)
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where L0 is the axial optical path of the total system. This shows
the relationship between the field in the output plane (whether
an image plane or not) and the point source in the input plane.

The ABCD matrix for the total system (ignoring the aperture
stop) is given by

MT =M2 M1 =

(
A2 B2

C2 D2

)(
A1 B1

C1 D1

)

=

(
A2 A1 + B2C1 A2 B1 + B2 D1

C2 A1 + D2C1 C2 B1 + D2 D1

)
=

(
AT BT

CT DT

)
.

(24)

The condition that the total system is an imaging system is
that BT = 0,

BT = A2 B1 + B2 D1 = 0, or
D1

B1
+

A2

B2
= 0. (25)

After inserting this expression into the integrand above, the
quadratic phase within the integral disappears, and we have

h(u, v; ξo , ηo )

=
e ikL0

iλB2

1

iλB1
exp

[
iπD2

λB2

(
u2
+ v2)]

× exp

[
iπ A1

λB1

(
ξ 2

o + η
2
o

)] ∫∫ ∞
−∞

P (x , y )

× exp

{
−i2π

λ

[(
ξo

B1
+

u
B2

)
x +

(
ηo

B1
+
v

B2

)
y
]}

dxdy ,

(26)

which is the image field from a delta function in the input plane
at (ξo , ηo ). This equation contains a Fourier transform of the
aperture-stop transmittance function, evaluated at

fx =

(
ξo

λB1
+

u
λB2

)
and f y =

(
ηo

λB1
+

v

λB2

)
. (27)

Note the similarity of this equation with Eqs. (6–33) and
(6–36) in [5].

The magnification of the imaging system is given by
AT = A2 A1 + B2C1. Using the fact that the determi-
nant of any ABCD matrix is unity, A1 D1 − B1C1 = 1, or
C1 = (A1 D1 − 1)/B1, giving

M = AT = A2 A1 + B2
A1 D1 − 1

B1

= A2 A1 +
B2 A1 D1

B1
−

B2

B1
. (28)

Furthermore, from above, BT = A2 B1 + B2 D1 = 0, or
D1 =−A2 B1/B2, giving

M = AT = A2 A1 +
B2 A1

B1

(
−

A2 B1

B2

)
−

B2

B1

= A2 A1 − A2 A1 −
B2

B1
=−

B2

B1
, (29)

a simple expression for the system magnification in terms of
the ratio of the B components of the two matrices. Taking B2

outside the brackets in Eq. (26) and using the expressions for M
above, the impulse response becomes

h(u, v; ξo , ηo )

=
e ikL0

iλB2

1

iλB1
exp

[
iπD2

λB2

(
u2
+ v2)]

× exp

[
iπ A1

λB1

(
ξ 2

o + η
2
o

)] ∫∫ ∞
−∞

P (x , y )

× exp

{
−i2π

λB2
[(u −Mξo ) x + (v −Mηo ) y ]

}
dxdy .

(30)

As in [5] (Sect. 6.3.3), defining normalized input-plane
coordinates ξ̃ =Mξ and η̃=Mη and inserting Eq. (30) into
Eq. (21) gives

h
(

u, v; ξ̃o , η̃o

)
=

e ikL0

iλB2

1

iλB1
exp

[
iπD2

λB2

(
u2
+ v2)]

× exp

[
iπ A1

λM2 B1

(
ξ̃ 2

o + η̃
2
o

)] ∫∫ ∞
−∞

P (x , y )

× exp

{
−i2π

λB2

[(
u − ξ̃o

)
x + (v − η̃o ) y

]}
dxdy . (31)

This is a generalization of [5], Eq. (6–33). Inserting this
4D function h(u, v; ξ̃o , η̃o ) into Eq. (21), integrating over
normalized coordinates (ξ̃ , η̃), and defining the ideal image as

Ug
(
ξ̃ , η̃

)
=

1
|M|

U1

(
ξ̃

M
,
η̃

M

)
, (32)

we obtain

U3(u, v)= exp

[
iπD2

λB2

(
u2
+ v2

)] ∫∫ ∞
−∞

{
Ug

(
ξ̃ , η̃

)

× exp

[
iπ A1

λM2 B1

(
ξ̃ 2
+ η̃2

)]}
h
(

u − ξ̃ , v − η̃
)

dξ̃dη̃,

(33)

where the 2D (space-invariant) impulse response, h , is given by
the Fourier transform of the aperture-stop transmittance,

h(u, v)=
−e ikL0

λ2 B2
2

∫∫
∞

−∞

P (x , y ) exp

[
−i2π
λB2

(ux + vy )
]

dxdy .

