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This Letter examines sharpness metric maximization meth-
ods on 3D images obtained at Table Mountain, Colorado.
We employ multi-wavelength 3D imaging with digital holog-
raphy and a pilot tone to obtain the aberrated images and
use sharpness metric maximization to correct the aberrated
images with both pupil-plane and multi-plane corrections.
Image quality improves when sharpness metric maximiza-
tion is used and particularly with multi-plane correction. ©
2024 Optica Publishing Group

https://doi.org/10.1364/OL.499173

Coherent imagery through the atmosphere is degraded by tur-
bulence along the propagation path between the object and
the receiver. The strength and distribution of these turbulence
aberrations can affect image quality in many different ways.
Horizontal-path imaging near the ground features turbulence
aberrations that are distributed throughout the propagation path,
and the imaging system is considered to be linear, shift variant
[1]. In order to correct the image over a finite extent, one requires
corrections of the phase of the light in multiple planes between
the object and the receiver (or in conjugate locations). Multicon-
jugate adaptive optics offers one path forward where the phase
is physically altered via multiple deformable mirrors in order to
correct the entire image [2]. This Letter employs a digital solu-
tion known as sharpness metric maximization (SMM), where
the complex-valued fields are estimated via a digital holographic
sensor [3,4] and the sharpness [5] of the image is increased by
altering the phase digitally at one or more planes within the
propagation path [6,7].

SMM for coherent imagery was first introduced by Pax-
man and Marron [8] for synthetic-aperture radar. Thurman
and Fienup [6] demonstrated SMM optically with 2D coher-
ent images produced in the lab and a single corrective phase
screen, and Tippie and Fienup [7] repeated the experiment with
multiple phase screens along the propagation path. Farriss et al.
[9] extended the SMM algorithm to accommodate 3D imagery
with a single corrective phase screen in simulation, and Banet
et al. [10] extended these 3D simulated results to include mul-
tiple phase screens. This Letter describes taking 3D field data
collected at Table Mountain (10 km north of Boulder, CO) and
applying SMM to the data in order to obtain corrected imagery.

The 3D imaging process is described in detail by Banet and
Fienup [11] and is based on a patent developed by Krause [12].
The key difference between the 3D imaging system simulated
previously [10] and the one used here is the addition of a second
illuminator, called a pilot tone [13], that allows for 3D imaging of
moving objects [12] that would otherwise be terribly blurred in
the range dimension. SMM experiments for 2D coherent images
have similarly taken place at Table Mountain [14].

In the remainder of the Letter, we cover the SMM algorithm
that was used for the collected data, describe the experimental
setup at Table Mountain and the data processing used to retrieve
the digital holograms, and show the corrected 3D imagery.

The SMM algorithm used reverse-mode algorithmic differ-
entiation (RMAD) [15] to calculate the sharpness metric for a
given image (the forward model) and the gradients of the sharp-
ness metric with respect to the phase at one or more planes (the
gradient model). Our sharpness metric of choice was given by

S = S1 + αΨq, (1)

where S1 is the base sharpness term given by

S1 = sgn(β − 1)
∑︂
x,y

Iβn (x, y), (2)

where In(x, y) is the 2D frequency-averaged irradiance image of
the object for the nth time segment with transverse coordinates
(x, y), and β is the sharpness exponent [5]. The variable Ψq is
a quadratic-phase regularizer that attempts to prevent demag-
nification [7] from occurring in the sharpened images and is
given by Eq. (13) in Ref. [10]. The coefficient, α, multiplying
Ψq allows us to vary the strength of that term relative to S1.
The SMM algorithm was modified to accommodate the fact
that the total image collection occurred over 80 ms, which is
long enough for the turbulence to evolve significantly. Hence,
we divided the image collection into 8 segments (each 10 ms
long) and independently performed 2D SMM on the average
2D irradiance image, In(x, y), for each segment. This allowed us
to obtain estimates of the turbulence phase as the atmosphere
evolved.

