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Phase retrieval with only a nonnegativity constraint
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We show that it may be possible to reconstruct a real-valued,
nonnegative 2D object from the magnitude of its Fourier
transform using only a nonnegativity constraint without
the usual support constraint, even when significant noise
is present in the Fourier intensity data. © 2022 Optica Pub-
lishing Group

https://doi.org/10.1364/OL.478581

In astronomy, wavefront sensing, X-ray coherent diffractive
imaging, and in many other applications, one often encoun-
ters the phase retrieval problem. We consider here the Fourier
phase retrieval problem of reconstructing a real-valued, non-
negative 2D object from its Fourier magnitude. That is, for
a discrete Fourier transform pair F(u, v) =

∑︁N−1
x=0

∑︁M−1
y=0 f (x, y)

exp [−i2π(ux/N + vy/M)] = |F(u, v)| exp [iψ(u, v)], we hope to
reconstruct f (x, y) given only |F(u, v)| and the prior informa-
tion that f (x, y) is nonnegative (f (x, y) ≥ 0,∀(x, y)) and has
finite support (f (x, y) = 0,∀(x, y) ∉ S), although the support,
S, need not be known a priori. In astronomy, the solu-
tion of this problem enables diffraction-limited imagery of
space objects despite atmospheric turbulence [1,2], and in X-
ray coherent diffractive imaging, the solution gives images
of objects at nanometer-scale resolution [3]. Further under-
standing of the problem and improvement in practical algo-
rithms for solving the Fourier phase retrieval problem remains
important.

One family of practical algorithms for solving the single-
intensity Fourier phase retrieval problem is the iterative
transform algorithms [1,2,4–6], illustrated in Fig. 1.

The most basic form is the error reduction (ER) algorithm,
which is a descendant of the Gerchberg–Saxton algorithm
[7] for solving the phase retrieval problem with two intensity
measurements. The ER algorithm is equivalent to constrained
optimization using steepest descent on the sum of squared error
between the measured and the computed Fourier magnitude of
the image, and it has the property of reducing errors in each
iteration, until it stagnates [2]. Unfortunately, this algorithm
often stagnates in local minima, and can be extremely slow to
converge. A much more powerful hybrid input-output (HIO)
algorithm was developed from the point of view of negative
feedback from control theory, and it often converges to a solu-
tion much faster and can climb out of local minima, despite its
lack of convergence proof [2,8,9]. When using both support and
nonnegativity constraints, the next input after kth iteration for
HIO is

gk+1(x, y) =

{︄
g′

k(x, y), g′
k(x, y) ≥ 0 & (x, y) ∈ S

gk(x, y) − βg′
k(x, y), otherwise

(1)
where S is the object support or an estimate of it, and β is a feed-
back parameter which works well between 0.5 and 1. Decades
after the first introduction of the HIO algorithm, the continu-
ous hybrid input-output (CHIO) algorithm was introduced as
an improvement and modification of the popular HIO algorithm
[10]. The CHIO sometimes gives reconstructions superior to
those of HIO, presumably because at each pixel within the sup-
port S, the next input value is a continuous function of the output
pixel value [10], where it is discontinuous when g′

k(x, y) = 0 for
HIO. In this paper, a slight modification to the CHIO was made
to ensure gk+1 is a continuous function also for pixels outside the
support. Here for CHIO, the next input after the kth iteration is

gk+1(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
g′

k(x, y), αgk(x, y) ≤ g′
k(x, y) &(x, y) ∈ S

gk(x, y) − ( 1−α
α
)g′

k(x, y),
0 ≤ g′

k(x, y) ≤ αgk(x, y) &(x, y) ∈ S
gk(x, y) − βg′

k(x, y), otherwise.