(34)
This result is analogous to Eq. (6–42) in [5] if one does not

discard the constant pure-phase term − exp(ikL01) and the
two quadratic-phase exponentials and generalizes them to an
arbitrary ABCD imaging system. Note that the 2D impulse
response, h(u, v), does not convolve just the field in the input
plane but convolves the product of the field in the input plane
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with an extra quadratic-phase exponential. The resulting con-
volution is multiplied by a second quadratic-phase exponential
in the output plane coordinates. These extra quadratic-phase
exponentials get canceled for the case of incoherent imaging
(where they can be ignored) but not for coherent imaging where
the phases in the input and output planes matter, except for spe-
cial cases, described in Sect. 6.3.2 and Problem 6-12 in [5]. For
example, the internal quadratic-phase exponential can be taken
outside the integral if it varies little over the width of the impulse
response, h(u, v). Note that the ABCD imaging equations,
Eqs. (33) and (34), are not quite space-invariant, but the image
field is nevertheless a convolution of the 2-D impulse response
with that product of the ideal image field with a quadratic-phase
exponential.

A. Location of the Exit Pupil

For imaging, the impulse response given in Eq. (34) is a
Fourier transform of the aperture stop with spatial frequen-
cies fx = u/(λB2), whose scale depends only on the part of the
system following the aperture stop. Ordinarily, for imaging, we
consider the impulse response to be the Fourier transform not
of the aperture stop (although it is that) but of the exit pupil of
the system. The exit pupil is an image of the aperture stop as seen
through the intervening optics between the aperture stop and
the image plane. To determine where the exit pupil (the image of
P ) is located, consider that the ABCD matrix from the aperture
stop to the exit pupil would be the second ABCD matrix, taking
us to the image plane, followed by the free-space propagation
from the image plane to the exit pupil, which distance we will
call d , which we wish to determine. That gives us the ABCD
matrix from the aperture stop to the exit pupil as

Msep =

(
1 d
0 1

)(
A2 B2

C2 D2

)

=

(
A2 + dC2 B2 + d D2

C2 D2

)
=

(
Asep Bsep

Csep Dsep

)
. (35)

Because going from the plane of the aperture stop to the plane
of the exit pupil should be an imaging condition, with Bsep = 0,
we have B2 + d D2 = 0 or d =−B2/D2.

The magnification of the exit pupil relative to the aperture
stop is given by

Asep = A2 + dC2 = A2 −
B2

D2
C2 =

A2 D2 − B2C2

D2
=

1

D2
,

(36)
giving

−d = B2/D2 =Asep B2, (37)

which is the distance from the exit pupil to the image plane.
If the diameter of the aperture stop is Dp , then the diameter of

the exit pupil is Dep = Asep Dp , and the (paraxial) angular sub-
tense of the exit pupil, as seen from the image plane, is

Asep Dp

−d
=

Asep Dp

Asep B2
=

Dp

B2
, (38)

which is the same as the diameter of the pupil stop divided by the
effective focal length B2, of the second half of the system. That

is, the angular subtense of the exit pupil, as seen from the image,
is equal to the ratio of the diameter of the exit pupil Asep Dp to
the distance from the exit pupil to the image −d = Asep B2,
and that is the same ratio as the physical diameter of the pupil
stop Dp divided by the effective focal length B2 of the second
half of the imaging system. Thus, both methods predict the
same diffraction effects affecting the impulse response h given
by the Fourier transform of either the aperture stop or the exit
pupil. This can also be seen by employing a change of variables
xep = Asepx in Eq. (34) and using

Pep(x , y )= P
(
x/Asep, y/Asep

)
and

P (x , y )= Pep
(

Asepx , Asep y
)
, (39)

giving

h(u, v)=
−e ikL0

λ2
(

Asep B2
)2

∫∫
∞

−∞

Pep
(
xep, yep

)

× exp

[
−i2π

λ
(

Asep B2
) (uxep + vyep

)]
dxepdyep,

(40)

which explicitly shows that propagation from the exit pupil
to the image plane, a distance of −d = Asep B2 away, gives the
identical impulse response as propagation from the aperture
stop to the image plane. The image-plane Rayleigh two-point
resolution criterion [5] for an ABCD imaging system having
a circular aperture is 1.22 λF#, where the f-number is given by
the ratio F#= Dp/B2 = Dep/(Asep B2), that is, the ratio of the
aperture-stop diameter to the effective focal length of the system
is equal to the ratio of the exit-pupil diameter to the distance
from the exit pupil to the image plane.

