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Segmented-aperture systems, such as the James Webb Space Telescope (JWST), require fine piston alignment
between primary mirror segments. Computer simulation experiments show that using a broadband long-
wavelength channel, illustrated with the Mid Infrared Instrument (MIRI) onboard the JWST, can extend the
capture range of segment piston phase retrieval significantly (in the case of JWST with MIRI, up to hundreds of
microns), greatly reducing the requirements on coarse phasing. ©2024Optica PublishingGroup

https://doi.org/10.1364/AO.518565

1. INTRODUCTION

Segmented-aperture systems provide a method of having a large
primary collecting aperture without requiring a large mono-
lithic aperture. However, one of the challenges of reflective
segmented-aperture systems is segment piston alignment. Our
work is motivated by the James Webb Space Telescope (JWST),
which is a segmented-aperture system with a primary mirror
that consists of 18 hexagonal segments in a two-ring configura-
tion. To achieve the goal of JWST being diffraction-limited [1],
the relative piston errors between segments needs to be less than
1/14 waves rms according to the Maréchal criterion. However,
measurement error should be several times more stringent than
the specification error in order to have high confidence that the
telescope meets specification. Thus, we chose a measurement
error of 1/100 waves as the criterion for measurement success.
For the JWST, for which most of the wavefront sensing was
done with the short-wavelength channel Near Infrared Camera
(NIRCam) at a central wavelength of 2.12µm, this corresponds
to 21 nm.

To achieve such fine alignment, the JWST went through a
multi-step wavefront sensing and control commissioning proc-
ess [1,2]. Of particular interest to this paper is the fine phasing
step, which uses phase retrieval to measure small phasing errors
between segments, focusing on tip, tilt, and piston terms. Before
the fine phasing step, there is an image stacking step and a coarse
phasing step. The image stacking step corrects for large tip/tilt
segment errors, and the coarse phasing step uses dispersed fringe
sensing to correct for large piston errors (up to 350µm) between
segments. While coarse phasing can measure much larger seg-
ment piston errors than fine phasing, coarse phasing has residual
errors that are too large for the fine alignment required for
JWST. Thus, fine phasing is used to correct for residual segment

piston errors from coarse phasing, as well as any residual tip/tilt
from image stacking. The work in this paper aims to increase the
magnitude of segment piston errors that the fine phasing step
can measure while still meeting the required measurement error
criterion.

Phase retrieval entails simulating a point spread function
(PSF), an image of an unresolved star, from a phase estimate,
then updating the phase estimate to minimize the error between
the simulated PSF and the measured PSF [3]. Phase retrieval
can be used to correct for multiple types of phase errors. In this
paper, however, we will focus specifically on phase retrieval for
segment piston error, because phase retrieval for segment piston
errors of multiple wavelengths requires additional steps not
used in regular phase retrieval. For brevity, we will use the term
segment piston phase retrieval (SPPR) to refer to phase retrieval
of only segment piston errors, which builds upon previous work
done by Paine and Fienup [4]. In addition, we mainly explored
the case where the segments are perfectly flat. While in reality
this is not the case, intra-segment errors would be known from
prior measurements (ground testing and phase retrieval on
individual segments, as was done with JWST) and can be easily
added to the forward model. Since intra-segment errors can be
treated as prior knowledge and are not parameters to be solved
for, unlike segment piston, their inclusion in the forward model
would only somewhat affect the results of SPPR. We did exam-
ine a case where we included intra-segment error and system
aberrations, which we describe more fully in Section 8.

A common issue in phase retrieval is the capture range prob-
lem. Phase retrieval can be cast as a nonlinear optimization
problem [3], and the optimization process can get stuck (stag-
nate) in local minima that are not the true solution. The capture
range is defined as the set of starting estimates that converge
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to the true solution; conversely, starting estimates outside the
capture range converge to other local minima. Increasing the
capture range is directly correlated to improving the success rate,
since increasing the capture range makes it more likely that the
initial starting estimate will be within the capture range.

PSFs fundamentally depend on phase error,φ, rather than the
optical path error,1l , though the two are closely related by

φ(x , y )=
2π

λ
1l(x , y ), (1)

where λ is the wavelength in the monochromatic case, or the
central wavelength in the narrowband case. In other words, for
the same1l , the resulting PSF will depend on the wavelength.
Thus, the capture range for phase retrieval is more directly phase
dependent than optical-path dependent. Therefore, the capture
range in terms of optical path can be increased by using a longer
wavelength, since longer wavelengths have smaller phase errors
than shorter wavelengths for the same optical path error.

SPPR has two additional issues that make the problem of
SPPR particularly difficult: piston ambiguity and deep local
minima. Piston ambiguity is the problem where, for monochro-
matic light, a segment piston error of 2π gives the same PSF as
zero error. The piston ambiguity problem can be solved by using
broadband light, as described in Section 2. “Deep local minima”
is the problem where it is difficult for a nonlinear optimization
to get out of the local minimum it is currently in. The deep local
minima problem associated with multiple-2π phases can be
solved with a grid search, as described in Section 3. Previous
work done by Paine showed that using broadband light with
a grid search could greatly increase the capture range of SPPR
[4]. Note that both broadband light and grid searching are
needed to increase the capture range of SPPR: a grid search with
monochromatic light has piston ambiguity, whereas the error
metric for piston errors with broadband light has deep local
minima.

Thus, in this paper, we explored using a broadband long-
wavelength channel, specifically the F1800W broadband filter
on the Mid Infrared Instrument (MIRI) onboard JWST, to
increase the capture range of SPPR in terms of optical path
error as compared with using NIRCam. We compared MIRI’s
F1800W broadband filter, which has a central wavelength of
18.06µm, to NIRCam’s F212N narrowband filter, which has a
central wavelength of 2.12µm. The ratio of central wavelengths
between the MIRI F1800W and NIRCam F212N filters means
that using MIRI can potentially increase the capture range
by a factor of 8.5. In addition, using a broadband filter could
increase the capture range over using a narrowband filter up to
the coherence length of the spectrum, as described in Section 2.
However, there is a trade-off in choice of bandwidth. Smaller
bandwidths potentially have larger capture ranges since the
coherence length is longer, but are more prone to the piston
ambiguity problem. Conversely, larger bandwidths better deal
with the piston ambiguity problem, but at the cost of smaller
capture ranges. Since MIRI’s F1800W broadband filter has a
coherence length of approximately 6 waves at the 18.06 µm
center wavelength, altogether the capture range can potentially
be increased by a factor of 51. One additional benefit of using a
broadband filter is if the telescope happened to be forced to use
short exposures (e.g., if the telescope were to have jitter), where

the broadband PSF would have a few times more photons than
with the narrowband filter.