In Ref. [10], the 3D irradiance image, given by I(x, y; z), where
z is the range coordinate, was formed by Fourier transforming
a stack of complex-valued images over the optical frequency
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Fig. 1. (a) White-painted toy sports car, (b) white-painted toy
half-track, (c) example Fourier plane showing A, the pilot-tone pupil
and B, the chirped illuminator pupil, and (d) diagram depicting the
two pulse-trains used.

dimension and taking the squared modulus of the result. Here,
with the addition of the pilot tone, we generated 2 stacks of
complex-valued images (one stack for each illuminator), mul-
tiplied one stack by the complex conjugate of the other, and
then Fourier transformed that result over frequency and took
the squared modulus to obtain I(x, y; z). Here, 2D SMM was
applied to each time segment, and the corrective phase esti-
mates for each time segment were applied to images from both
illuminators to generate motion-compensated 3D images. The
3D images utilized 2D images collected over the entire 80 ms.

We used β = 0.5, as this offered the best-looking corrected
images after testing the data with a range of β values (from 0.01
to 1.1). Additionally, β = 0.5 corresponds to an optimal value
when provided frames with few independent speckle realizations
[16], which was relevant for some features in the images (i.e.,
the stationary background).

We collected digital holographic field data of two different
objects at Table Mountain. The first object, shown in Fig. 1(a),
was a white-painted toy sports car, which was imaged on
September 2, 2021, and the second, in Fig. 1(b), was a white-
painted toy half-track with unresolved retro-reflective stickers
scattered over the object, which was imaged on June 29, 2022.
We illuminated the object with two simultaneous pulse trains,
shown in Fig. 1(d). For the chirped illuminator, the pulse train’s
temporal frequency varied linearly in time, and for the pilot tone,
the temporal frequency was constant in time. The central wave-
length of each illuminator was λ0 = 1.535µm (corresponding
to a frequency of ν0 = 195.3 THz), and the chirped illuminator
had a frequency range, or optical bandwidth, ∆ν, that was in the
10’s of GHz. The light for each illuminator propagated through a
common transmitter fiber and passed through beam divergence

optics before propagating to the object located a distance of
z0 = 400 m away. During each image collection time, we rotated
the object on a rotation stage to achieve significant speckle noise
reduction in the final images.

Light scattered from the object and propagated to a 30 cm
aperture near the illumination optics. We collected the light, in
the common aperture, from each pulse pair within the pulse train.
We interfered each signal return with its respective reference
beam in the off-axis image-plane recording geometry [4]. The
reference beams each exited a fiber in a conjugate pupil plane.
For a given pulse pair, we spatially multiplexed the interference
patterns associated with each pulse onto the same hologram [17],
and, after performing a 2D Fourier transform, gained access to
the complex-valued pupil fields in the Fourier plane. The off-axis
positioning of each fiber allowed for separation of the desired
signal terms in the Fourier plane. Figure 1(c) shows an example
Fourier plane with the desired pupil terms A, corresponding to
the pilot tone, and B, corresponding to the chirped illuminator.

Before windowing either of the pupil terms, we applied holo-
gram correction terms that would correct for any small focusing
errors in the Fourier plane that resulted from mis-positioning
of the reference beam fibers in the z direction. These hologram
correction terms were obtained by optimizing the sharpness of
the pupils in the Fourier plane with a corrective defocus term in
the hologram plane. A different hologram correction term was
applied for each pupil, A and B, within a pulse pair, and each
was windowed separately within the Fourier plane. Once the
pupils were sharpened and windowed, we applied an isoplanatic
pupil correction term to correct for static system aberrations.
The pupil correction term was determined by performing SMM
on the imagery with a corrective phase term in the pupil plane
comprised of Zernike polynomials. The images used in this opti-
mization process were collected over time scales which allowed
the atmospheric turbulence to evolve greatly, which meant the
effects of turbulence were averaged out and the optimization pro-
vided estimates of the static aberrations due to the system alone.
The steps laid out here were applied to each pulse pair within
the duration of the pulse train, or “ramp”. In these experiments,
there were always 200 pulse pairs in a ramp.