8. DIGITAL COMPUTATION OF PROPAGATIONS

When performing numerical ABCD propagations using a com-
puter, one works with discrete samples of the field and discrete
Fourier transforms (DFTs) instead of the continuous fields and
integrals discussed so far. Often the fast Fourier transform (FFT)
approach to compute the DFTs is used, since it is typically many
times faster than the DFT. This choice results in a particular
relationship between the output-plane sample spacings and the
input-plane sample spacings that in some scenarios are unfa-
vorable. More flexible sample spacings can be obtained by using
approaches, such as the matrix triple product, the chirp-Z trans-
form [12], and the scalable angular spectrum ([13,14], Sect.
6.4). For simplicity, in this paper we only address the single-FT
and double-FT versions using FFTs. Ordinarily, when per-
forming a DFT or FFT to compute a Fresnel or Fraunhofer
propagation integral, we compare a sampled version of the
Fourier kernel of the integral with the kernel of the DFT, and
we arrive at the relationship between the output sample spacing
δ2 and the input sample spacing δ1. In the case of the single-FT
ABCD propagation given in Eq. (7), this gives

δ2 = λB/(Nδ1), (41)
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for an N × N FFT [15]. In contrast, in the double-FT version
of ABCD propagation, which is computed using multiplication
with a transfer function in the Fourier domain, as given by
Eq. (12), we obtain the same sample spacing in the output plane
as the input plane: δ2 = δ1. Because the inputs to and outputs
from an FFT have the same linear number of pixels N, scaling
of the sample spacings likewise scales the physical width Nδi of
the field in the computational window. Therefore, selecting the
discrete form of either the single-FT or the double-FT versions
of the ABCD propagation will largely depend on the relative
widths desired of the input and output fields. If they are com-
parable in width (e.g., propagating a plane wave forward a short
distance or having a propagation Fresnel number much greater
than, say, 10 or 50), then the double-FT version will typically
be more efficient. On the other hand, if they differ greatly in
width (e.g., propagating from a pupil plane to an image plane
or propagating from the near field to the far field), then the
single-FT version will typically be more efficient. If the less
efficient method is chosen, then one finds that it is necessary
to embed the arrays in larger arrays of zeros to avoid aliasing,
thereby driving up both the computational cost and memory
requirements.

Aliasing occurs in the computations when the propagated
field extends laterally beyond the physical width of the com-
putational window, and energy wraps around from one edge
of the array to the opposite edge. If the field has passed through
an aperture with hard edges, then the Fourier transform of that
field will certainly be aliased because it extends out to infinity,
but that aliasing can be minimized by representing the field by
a large array of numbers in the computer. Another source of
aliasing is due to phase terms within the propagation integral
itself, which we analyze here. One way to appreciate this is to
note that if one samples a tilted plane wave such that the linear
phase changes by 2π from one sample to the next, then that
tilted plane wave is indistinguishable from an on-axis plane
wave, since exp(i 2π)= exp(i 0)= 1. According to the Fourier
shift theorem [5], a linear phase in one domain results in a pro-
portional translation in the other domain. For a length-N FFT
of a linear-phase exponential having the phase change of 2π
per sample, the transform is shifted by exactly N samples. It has
translated off one edge of the computational window, wrapped
around to the opposite edge, and has returned back to its origi-
nal position. Proportionally, if the linear-phase exponential has
a phase that changes by π per sample, then it translates by N/2
samples, that is, by half of the computational window. Hence
we will have very substantial aliasing when the local slope of the
quadratic-phase exponential inside the integral of Eq. (7) is π
per sample or greater. Assume an input-plane aperture of width
Dap =Mδ1, where M is the number of samples across the width
of the aperture. This aliasing condition can be calculated by
using the concept of the local spatial frequency [5], taking the
partial derivative of the quadratic phase with respect to a trans-
verse coordinate and multiplying that by the sample spacing,
and having that product be greater than or equal toπ at the edge
of the aperture, at Dap/2, at pixel M/2. One can alternatively
compute the phase at the last sample within the aperture, at
M/2 from the origin minus the phase at (M/2− 1) from the
origin, and having that difference be greater than or equal to π .
By applying the first approach to the quadratic phase term in
Eq. (7), we have