While the capture range may increase with the longer wave-
length, this comes at the cost of accuracy: the measurement
accuracy of SPPR with MIRI relative to NIRCam will decrease
by the same factor of 8.5. However, this can be satisfactory so
long as the residual errors of phase retrieval with MIRI is less
than the 21 nm goal. Alternatively, it can be adequate for the
residual errors in phase retrieval with MIRI to be within the
capture range of phase retrieval with NIRCam. In that case, an
SPPR with MIRI followed by an SPPR with NIRCam can have
the capture range of MIRI with the accuracy of NIRCam.

While our work follows closely to the work done by Paine
and Fienup [4], there are key differences. First, the cases Paine
analyzed were all broadband spectra that were symmetric, such
as the one shown in Fig. 1(c), while our spectrum, which is based
on 5700 K blackbody radiation going through MIRI’s F1800W
filter as shown in Fig. 1(e), is asymmetric. Having an asymmetric
broadband spectrum creates a phase-shift problem in the grid
search that requires an additional optimization step to the grid
search to compensate, which we describe in Section 3. Paine did
not have this additional optimization step because he would
not have encountered this phase-shift problem with symmetric
broadband spectra, which we explain in Section 3. Second,
Paine uses three defocus planes, while we only use one defocus
plane. Paine’s work was more tailored towards using NIRCam,
which is outfitted with a filter wheel with weak lenses that readily
allow it to take images at three defocus planes. However, MIRI
has no weak lenses and is only able to readily take images at one
defocus plane, so we only used one defocus plane instead of
three to reflect this. Both of these differences make SPPR more
difficult with data from MIRI; nevertheless, using the longer
wavelengths of MIRI greatly expands the capture range in terms
of optical path error that can be accurately determined.

In this paper, we demonstrate that SPPR can estimate piston
errors with reasonable success rates up to a few waves of MIRI’s
F1800W filter’s center wavelength. This would greatly reduce
the residual error requirements of the coarse phasing step, if not
remove the need for dispersed fringe sensing altogether.

2. USING BROADBAND LIGHT TO SOLVE
THE PISTON AMBIGUITY PROBLEM

One of the known problems of SPPR is that with a monochro-
matic light spectrum, the piston value of a single segment is
ambiguous. This can be seen in Fig. 1(b), which shows the
error metric value as a function of single-segment piston for a
monochromatic spectrum. For the error metric, we used the
bias-and-gain-invariant error metric as described by Thurman
[5], which is a common error metric used in phase retrieval. The
bias-and-gain-invariant error metric can be expressed as

E =
∑
m,n

(D[m, n] − β − α I [m, n])2, (2)

where D is the measured PSF, I is the simulated PSF, and α, β
are estimated gain and bias terms, respectively. The aperture
used was a JWST-like aperture, as shown in Fig. 2. The segments
were assumed perfect (aside from piston errors), and no mea-
surement noise was added to the measured PSF. From Fig. 1(b),
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Fig. 1. Error metric value, E , versus single-segment piston for various spectra. Each row shows a spectrum on the left and its corresponding E ver-
sus single-segment piston on the right. The rows top to bottom correspond to monochromatic, symmetric broadband, and asymmetric broadband
spectra. For the plots in the right column, the gray vertical lines are located at integer waves (in terms of the center wavelength) of piston, and the red
vertical bars show the location of error metric troughs.

Fig. 2. JWST-like aperture.

we see that the error metric value as a function of a single-
segment piston for a monochromatic spectrum is a sinusoid
with a period of 1 wave, and that the error metric value is equiv-
alently zero at every trough. This occurs because piston phase
jumps of an integer times 2π on any segment represents the
same complex-valued field in the pupil, that complex pupil gen-
erates the same PSF, and thus the error metric value would be the
same for those cases. Thus, cases that differ by an integer times
2π piston errors on segments are indistinguishable according
to the error metric, and therefore the solution is ambiguous.
This demonstrates the piston ambiguity problem, because the
true piston value is ambiguous with the piston values at all the
other troughs in the error metric. This limits the capture range
of SPPR for monochromatic light to each segment being within
±1/2 wave from a reference segment, since there is no guarantee
that the retrieved solution is the true solution outside that range.

A solution to the integer-wavelength piston ambiguity
problem is to use a polychromatic (broadband) light spectrum
[4] rather than the usual near-monochromatic, narrowband
light spectrum to define the optical bandwidth of the PSFs.
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Generating broadband PSFs has some nuances that we detail
in Section 4. Figure 1(d) shows the error metric as a function of
a single-segment piston for a symmetric broadband spectrum.
Single-segment 2π piston phase jumps (in terms of center
wavelength) are now distinguishable (i.e., error metric value is
different), since the broadband PSF now changes with multiple-
2π phase jumps, whereas it did not in the monochromatic PSF
case. This is due to how the PSF changes with wavelength. The
PSF is a function of phase error, and phase error is a function
of wavelength according to Eq. (1). In addition, the Fourier
kernel in Fresnel propagation depends on the wavelength, which
changes the magnification of the PSF. Thus, for a broadband
PSF, fringe visibility in the PSF is reduced, since the PSF at
one wavelength partially fills in the nulls of the PSF at another
wavelength. More importantly, however, is that fringe visibility
changes with multiple-2π phase jumps in the broadband PSF
case and not in the monochromatic PSF case.