Once the two stacks of pupil frames were obtained, we prop-
agated each pupil frame digitally to an object plane, resulting
in the two stacks of complex-valued images referred to previ-
ously. Next, we took the conjugate-product of the image stacks
and Fourier transformed the result over frequency to obtain
a complex-valued 3D image and the 3D irradiance, I(x, y; z).
Because visualizing 3D images is troublesome on 2D displays,
we instead present two types of 2D images that are more instruc-
tive: The first is a 2D projected irradiance image that simply
projects the 3D irradiance, I(x, y; z), along the z dimension. The
second is a range image which is determined by taking the z-
location of maximum irradiance for every (x, y) pixel to be the
range at that pixel. For more information on range image for-
mation, we refer the reader to Ref. [11]. These two types of 2D
images will be examined for each of the two objects.

It should be noted that, initially, the 3D images had severe blur
in the z direction due to global piston phase errors for the pulse
pairs. These errors were random from pulse-to-pulse, and, in
order to compensate for this, we used phase-gradient autofocus
applied to 3D data [18] to determine an estimate of the global
piston phase errors.

We fed the complex-valued pupil data from both illuminators
to the SMM algorithm [10], which involved digitally placing
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corrective phase screens at one or more locations along the
propagation path and iteratively calculating sharpness and the
gradient of sharpness with respect to the phase screens for each
iteration. Our optimizer of choice was the limited-memory Broy-
den Fletcher Goldfarb Shanno (L-BFGS) algorithm [19]. We
performed both isoplanatic SMM (with a single corrective phase
screen in the pupil) and multi-plane SMM, with 10 corrective
phase screens positioned via the method developed by Paxman
et al. [20], for each object in question.

We employed a Scintec BLS900 scintillometer during our
image collections that estimated the average index-of-refraction
structure parameter, C2

n, over a propagation path nearby the path
used to the image the objects. For the first image—the Septem-
ber 2, 2021 collection—the scintillometer measurement nearest
in time to the image collection was C2

n = 2.4 × 10−14 m−2/3 which
yields D/r0 = 2.1 and an isoplanatic angle of θ0 = 110µrad, and
for the second image—the June 29, 2022 collection—the scintil-
lometer measurement nearest in time was C2

n = 7.0 × 10−14 m−2/3

which yields D/r0 = 4.0 and θ0 = 59µrad. The calculations
assume uniform turbulence strength over the propagation path,
which is a reasonable assumption given the flat, mesa-like ter-
rain of Table Mountain. The scintillometer propagation path
deviated from the image collection propagation path by about
15◦. Furthermore, the instantaneous C2

n in the atmosphere can
vary as a function of location and even over the course of an
image collection. Hence, the calculations above should be taken
as rough estimates.

The imaging parameters for the two images were as follows.
Both images had the same diffraction-limited transverse resolu-
tion given by ρ = λ0z0/D = 2.0 mm. The first image employed
a bandwidth of ∆ν = 38 GHz, which yielded a range resolution
of δz = c/(2∆ν) = 3.9 mm, and the second image employed a
bandwidth of ∆ν = 34 GHz, which yielded a range resolution
of 4.4 mm. For the first image, the camera recorded 200 multi-
plexed holograms (one for each pulse pair) at 2.5 kHz with image
sizes of 448 × 448 pixels. The image plane sampling quotient
[4] was around 2.1. After windowing the pupils, we padded them
by a factor of 2 which brought the final image size to 424 × 424
pixels with a 1D field of view of 44 cm. For the second image,
the camera recorded 200 multiplexed holograms at 2.5 kHz with
image sizes of 256 × 256 pixels. The image plane sampling quo-
tient [4] was around 2.1. After windowing the pupils, we padded
them by a factor slightly greater than 2 to bring the final image
size to 256 × 256 pixels with a 1D field of view of 25 cm.

For the first image, the isoplanatic patch size corresponding to
the isoplanatic angle, θ0, was z0θ0 = 4.5 cm, and, for the second
image, the isoplanatic patch size was 2.4 cm. For both imaging
scenarios, the isoplanatic patch size was many (10-20) trans-
verse resolution elements in extent, but for each scenario there
were about 10 isoplanatic patches across the entire field of view
(although fewer across the objects of interest within the field of
view). This presents a scenario where one would desire multi-
plane correction via SMM to sharpen the entire image extent,
even though the D/r0 values for each image are relatively weak.