δ1
∂

∂ξ

π A
λB

(
ξ 2
+ η2

)∣∣∣∣
ξ=Dap/2

=
Dap

M
2π A
λB

Dap

2
=

4π ANF

M
≤ π,

(42)
or, to avoid this aliasing, we need

M ≥ 4ANF , (43)

where

NF =
D2

ap

4λB
, (44)

is the Fresnel number for the propagation, which is the number
of π of the phase change of the quadratic phase from the center
to the edge of the aperture. Eq. (5–12) in [5] is a special case
of Eq. (43) for the case of free-space propagation. For a short-
distance propagation of a roughly collimated field U1(ξ, η),
Eq. (43) can require an overly burdensome number of pixels
across the aperture to avoid aliasing by the quadratic phase
inside the integral of Eq. (7). If, on the other hand, U1(ξ, η)

contains a converging or diverging quadratic-phase exponential,
then the phase of the exponential should be added to the quad-
ratic phase explicit in the integral in Eq. (7) to determine when
aliasing occurs due to quadratic-phase terms.

If instead one employs the double-FT, Fourier-domain con-
volutional form of ABCD propagation, given in Eq. (12), then
the maximum slope of its quadratic phase must be analyzed.
First, the sample spacing for the FFT in the Fourier domain
is δ f = 1/(Nδ1), where Nδ1 is the width of the computa-
tional window in the input plane (which may include some zero
padding, with N ≥ M), and the width of the computed Fourier
domain is Nδ f = 1/δ1. Then, we need

δ f
∂

∂ fx

πλB
A

(
f 2
x + f 2

y

)∣∣∣∣
fx=1/(2δ1)

=
1

Nδ1

2πλB
A

1

2δ1
=
πλB

ANδ2
1

≤ π, (45)

or

N ≥
λB

Aδ2
1

, (46)

which can be a burdensome number of samples for large B , for
example, long propagation distances, or for an overly fine sam-
ple spacing δ1. Consequently, one would benefit from choosing
Eq. (7) or Eq. (12), depending on the value of B , which is in
the numerator in Eq. (7) and in the denominator in Eq. (12). A
further factor in favor of the double-FT Eq. (12) is that violating
the aliasing condition of Eq. (46) often produces only a small
amount of aliased energy compared to violating the aliasing
condition of Eq. (43) for the single-FT propagation in Eq. (7).
This occurs when the Fourier transform of U1(ξ, η) drops off
a great deal with higher spatial frequencies, which is usually the
case, for example, for an aperture illuminated by a plane wave.
Then, the location of the maximum slope of the phase causing
the aliasing is where the Fourier transform of U1(ξ, η) has a
small value. Thus, little energy is aliased. However, we often
have situations in which the quadratic phase in the integral
of the single-FT Eq. (7) has a maximum slope near the edge
of an aperture, and if the aperture is uniformly illuminated,
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then U1(ξ, η) would have a large value in those locations, and
a large amount of energy would be aliased. Hence, the aliasing
condition for the single-FT Eq. (7) is often much stricter than
the aliasing condition for the double-FT Eq. (12). An exception
is the case of propagating a laser speckle field, for which the
Fourier transform of U1(ξ, η) will typically have large values at
higher spatial frequencies. In that case, the aliasing condition
for Eq. (12) must be taken strictly. Issues surrounding sampling
and aliasing can be complicated, and the reader may find further
discussions in [5,14,16].

In the discussion of aliasing above, we concentrated on the
quadratic-phase exponentials inside the integrals. It also easily
happens that the quadratic-phase exponentials outside the
integrals can be undersampled as well. These include the phase
proportional to D/B in Eq. (7), the phase proportional to C/A
in Eq. (11), and the phase proportional to D2/B2 in Eq. (33).
When the final phase does not matter, these can be ignored, but
when interfering the field with another field or if further propa-
gations are required, then the fidelity of those external quadratic
phases matters. In that case it can be advantageous to keep track
of that quadratic phase separately, saving its quadratic coeffi-
cient rather than evaluating the exponential. Then, if further
propagation is required, one can add the saved quadratic-phase
coefficient to the quadratic-phase coefficient within the next
ABCD integral for the next propagation, and numerically
evaluate that net quadratic-phase exponential. Aliasing due to
quadratic-phase exponentials would then be driven by that net
quadratic-phase exponential rather than just by the one given in
the expression for the ABCD propagation.