The coherence length describes the minimum segment piston
separation between two segments for which light from the two
segments has greatly diminished interference fringes, and the
coherence length is inversely proportional to the bandwidth.
In addition, for pure segment piston error, while at the focus
plane the light from each segment overlaps one another, at a
defocus plane the light from each segment starts to separate and
overlap less. In order for a segment piston value to be retrievable,
the light from that segment has to coherently interfere with
light from at least one other segment in order for the PSF to
vary with that segment piston value. Thus, the light from that
segment must be within a coherence length difference in piston
from another segment, and the overlap of light from the two
segments needs to be sufficient to have discernible fringes. If
the segment piston value is not within the coherence length of
another segment or the overlap is insufficient, then the light
from that segment will add incoherently to the PSF, and thus the
PSF will not vary with that segment piston value; in this case, all
we can determine is that the segment is outside the coherence
length with any significant overlap of any other segments.

In the monochromatic case, the capture range is limited
by piston ambiguity; thus the capture range of SPPR in the
monochromatic case is limited to each segment being within
±1/2 wave from a reference segment. In the broadband case,
the capture range is limited both by piston ambiguity and by the
coherence length of the light with a given spectrum. If the band-
width is too narrow, then the capture range can still be limited
by piston ambiguity, but if the bandwidth is too wide, then the
coherence length may be too short and again limit the capture
range. Assuming that the bandwidth is chosen properly, then
the capture range of SPPR in the broadband case is that each
segment has to be within the coherence length with significant
light overlap of at least one other segment, which may be signifi-
cantly larger than the capture range in the monochromatic case.
However, these are theoretical maxima of the capture range; the
capture range can still be limited by other local minima.

3. USING GRID SEARCH TO SOLVE THE DEEP
LOCAL MINIMA PROBLEM

While using a broadband spectrum makes single-segment 2π
piston phase jumps distinguishable from one another, these

Fig. 3. Zoomed in plot of Fig. 1(d). For the symmetric spectrum
case, the troughs land approximately on integer waves of piston error
within the coherence length of ∼6 waves.

solutions are still deep local minima (i.e., difficult to get out of )
in the error metric landscape. This makes the grid search step in
SPPR essential.

In previous work [4], Paine examined the case where the
broadband spectrum was symmetric. Figure 1(d) shows an error
metric value as a function of a single-segment piston for this
symmetric-spectrum case. Figure 3 shows a zoomed in version of
Fig. 1(d) in order to see the troughs better. Since the spectrum is
broadband, the troughs have different error metric values, with
the true piston value giving the lowest error, as previously dis-
cussed. Note that the bottoms of the troughs are approximately
1 wave (in terms of center wavelength) apart, as seen in Figs. 1(d)
and 3. Since we know that these solutions are approximately
single-segment integer waves (in terms of center wavelength) of
piston phase jumps apart, we could try to perform a brute-force
grid search that checks them all and choose the best one, i.e.,
evaluate the error metric for these solutions and select the one
with the lowest error. However, there may be many possible
2π piston phase jumps per segment, and the combinatorics
scales exponentially with the number of segments if we had to
check every combination of segment piston phase jumps. For
example, checking all combinations of just five piston phases for
17 segments requires 517

= 30× 109 cases. Instead, we perform
a computationally faster grid search that limits the number of
phase jumps to test by modifying one segment at a time, which is
further detailed in Section 5.

For an asymmetric broadband spectrum, most of the intu-
ition is the same as in the symmetric broadband case, but it is
no longer valid to assume that the bottoms of the troughs are
approximately 1 wave (in terms of center wavelength) apart.
Instead, the bottoms of the troughs may have a phase shift. This
can be seen in Fig. 4(a), especially at 4 and 5 waves of segment
piston. Changing the piston by 1 wave still moves the solution to
a different trough, but not to the bottom of the trough.

The phase shifting of the troughs that occurs in the asymmet-
ric broadband case is due to two factors: frequency mismatch
and spectrum asymmetry. Since the expected trough separa-
tion is in units of waves, the chosen reference wavelength is
important. For an asymmetric broadband spectrum, we found
that the mean wavelength or mean frequency may be a more
appropriate reference wavelength than the center wavelength.
For a symmetric broadband spectrum, the center wavelength
and the mean wavelength are equal, which is why there is no
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Fig. 4. (a) Zoomed in plot of Fig. 1(f ), using the center wavelength
of 18.06 µm as the reference wavelength. (b) Same as (a), but using
the mean wavelength of 17.86 µm to account for frequency mis-
match. Note that even after accounting for frequency mismatch, there
are visible phase shifts at 5 and 6 waves—these are due to spectrum
asymmetry.

frequency mismatch when using the center wavelength in that
case. Figure 4(b) shows the trough locations of the same spec-
trum as in Fig. 4(a) but using the mean wavelength (17.86 µm
in this case) as the reference wavelength rather than the center
wavelength (18.06 µm). From Fig. 4(b) alone, it is tempting
to say that we did not “frequency match” enough—perhaps an
even smaller wavelength would be even better. However, using
a smaller wavelength causes the trough error for negative waves
(e.g., −6 to −1 waves) to get worse. Thus, we found that the
mean wavelength gave a good compromise for both positive and
negative troughs.

As seen in Fig. 4(b), even after accounting for frequency
mismatch by using the mean wavelength, there are still visible
phase shifts at 5 and 6 waves (in terms of mean wavelength).
The remaining phase shift is due to spectrum asymmetry. This
can be explained by the fact that the error metric value as a func-
tion of a single-segment piston is related to the real part of the
temporal coherence function of the spectrum. This is further
elaborated in Appendix A. The temporal coherence function is
proportional to the Fourier transform of the spectrum. This is
why for a symmetric broadband spectrum, the troughs are still
1 wave apart: the Fourier transform of a symmetric function
has no phase component besides the linear term due to the
center wavelength shift from the origin, so there is no phase-
shifting of the troughs when taking the real part. However, the
Fourier transform of an asymmetric broadband spectrum will
have an additional phase component due to the asymmetry of

the spectrum, leading to phase shifting of the troughs when
taking the real part. This is true within the coherence length
of the spectrum—there may be other phase terms that lead
to other phase shifts outside the coherence length even in the
symmetric broadband case. For example, note in Fig. 1(d) that
the troughs are at integers only out to 6 waves (the coherence
length of the spectrum). After that, the bottoms of the troughs
shift to half-integer values for a few waves. This is due to the
negative sidelobes of the temporal coherence function (in this
case, a sinc/Dirichlet function), which correspond to a phase
shift of half a wave. This adds complexity to the grid search for
larger values of the piston outside the coherence length for both
broadband cases.