(2)

According to the analysis in [11], the phase retrieval problem
using the support constraint could be extremely slow to converge
due to the possible non-transversal intersection of the Fourier
magnitude torus and the support condition, in which case, the
algorithms take an exceedingly large number of iterations before
reaching the solution at machine precision. Furthermore, it was
discussed in Chs. 5 and 9 of [11] that the nonnegativity constraint
alone uniquely defines an object of given Fourier magnitude,
provided that the autocorrelation of the object has sufficiently
small support. In most cases, the intersection between the
Fourier magnitude torus and the nonnegativity constraint can
be expected to be transversal, implying that the phase retrieval
problem using only the nonnegativity constraint should be eas-
ier than that using only the support constraint, and even easier
than the combination of the support constraint with the non-
negativity constraint. We have found that using nonnegativity
alone, excellent reconstructions of certain objects (in particu-
lar, objects with noncentrosymmetric and nonconvex supports,
which are relatively easy to reconstruct) can be achieved even
with a large amount of noise present in the Fourier magnitude.

We found that when using only a nonnegativity constraint, cer-
tain algorithms work better than others. For this circumstance,
we found that the CHIO algorithm works well, and converged
to a lower error than the hybrid iterative map used in [11]. Note
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Fig. 1. Iterative transform algorithm.

Fig. 2. (a) Object, (b) Fourier magnitude of the object raised to
1/5th power, and (c) the true object support.

that when α = 1/(1 + β), the CHIO algorithm is equivalent to
the hybrid projection-reflection algorithm [4]. We found that
convergence to a solution is more stable when α<1/(1 + β). For
the following digital experiment, we used the value of α = 0.4
and β = 0.7 in Eq. (2) when running CHIO, and β = 0.7 in
Eq. (1) when running HIO for comparison.

A satellite object [12] with a nonconvex and noncentrosym-
metric support was embedded in an array of zeros more than
twice as large as its width in either cardinal axis to ensure Nyquist
sampling of the Fourier intensity. For comparison, we used two
different algorithms (HIO or CHIO) on the Fourier magnitude
data, shown in Fig. 2(b), with a true support, shown in Fig. 2(c),
together with a nonnegativity constraint or with only a non-
negativity constraint. Using only a nonnegativity constraint is
equivalent to setting S in Eqs. (1) and (2) to include all pixels
within the computational window.

To improve convergence on this relatively easy-to-reconstruct
object, we employed the following sequence: in the first 200 iter-
ations, we used only HIO or CHIO to explore the solution space;
after that, we alternated between 49 iterations of HIO or CHIO
and 1 iteration of ER. We found that a small number of itera-
tions of ER between HIO or CHIO iterations often gives superior
reconstruction compared with using HIO or CHIO alone, when
the object is relatively easy to reconstruct. We also found this to
be true for the hybrid iterative map in [11], which gave results
comparable to CHIO when combined with ER in this way. For
objects with centrosymmetric supports, which are significantly
more difficult to reconstruct and often prone to the twin-image
stagnation mode [13], iterating between ER and HIO could, on
the contrary, hinder convergence. In that case, a larger number
of HIO iterations without any intervention from ER is effective
for circumventing the twin-image stagnation mode [13–15].

Results are compared in Fig. 3. At each iteration, ϵ , the
translation invariant normalized RMS error [16] defined by

ϵ 2 = min
xo ,yo

∑︁
x,y |g′(x − xo, y − yo) − f (x, y)|2∑︁

x,y |f (x, y)|2
(3)

was calculated between the object estimate g′(x, y) and the
upright object, f (x, y), or its twin image, f (−x,−y), to an accuracy
of 1/20 pixels using an efficient algorithm [17]. The minimum
of the two was taken as Etrue at each iteration, since the twin
image is also a valid solution.

Fig. 3. Using HIO, reconstruction at the end of 1000 iterations
using (a) both a true support and nonnegativity constraints, and (b)
using only a nonnegativity constraint. (c) Etrue over iterations using
both constraints (blue) and only a nonnegativity constraint (red).
For all 100 different random starting guesses, Etrue over iterations
with (d) both constraints, and (e) only a nonnegativity constraint.
(f)–(j) Same set of figures but using CHIO.

Example reconstructions shown here are all from the same
random starting guess, and registered to either the upright or
the twin object, to whichever the Etrue correspond, for display.
When both a true support and nonnegativity constraints were
employed with HIO and CHIO, excellent reconstructions were
achieved [Figs. 3(a) and 3(f)]. For all 100 different random
starting guesses, Etrue values were consistently low at the end
of reconstruction, as shown in Figs. 3(d) and 3(i). We observed
that after one iteration of ER, Etrue went down consistently. In
this case, it seems that one iteration of ER helped reset the
trajectory of the algorithm’s search to a solution, and improved
convergence.