Finally, reduced computational burdens can sometimes also
be achieved by first propagating from the input plane to a second
plane, where aliasing is minimized and small array sizes can
be used, and then propagating from that plane to the desired
output plane {[15], after Eq. (3.6)}.

Further references on numerical propagations are given in
[17,18].

9. SUMMARY AND REMARKS

The ABCD (ray-transfer) method of analyzing paraxial optical
systems was originally developed for paraxial geometrical optics
and was then shown by Collins to be applicable to wave-optics
paraxial propagation calculations as well. It can be expressed
in two ways. The first version is a single Fourier integral, the
single-FT version, with quadratic-phase exponentials inside and
outside the integral, which has the Fresnel propagation integral
as a special case for free-space propagation. The second version
is where the propagation integral is expressed as a convolution
integral with the ABCD-propagation impulse response, which
is in the form of a quadratic-phase exponential. This second
version, the double-FT version, can be expressed in the Fourier
domain as a product with the ABCD-propagation transfer
function, which is also in the form of a quadratic-phase expo-
nential. It takes two Fourier transforms to compute and has
the free-space paraxial angular spectrum propagation, which is
equivalent to the Fourier-domain version of the Fresnel propa-
gation, as a special case. Which of these two versions is more
accurate and computationally efficient depends on the relative
widths of the desired input plane and output plane regions of

interest, with the double-FT version favoring similar widths and
the single-FT version favoring greatly differing widths. It also
depends on the ABCD Fresnel number, given by the square of
the input-plane aperture diameter (when there is one) divided
by 4λB , with the double-FT version favoring larger values
(e.g., 10 or 50 or greater) of the Fresnel number and the single-
FT version favoring smaller values (e.g., 50 or 10 or smaller).
Performed numerically, both types of propagations can result in
aliasing, and the effects of aliasing can be worse for the single-FT
version than for the double-FT version when aliasing occurs. In
some cases it is computationally advantageous to perform two
propagations, the first from the input plane to an advantageous
plane, and the second from that plane to the desired plane.

In the case of an imaging system, for which B = 0, ABCD
propagation predicts a perfect image. To include diffraction
effects, one must perform a first ABCD propagation from the
object plane to the aperture stop within the imaging system,
multiply by the transmittance function of the aperture stop,
and then ABCD propagate from the aperture stop to the image
plane. This was shown to be equivalent to the convolution of the
product of the ideal image of the field in the object plane with
an object-domain quadratic-phase exponential with the ABCD
impulse response, given in Eqs. (33) and (34). This makes imag-
ing of coherent fields not quite space-invariant. That impulse
response is given by the Fourier transform of the aperture stop
transmittance function over an effective focal length of B2, the
B coefficient of the ABCD matrix going from the aperture stop
to the image plane. One can alternatively calculate the location
of the exit pupil relative to the image plane and calculate the
ABCD impulse response as a Fourier transform from the exit
pupil to the image plane, with a propagation distance of B2/D2.

When imaging optical fields, additional quadratic phase
exponentials naturally occur in the object and image planes, and
these need to be included in the propagations. The quadratic
phases do, however, go away when one is imaging an incoherent
object, in which case one convolves the object intensity distribu-
tion with the point-spread function |h|2, which is the squared
magnitude of the coherent impulse response analyzed here. The
optical transfer function would then be the Fourier transform
of |h|2. For light at the object that is partially coherent, one
can compute the image intensity using a 4D integral involving
conjugate products of two differently shifted versions of h {[5],
Eq. (7–8)} or more generally can compute the propagation of
the mutual intensity function from an input plane to an output
plane with a similar 4D integral {[6], Eq. (7.154)}.

Since fractional Fourier transforms and linear canonical
transforms are special cases of ABCD propagation integrals,
these results, with appropriate change of parameters, can be
used for them as well. Those two formalisms are often used for
an interesting phase-space interpretation [6,7] of propagating
fields, which includes the Fourier transform being a rotation in
phase space by 90◦.

The propagation of optical fields through complicated opti-
cal systems is greatly simplified by the use of ABCD propagation
integrals, as it can be accomplished with only one or two Fourier
transforms rather than with the many transforms that would be
needed if one were to propagate from one lens element to the
next through such a system.
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