Even though in the asymmetric broadband case we are not at
the bottom of the trough after changing the piston by 1 wave (in
terms of center or mean wavelength), we can get to the bottom
of the trough with a few steps of phase-retrieval optimization.
Thus, our procedure differs from Paine’s procedure by adding
an optimization after performing the 2π piston phase jump
in order to get to the bottom of each trough after each jump,
as detailed in Section 5. Note that since what is important for
the grid search is that changing the piston by 1 “wave” moves
the solution to a different trough, our procedure can account
for some frequency mismatch in addition to phase errors from
spectrum asymmetry. This is beneficial because there are cases
where the source spectrum is unknown, so obtaining an estimate
of the mean wavelength may be difficult, but so long as the
chosen reference wavelength, such as the center wavelength of
the broadband filter, is close enough to the mean wavelength
of the total spectrum, our procedure will still perform well. For
this paper, we chose to use the center wavelength as our reference
wavelength, but all of the principles still apply for any other
reasonable reference wavelength.

4. SIMULATING A BROADBAND PSF

Since our work heavily depends on using broadband PSFs, we
will now describe some of the nuances of simulating broadband
PSFs.

We first take a closer look at the monochromatic PSF. Let the
aperture amplitude transmittance array be A, λ be the wave-
length, and the pupil phase array at that wavelength be φ. The
pupil sampling ratio is given by [6,7]

QP
=

K
M
, (3)

where M is the number of samples across the pupil, and K is the
padded array size for an FFT-based propagator. QP

= 2 corre-
sponds to Nyquist sampling for the PSF [7]. The 2D discrete
Fourier transform (DFT), assuming a square array, with a pupil
sampling ratio of QP, is

G[r , s ] =F(QP){g [m, n]}

=

∑
m,n

g [m, n] exp

{
−i2π

mr + ns
K

}

=

∑
m,n

g [m, n] exp

{
−i2π

mr + ns
QP M

}
. (4)
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The PSF in the focus plane is computed as the squared mag-
nitude of the Fourier transform of the aberrated pupil, which is
then cropped to a region of interest. The PSF can be computed
at a defocus plane, which can be done by adding a quadratic
phase over the pupil. Thus, the monochromatic PSF can be
expressed as

I mono =wcrop ◦

∣∣∣∣F(QP)

{
A ◦ exp

[
i2π

(
w p +wq

λ

)]}∣∣∣∣2,
(5)

where w p is the pupil optical path error, wq is the quadratic
optical path error due to defocus, ◦ represents the Hadamard
product, F(QP) represents the Fourier transform with a pupil
sampling ratio of QP as given by Eq. (4), and wcrop represents
the cropping operation, which can be thought of as multiplying
by a binary mask. Note thatw p andwq as well as λ are in units
of length, making the exponent unitless. Thus, the pupil phase
error is

φ =
2π

λ
w p , (6)

and the defocus quadratic phase is

θ =
2π

λ
wq . (7)

For a broadband PSF, we go from having a single wavelength
to a spectrum with a non-zero bandwidth. We sample the spec-
trum at different, discrete wavelengths, λn , which have their
corresponding spectral weights, Sn . A broadband PSF can be
approximated as a sum of monochromatic PSFs, each weighted
by Sn . However, special care must be taken to ensure that the
monochromatic PSFs all have the same image sample spacing.

Here we model the pupil array to have the same sample spac-
ing,1x , for every wavelength, with M samples across the pupil,
and let us assume a square array for simplicity. Then the DFT
for a given QP will have an output spatial frequency sample
spacing of

1 fx =
1

K1x
=

1

QP M1x
. (8)

The image sample spacing,1u, for an infinite-conjugate sys-
tem (i.e., detection in the back focal plane of the lens) is related
to1 fx by

1u = λ f1 fx =
λ f

QP M1x
, (9)

where f is the focal length. Thus, for a given constant QP,1u
scales with λ. Because of this, for generating a broadband PSF,
naively using the DFT with a fixed QP would cause each of the
monochromatic PSFs to have different image sample spacings.
However, the monochromatic PSFs should all have the same
image sample spacing in order for the summation to be valid.
Therefore, there should be a different QP

n for eachλn .
Define λc as the central wavelength of the spectrum, and

QP
c as the QP at λc . Then the PSF at λc will have some sample

spacing 1uc , and the QP
n are thus determined such that each

individual monochromatic PSF at λn will also have a sample
spacing of1uc :

QP
n =

λn

λc
QP

c . (10)

Note that QP
n defined by Eq. (10) will likely have a non-

integer padded array size. Thus, it may be useful to use
alternative methods of computing the DFT that allow for
arbitrary sampling, such as the matrix triple product or the chirp
z-transform, instead of the FFT [7].

Therefore, a broadband PSF can be simulated as

I =
∑

n

Sn ·wcrop ◦

∣∣∣∣F(QP
n)

{
A ◦ exp

[
i2π

(
w p +wq

λn

)]}∣∣∣∣2.

(11)

5. SEGMENT PISTON PHASE RETRIEVAL
PROCEDURE

As an overview of the SPPR procedure, SPPR can be separated
into two steps: global optimization and grid search. In the global
optimization step, all of the segment pistons are optimized
together until the solution is in a local minimum. In the grid
search step, 2π piston phase jumps are applied to each segment
and then the phase of that segment is optimized over, one seg-
ment at a time. Note that in the grid search step, optimization
does occur, but only for one segment at any one time, as opposed
to the global optimization step where all segments are optimized
over simultaneously. After the first global optimization step,
iterations of alternating grid search and global optimization
steps are performed as needed. A reasonable stopping criterion
is when the solution does not change after a grid search/global
optimization iteration. However, as shown in Fig. 7 in Section 7
later, just having one grid search/global optimization iteration
greatly increases the success rate of SPPR, with additional itera-
tions providing diminishing returns. Note that the starting step
and the final step are both global optimization steps. Every grid
search step is followed by a global optimization step in order to
settle the solution back down to a local minimum. If the final
local minimum found is also the global minimum, then SPPR
was successful; otherwise, the solution stagnated and SPPR
failed. The capture range is thus defined as the set of starting
points that converge to the global minimum. A flowchart of the
SPPR procedure is shown in Fig. 5.