For the first image collection, of the toy car, we fed the
pupil data to the SMM algorithm and optimized the 10 cor-
rective phase screens in order to the maximize the sharpness
metric in Eq. (1). We used the method of sieves (which is a
form of bootstrapping) as described in Ref. [10] and assumed
uniform turbulence over the propagation path. We began opti-
mizing with Gaussian kernel standard deviations of 16 cm and
decreased the kernel size by a factor of 2 for each round of

Fig. 2. The original aberrated (a) projected irradiance and (b)
range images, the pupil-plane corrected (c) projected irradiance
and (d) range images, and the multi-plane corrected (e) projected
irradiance and (f) range images of the toy sports car.

sequential optimization ending in a kernel size of 0.5 cm. We
always performed a round of point-by-point optimization after-
wards, totaling 7 rounds of optimization, where each consisted
of 5 L-BFGS iterations. For the first image collection we used
α = 0, which corresponded to no quadratic phase regularization,
as little demagnification occurred.

Figure 2 shows projected irradiance images (left column) and
range images (right column) for the original aberrated image
(top row), pupil-plane corrected image using a single corrective
phase screen (middle row), and multi-plane corrected image
using 10 corrective phase screens. The image quality in both
columns increases going from the uncorrected, to the single cor-
rection plane, and to the multiple planes of correction. Due to the
weak turbulence here, the differences are slight, but still notice-
able. Comparing Fig. 2(a) to Fig. 2(c), the overall blur is less
after pupil-plane correction. Comparing Fig. 2(c) to Fig. 2(e),
certain areas of the image are sharper after multi-plane cor-
rection. For example, the black border around the windshield is
appropriately darker and the crease on the roof of the car appears
sharper in Fig. 2(e). Additionally, the dark support strut directly
underneath (in front of) the car is noticeably sharper in the multi-
plane image. In Fig. 2(f), there is more range noise coincident
with the black border around the windshield, particularly at the
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Fig. 3. The original aberrated (a) projected irradiance and (b)
range images, the pupil-plane corrected (c) projected irradiance
and (d) range images, and the multi-plane corrected (e) projected
irradiance and (f) range images of the toy half-track.

top and sides of the windshield, which is fundamentally due to
multi-plane SMM sharpening the edges which results in less
light from nearby bright pixels from entering the black border.
This results in lower signal return within the black border and
thus noisier range reports, which is actually indicative of the
true, underlying object reflectance and, thus, is a more desirable
result.

For the second image collection, of the toy half track, the
SMM algorithmic procedure was identical to the one for the
first image, except we set α = 103 for the multi-plane case in
order to prevent demagnification. In Fig. 3, we show results in a
similar fashion to Fig. 2. Again, image quality for both columns
increases progressively row-to-row. The jump in quality between
the pupil-plane corrected and multi-plane corrected images is
more noticeable here due to (1) the stronger turbulence and (2)
the retro-reflectors that make the anisoplanatism more apparent.
The blur functions differ for the retro-reflectors in Fig. 3(a), and
the pupil-plane correction fails to sharpen them all in Fig. 3(c).
In fact, some retro-reflectors actually look blurrier in the pupil-

plane corrected case, Fig. 3(c), when compared to the original
aberrated case, Fig. 3(a), which is indicative of anisoplanatism
(as is seen in the red circled regions). Additionally, the bottom-
most retroreflector (orange box) is clearly the sharpest in the
multi-plane corrected case. In the range images, the left and
right edges of the half-track become sharper, the range chatter
lessens, and the dim regions become more noticeable in each
progressive row in Fig. 3. Note how Fig. 3 is an example of a
case where the range images offer a great deal more information
than the irradiance images. For example, the non-uniform illu-
mination and retro-reflectors somewhat obscure the underlying
object reflectance, but the fine features of the object are more
recognizable in the range channel (e.g., the turret and front tires).

This study demonstrates motioned-compensated, multi-
wavelength 3D imaging on field data and uses SMM to sharpen
the images. The first image set demonstrates multi-plane SMM
in the field with an uncooperative moving object and the second
image set demonstrates multi-plane SMM with a moving object
enhanced with retro-reflectors to emphasize the anisoplanatic
correction. The results show that both the projected irradiance
images and the range images improve in quality after SMM and
moreso when a multi-plane approach is used.
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