The optimizations that occur in both the global optimization
and grid search steps are essentially traditional nonlinear-
optimization phase retrieval. For optimization, the segment
pistons are simulated on a segmented aperture, and then the
corresponding broadband PSF according to the spectrum is
computed as detailed in Section 2. The simulated PSF was
compared to the measured/data PSF via an error metric, and
then the gradient of the error metric with respect to the seg-
ment pistons was computed. The segment pistons are updated
according to the gradients by the nonlinear optimizer, and then
the process repeats until a local minimum of the error metric is
found. During the global optimization step, all of the segments
are optimized over simultaneously. On the other hand, during
the grid search step, only one segment is optimized over at any
one time, which occurs after applying an integer multiple of a
2π phase jump to that segment.

The grid search step is informed by our understanding of the
error metric shape given in Section 3. A grid search step should
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Starting estimate

Initial global optimization

Segment Grid Search

Post-grid search
global optimization

Final estimate

Fig. 5. Flowchart of SPPR procedure.

always be preceded by a global optimization step, so the initial
solution for the grid search step will be at a local minimum of the
error metric. First, we define the initial solution as the baseline
solution, φb , with a corresponding baseline error metric value,
Eb . Then, selecting a single segment at random, we apply an
integer multiple of waves (in terms of center wavelength) of a
piston to that segment in order to move the solution to a differ-
ent trough, and then optimize over the piston of that segment to
find the minimum error of that trough. We do this for a range
of integer multiples of waves around the initial segment piston
value in order to scan the troughs around φb . A parameter of
the grid search step is what range to use. The scan limit is deter-
mined by the magnitude of expected segment piston error. In
our case, that is determined by the previous alignment step.
If the error metric value of the lowest trough is less than Eb ,
then we update φb such that the piston of that segment is the
piston value at the lowest trough, and Eb is also updated accord-
ingly. We repeat this process for all segments, going through
the segments one at a time randomly without repetition. We
define going through all segments once as one round of grid
searching. Each round of grid searching had a different random
order of going through the segments. We continue doing rounds
of grid searching until there is no improvement in Eb after an
entire round. Going until there is no improvement after one
round of grid searching is one grid search step in SPPR. The grid
search step is very similar to what Paine did previously, but Paine
did not perform an optimization after moving the solution
to a different trough because Paine only examined symmetric
broadband spectra [4].

6. SIMULATIONS

We used the WebbPSF Python package developed by Space
Telescope Science Institute for an accurate model of MIRI’s
filters and object spectra [8]. We used a 5700 K blackbody for
the object spectrum, and F1800W for the MIRI filter. We sam-
pled the system spectrum with nine samples equally spaced in

wavelength across the bandwidth, as shown in Fig. 1(e), with a
central wavelength,λc , of 18.06µm.

For the aperture, we simulated a JWST-like aperture with a
hexagonal two-ring configuration and a three-strut obscuration,
as shown in Fig. 2. The pupil array was sampled with 512 pixels
across five flat-to-flat hexagonal segment widths. The segments
were simulated to be perfectly flat, i.e., the only error in the pupil
is segment piston error. We used piston spread, defined as the
peak-to-valley of the segment piston values, i.e., the maximum
piston value minus the minimum piston value, in waves at λc to
evaluate the magnitude of piston error. To account for the global
piston, the segment piston errors were all relative to the same
reference segment, in our case, the bottom segment of the inner
ring.

For the broadband PSFs, we used a QP
c = 4, using the flat-to-

flat distance as the nominal diameter, to ensure that QP
min > 2,

i.e., all individual monochromatic PSFs were oversampled
along the maximum diameter (which is slightly longer than
the flat-to-flat distance). We used the matrix triple product
to compute the DFT and cropped the PSF array to the center
128-pixel square, and wq was at 4 waves (at λc ) peak to valley
of defocus. For multiple trials, for the “measured” PSF, “true”
segment piston errors were randomly generated with a uniform
distribution and then scaled to have the correct amount of pis-
ton spread, and then 40,000 peak photons of Poisson noise and
12 photo-electrons (pe−) of Gaussian read noise were added to
simulate measurement noise.

For optimizations, we used Thurman’s bias-and-gain-
invariant error metric [5], but we used the later formalization by
Moore and Fienup [9]. We used L-BFGS [10] as the nonlinear
optimizer, which requires gradient information that we com-
puted via reverse-mode algorithmic differentiation as described
by Jurling and Fienup [11]. Our initial estimate for the segment
pistons was all zeros.

Using the coherence length as defined by Mandel and
Wolf [12],

L c = c1τ = c
∫
∞

0
|ψ(ν)|2dν, (12)

whereψ(ν) is the spectrum normalized to have unit area under
the curve, the coherence length for the spectrum was approxi-
mately 6 waves (at λc ). For the grid search steps, the first round
of grid searching scanned up to ±6 waves of the piston, and
subsequent rounds scanned up to±12 waves of the piston.

For the full SPPR procedure used, we first performed a global
optimization step, but we bound the segment piston values
to be within one coherence length (±6 waves at λc ) from the
reference segment. Then we removed the bound on the segment
piston values and performed two iterations of a grid search
step followed by a global optimization step. If, after any global
optimization step, the error metric was below an error metric
threshold of 1.5× 10−4 (this value is explained in Section 7),
then SPPR succeeded in finding the global minimum and we
would stop the SPPR procedure early.

We performed the optimization process for integer piston
spread values between 1 and 12 waves (atλc ), inclusive. For each
piston spread value, we examined 100 different cases of piston
errors to obtain convergence statistics.
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Fig. 6. Plots of final error metric value versus residual rms wfe for integer piston spread values between 1 and 12 waves (inclusive), 100 cases each.
Piston spread increases across the row then down the column. Points encircled in green, encircled in orange, and boxed in red correspond to successful
retrievals, split telescope failure mode, and runaway segments failure mode, respectively.

7. RESULTS

Figure 6 shows plots of the final error metric value versus the
residual rms wavefront error (wfe) between the retrieved and
true piston values for integer piston spread values between 1
and 12, inclusive, with 100 cases for each piston spread value.
The cases can be separated into three groups. The points in the
bottom left encircled in green correspond to successful retriev-
als, where SPPR found the true solution with high accuracy.
The points encircled in orange and boxed in red correspond
to two different failure modes. The points encircled in orange
correspond to the split telescope failure mode, and the points
boxed in red correspond to the runaway segment failure modes,
which are the same failure modes encountered by Paine and
Fienup [4]. Failure modes are discussed further in Section 8.

From Fig. 6, we determined that, for our simulations, a
solution either converged to the true solution if the residual
rms wfe was less than 10−3 waves rms (at λc ), ended with the

split telescope failure mode if the solution had a residual rms
wfe between 10−1 and 1.3 waves rms (at λc ), or ended with the
runaway segments failure mode if the solution had a residual
rms wfe greater than 1.3 waves rms (at λc ). Using these criteria,
we could easily categorize the different cases into the different
groups. This is shown in Table 1, which shows the number of
cases in each group for each plot in Fig. 6. However, in practice,
we would only have access to the final error metric value. From
Fig. 6, we determined that for our simulations, if the final error
metric value was less than 1.5× 10−4, then the solution con-
verged to the true solution and will have a residual wavefront
error less than 0.4× 10−3 waves rms atλc . Hence, by inspection
of the error metric, we can with confidence say whether the
SPPR ended in the global minimum (a success) or stagnated in a
local minimum (a failure).

Figure 7 shows the SPPR success rate as a function of pis-
ton spread. The solid blue line shows the success rate if there
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Table 1. Breakdown of Cases Vs. Piston Spread
a

Piston Spread
(λc waves) Successful

Split
Telescope

Runaway
Segments

1 99 1 0
2 99 1 0
3 95 5 0
4 84 16 0
5 71 28 1
6 68 31 1
7 61 34 5
8 51 32 17
9 43 23 34
10 46 21 33
11 27 17 56
12 23 12 65

aThis is equivalent to the number of points inside the green, orange, and red
regions in Fig. 6.

Fig. 7. Retrieval success rate versus piston spread. The solid blue
line is after the initial global optimization step (no grid search), the
dotted-dashed orange line is after one grid search and global optimiza-
tion iteration, and the dashed green line is after two grid search and
global optimization iterations. Note that the green line corresponds to
the “successful” column in Table 1.

was no grid search. Out of 1,200 cases (12 piston spreads, 100
cases each), there was only one successful retrieval when the
piston spread was 1 wave; the rest failed with no grid search.
For a piston spread of 1, it is highly probable that one of the
segment piston values will be greater than±1/2 wave (in terms
of λc ) away from the reference segment, and that probability
increases with increasing piston spread. Thus, the initial global
optimization will most likely converge to the segment piston
value that corresponds approximately to the true phase value
modulo 2π . The dotted-dashed orange line shows the success
rate with one grid search step. We can see that adding one grid
search step greatly improved the success rate for lower piston
spreads, and then the success rate steadily drops as piston spread
increases. The dashed green line shows the success rate with two
grid search steps. We see that adding the second grid search step
did improve the success rate, but only marginally.

8. DISCUSSION

We showed that in simulation, assuming perfect segments
having only piston errors, SPPR using MIRI’s F1800W broad-
band filter and grid searching found the true solution up to

piston spreads of 216.7 µm (12 waves at 18.06 µm), and suc-
cessful solutions had residual rms wavefront errors less than
7.2 nm (0.4× 10−3 waves at 18.06 µm). The piston capture
range of 216.7 µm was significantly larger than the ±1.06 µm
(half a wave at 2.12 µm) piston capture range of SPPR using
NIRCam’s F212N narrowband filter without grid searching,
and the maximum residual rms wavefront error limit of 7.2 nm
is less than the measurement requirement of 21.2 nm (10−2

waves at 2.12 µm). Thus, using MIRI’s F1800W broadband
filter and grid searching increased the capture range of SPPR
over using NIRCam’s F212N narrowband filter without grid
searching while still meeting the measurement residual error
requirement. Therefore, we demonstrated that a broadband
long-wavelength channel can be used to significantly increase
the capture range of SPPR. By increasing the capture range of
SPPR, this relaxes requirements for how well previous align-
ment steps of coarse phasing need to align the segment pistons
before using SPPR.

Our failure cases can be characterized into two failure modes:
split telescope and runaway segments, both of which were
observed by Paine and Fienup [4]. Examples of what the residual
rms wfe of each failure mode may look like are shown in Fig. 8.
These failure modes arise from the fact that we used a simpli-
fied grid search, where during the grid search we only moved
one segment at a time. While a full grid search would avoid
these failure modes, we found that a full grid search would be
computationally infeasible.

The split telescope failure mode is characterized by a contigu-
ous group of segments that are all in the same trough (i.e., same
integer number of waves, typically ±1) from the true solution.
We can think of each segment as wanting to be in the same
group as the majority of its nearest neighbors. The split telescope
failure mode arises because correcting any one segment from
the “incorrect” group either violates this majority rule, or is
ambivalent (i.e., same number of segments in each group) and
it settles on one or the other. Fixing this would involve includ-
ing in the grid search moving contiguous groups of segments
together, which has worse combinatorics and therefore is more
computationally expensive as group size increases.

The runaway segments failure mode is characterized by indi-
vidual segments (typically one) being very far (greater than one
coherence length) away from the true solution. This may occur
when the initial piston estimate for a segment is greater than
a coherence length away from the true solution. In this case,
during the grid search, the grid search may have the segment
incorrectly go away from the true solution rather than towards
it, and then it continues to walk further away until it eventually
settles. A method to help fix this is to extend the grid search
piston scan range, which increases the likelihood of finding
the true solution trough at the cost of increased computational
effort. When we increased the scan range from 6/12 waves to
12/18 waves for the first/subsequent rounds of the grid search,
we found the success rate to increase by 5% from 23% to 28%
for the piston spread of 12 waves case.

From Fig. 6, we can see that for piston spreads less than the
coherence length of the spectrum (6 waves), the main failure
mode was split telescope. Above the coherence length, the run-
away segments failure mode becomes increasingly prevalent
as piston spread increases. This makes sense because as the
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Fig. 8. Example residual wfe images demonstrating the two failure modes. Note the difference in scale of the colorbar. We added a background
color to differentiate white segments on a white page. (a) Split telescope and (b) runaway segments.

piston spread increases above the coherence length, there is a
higher likelihood that the initial segment piston estimate will be
greater than one coherence length away from the true solution.
Otherwise, for piston spreads below the coherence length, the
main failure mode will be split telescope since split telescope
may occur at any piston spread. We do see that split telescope
cases also increase with increasing piston spread before runaway
segments cases dominate.

We explored how far could we push the success rate beyond
the 12 waves shown in Fig. 7. We found the success rate for pis-
ton spreads of 15, 20, and 25 waves, though we slightly modified
the simulation procedure by allowing all grid search rounds to
go up to± the piston spread. The success rates at 15, 20, and 25
waves of piston spread were 7%, 2%, and 0%, respectively (i.e.,
at 25 waves, the success rate was <1%). Thus, the success rate
steadily decreased to 0% at 25 waves, almost twice as far as what
was shown in Fig. 7, as opposed to sharply dropping off beyond
12 waves.

In addition to the improvements to the grid search algorithm
to deal with split telescope and runaway segments failure modes,
higher success rates can also be achieved with multiple random
starting guesses, since multiple random starting guesses (with
appropriate piston spread) increase the probability of landing in
the capture range. To test this, we looked at two cases of piston
spread of 12 waves (at 18.06 µm) where it initially failed (one
split telescope case and one runaway segments case), and we
used 50 random starting guesses, where each random starting
guess had a piston spread of 12 waves (at 18.06 µm). Out of the
50 random starting guesses, three guesses successfully converged
in the split telescope case, and one guess successfully converged
in the runaway segments case. Thus, while Fig. 7 shows the
initial success rate of SPPR, multiple random starting guesses
can help in cases that initially fail, thereby increasing the success
rate. Therefore, the success rate can be significantly improved
by performing SPPR with a modest number of random starting
guesses and selecting the solution with the smallest final error
metric value. The improvement of the success rate by increasing
the number of random starting guesses comes at the cost of
accordingly increased computation time, however. The number
of random starting guesses needed for at least one to successfully
converge increases as the initial success rate decreases, so the
number of random starting guesses needed may be infeasible at
very low initial success rates.

Even though we found that successful solutions of SPPR
using MIRI’s F1800W broadband filter and grid searching had
residual rms wavefront errors of less than 7.2 nm (0.4× 10−3

waves at 18.06 µm), which met our measurement requirement
of 21.2 nm (10−2 waves at 2.12 µm), higher accuracy may
be desired in other use cases. If higher accuracy is desired, our
MIRI result can be used as a starting point for an SPPR using the
NIRCam F212N narrowband filter and three defocus planes.
We found that this additional optimization with NIRCam can
improve accuracy by an additional factor of 10, which is related
to the ratio of the central wavelengths of the MIRI F1800W
filter (18.06µm) and the NIRCam F212N filter (2.12µm) and
having multiple defocus planes.

Our main simulations only considered perfectly flat seg-
ments and no system aberrations, but we also did preliminary
testing on how known intra-segment error and system aberra-
tions would affect convergence percentage and accuracy. We
performed another SPPR simulation, for a piston spread of
7 waves, where we applied JWST segment surface data to each
segment as known intra-segment error, and we added MIRI
system aberrations into the forward model as a known under-
lying wavefront error. The data for the JWST segment surface
error and MIRI system aberrations were taken from WebbPSF,
as shown in Fig. 9. We found the net rms wavefront error from
intra-segment error and system aberrations to be approximately
0.069 µm, small enough that the system is still diffraction-
limited even for NIRCam (Maréchal criterion of 1/14 waves rms
at 2.12 µm for NIRCam is approximately 0.15 µm), which is
accurate for the JWST. Figure 10 shows the plot of the final error
metric value versus the residual rms wfe, analogous to the plots
in Fig. 6, for this case with known intra-segment error and sys-
tem aberrations. From Fig. 10, we can see that including known
intra-segment error and system aberrations gives comparable
convergence accuracy compared to our results with perfectly flat
segments (less that 0.4× 10−3 waves at 18.06 µm). Figure 11
shows the plot in Fig. 7 with the result from adding known intra-
segment error and system aberrations included. From Fig. 11,
we can see that including known intra-segment error and system
aberrations did affect the convergence percentage, but not too
much: with known intra-segment error and system aberrations,
53 out 100 cases converged after two grid search iterations,
compared to 61 out 100 cases with perfectly flat segments, as
shown in Table 1. While the initial success rate decreased after
adding known intra-segment error and system aberrations, this
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Fig. 9. (a) Intra-segment surface error taken from WebbPSF. Total rms wavefront error is approximately 0.067 µm. (b) MIRI system aberrations
taken from WebbPSF. Total rms wavefront error is approximately 0.045µm. Note difference in scale of the colorbars.

Fig. 10. Final error metric value versus residual rms wfe for 7
waves of piston spread with known intra-segment error and system
aberrations (analogous to plots in Fig. 6).

Fig. 11. Retrieval success rate versus piston spread plot from Fig. 7
with the result from known intra-segment error and system aberrations
included. 53 out of 100 cases converged after two grid search iterations,
compared to our result with no intra-segment error and no system
aberrations, where 61 out of 100 cases converged (see Table 1).

could potentially be compensated for by adding a few multiple
random starting guesses if the initial success rate is sufficiently
high as mentioned previously. Thus, compared to our results
with perfectly flat segments and no system aberrations, we
found that while including known small intra-segment error
and system aberrations did not affect convergence accuracy, it
did affect convergence percentage somewhat.

In conclusion, segment piston phase retrieval with MIRI’s
F1800W broadband filter and grid searching was able to suc-
cessfully find the true solution up to piston spreads of 217 µm

(12 waves at 18.06 µm) with a high success rate using a mod-
est number of random starting guesses (≤50), and with final
residual rms wavefront errors less than 7.2 nm (0.4× 10−3

waves at 18.06 µm), though successful cases were still found
up to 361 µm (20 waves at 18.06 µm). The capture range
was increased many times over using NIRCam’s F212N nar-
rowband filter without grid searching, while maintaining the
measurement requirement of residual rms wavefront error being
less than 21 nm (10−2 waves at 2.12 µm). This greatly relaxes
the requirements on the coarse phasing steps of commissioning
the telescope. This may also be applied to the phasing up of
multiple-telescope arrays.

APPENDIX A: CONNECTING ERROR METRIC AS
A FUNCTION OF SINGLE-SEGMENT PISTON
AND THE REAL PART OF THE TEMPORAL
COHERENCE FUNCTION

We will now derive how the error metric varies as a function of
the piston of a single segment.

Suppose we have a JWST-like aperture as shown in Fig. 2, and
the only error is piston error of a single segment. Let us denote
the segment with the error as An . Then the aberration-free aper-
ture, A, can be separated into

A(x , y )= Ar (x , y )+ An(x , y ), (A1)

where (x , y ) are pupil coordinates, and Ar is the rest of the aper-
ture without segment An .

Let pn be the piston on segment An in units of microns, and
S(ν) be the system spectrum as a function of frequency, ν. Then
the pupil field, g , is given by

g (x , y ; pn, ν)= Ar (x , y )+ An(x , y ) exp

[
i
2πν

c
pn

]
,

(A2)
where c is the speed of light. If F is the Fourier transform opera-
tor defined as

Fx→ fx {g (x )} =
∫

dxg (x )e−i2π x fx (A3)

for the 1D case, then the image field, G , can be found as
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G(ξ, η; pn, ν)=F
(x ,y )→( fx , f y )=

(
ξν
c f ,

ην
c f

){g (x , y ; pn, ν)}

= Ãr

(
ξν

c f
,
ην

c f

)
+ Ãn

(
ξν

c f
,
ην

c f

)

× exp

[
i
2πν

c
pn

]
,

(A4)

where f is the system focal length. Note that Ãr and Ãn are in
general both complex-valued.

The PSF at a single frequency is given by

Iν(ξ, η; pn, ν)= |G(ξ, η; pn, ν)|
2

=

∣∣∣∣ Ãr

(
ξν

c f
,
ην

c f

)∣∣∣∣2 + ∣∣∣∣ Ãn

(
ξν

c f
,
ην

c f

)∣∣∣∣2

+

{
Ãr

(
ξν

c f
,
ην

c f

)
Ã∗n

(
ξν

c f
,
ην

c f

)

× exp

[
−i

2πν

c
pn

]
+ c.c.

}
.

(A5)

The broadband PSF is thus given by

I (ξ, η; pn)=

∫
∞

0
dνS(ν)Iν(ξ, η; pn, ν)

= I1(ξ, η)+ I2(ξ, η; pn), (A6)

where

I1(ξ, η)=

∫
∞

0
dνS(ν)

(∣∣∣∣ Ãr

(
ξν

c f
,
ην

c f

)∣∣∣∣2 + ∣∣∣∣ Ãn

(
ξν

c f
,
ην

c f

)∣∣∣∣2
)

(A7)
and

I2(ξ, η; pn)=

∫
∞

0
dν Ãr

(
ξν

c f
,
ην

c f

)
Ã∗n

(
ξν

c f
,
ην

c f

)
S(ν)

× exp

[
−i

2πν

c
pn

]
+ c.c.

(A8)

= 2Re

{
Fν→τ=

pn
c

{
Ãr

(
ξν

c f
,
ην

c f

)
Ã∗n

(
ξν

c f
,
ην

c f

)
S(ν)

}}
.

(A9)
Note that only I2 depends on pn .
If the data PSF is given by the broadband PSF when pn = pt ,

where pt is the true piston error value, and the PSF estimate
is given by the broadband PSF when pn = pe , where pe is
the piston estimate, then the error metric as a function of pe
would be

E (pe )=
∫∫ dξdη [I (ξ, η; pe )− I (ξ, η; pt)]

2

=

∫∫
dξdη

[∫
∞

0
dν Ãr

(
ξν

c f
,
ην

c f

)
Ã∗n

(
ξν

c f
,
ην

c f

)
S(ν)

×

(
exp

[
−i

2πν

c
pe

]
− exp

[
−i

2πν

c
pt

])
+ c.c.

]2

.

(A10)

= 4
∫∫

dξdη

[
Re

{
Fν→τ=

pe
c

{
Ãr

(
ξν

c f
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ην

c f

)

× Ã∗n

(
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c f
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c f

)
S(ν)

}}

− Re

{
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}}]2
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(A11)

From Eq. (A10), we see that the integral will be zero when the
term in the parentheses that is the difference of two exponentials
is zero, which occurs when

2πν

c
pe =

2πν

c
pt +m2π

⇒ pe = pt +mλ. (A12)

Thus, for a monochromatic source, we should get a trough
at every integer wave, which we see in Fig. 1(b). However, for a
broadband spectrum, there is only perfect cancellation for all
wavelengths at m = 0, or, conversely, for m 6= 0, there will be
imperfect cancellation over all wavelengths, and thus there is
only one null that occurs when m = 0. This is why the m 6= 0
troughs are not as deep as the m = 0 trough.

From Eq. (A11), recognizing that the temporal coherence
function, γ (τ), is proportional to the Fourier transform of
S(ν), we can see that the error metric is related to the real part
of γ (τ). It would have been proportional to the real part of the
γ (τ) had it not been for the additional Ãr Ã∗n terms that are also
functions of ν. This explains how the phase of γ (τ) is reflected
in the error metric. The general trough spacing is due to the lin-
ear phase term in γ (τ) that comes from the center wavelength
shift of S(ν) from the origin. However, the trough locations
can be shifted around due to phases in γ (τ) that arise from the
asymmetry of S(ν).

We want to reiterate that the error metric plots in Fig. 1
assume that the spectrum sampling is perfectly model-matched,
and that the measured PSF is noiseless. When dealing with real
data, the error metric plots will be less pristine.
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