Using only a nonnegativity constraint, HIO struggled to con-
verge [Fig. 3(b)] and iterating with ER did not help convergence
in any way, while CHIO converged (to the twin image for the case
shown) with machine precision Etrue (which is the square root
of a summation with double precision, giving a minimum value
on the order of 10−8) in ≈ 600 iterations, shown in Fig. 3(g).
Comparing the blue curve with the red curve in Fig. 3(h), we
see that the convergence to machine precision was significantly
more rapid using only a nonnegativity constraint compared with
using both support and nonnegativity constraints. This suggests
that when using both support and nonnegativity constraints, the
intersection of constraints sets are less favorable compared to
when using only a nonnegativity constraint, for this relatively
easy-to-reconstruct object. In fact, when using CHIO with only
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Fig. 4. (a)–(f) Six different objects and (g)–(l) their reconstruc-
tions from noiseless Fourier magnitudes using CHIO with only a
nonnegativity constraint. Images are cropped to the central portion
for display.

a nonnegativity constraint, 94 out of 100 starting guesses con-
verged to machine precision Etrue within 1000 iterations. Out of
the remaining six starting guesses, three were close to machine
precision (on the order of 10−7), one was converging near the
end with Etrue ≈ 0.15, and two stagnated with Etrue ≈ 0.5. Sur-
prisingly, neglecting the support constraint altogether did not
prevent convergence to the solution. Better reconstructions with
lower Etrue were achieved without the support constraint for the
vast majority of the 100 different starting guesses.

This behavior is presumably because when a support con-
straint is not used, the geometry of the phase retrieval problem
[11] is changed in a way that the convergence to the true inter-
section between constraint sets is more rapid. With a vastly
greater number of trivial associates (any 2D rigid translation)
when only a nonnegativity constraint is considered, the object
estimate need no longer be inside a support constraint, and could
appear anywhere in the computational window (including wrap-
ping around the edges of the computational window), which
dramatically increases the number of possible trivially ambigu-
ous but perfectly acceptable solutions, and apparently decreases
the likelihood of running into non-transversal intersection [11]
between constraint sets.

Example reconstructions of other objects using only a non-
negativity constraint are shown in Fig. 4. Note that having a
nonconvex and noncentrosymmetric support makes the recon-
struction significantly less prone to the persistent twin-image
stagnation mode and relatively easy to reconstruct. If the
support of the autocorrelation of an object, which can be
estimated directly from the Fourier magnitude using the auto-
correlation theorem, is nonconvex, the object support is also
nonconvex. Although the converse of the statement is not
true. Other characteristics of a relatively easy-to-reconstruct
object include a support with hard edges that diffract energy
strongly in the Fourier plane, and isolated bright points in the
object that are similar to those seen in off-axis Fourier trans-
form holography. Each object in Fig. 4 contains at least one
above-mentioned characteristic that increased the likelihood of
successful reconstruction using only a nonnegativity constraint.

To show that the success of phase retrieval with only a non-
negativity constraint is not limited to only the noise-free case,
we perform phase retrieval on noisy Fourier magnitude data. We
show that using only a nonnegativity constraint is more stable
than using both a true support and nonnegativity constraints.
For the following experiment, shown in Fig. 5, different levels
of Poisson-distributed noise were applied to the Fourier inten-
sity data, shown in Fig. 6, by first scaling the noise-free Fourier
intensity to the desired peak intensity in photon counts, then
applying Poisson noise. Note that, even for the case of 106 peak

Fig. 5. With 106 photons in peak Fourier intensity, reconstruction
at the end of 1000 iterations with (a) both a true support and non-
negativity constraints, and with (b) only a nonnegativity constraint.
(c) Etrue over iterations with both a true support and nonnegativity
constraints (blue), and with only a nonnegativity constraint (red).
For all 100 different random starting guesses, Etrue over iterations
with (d) both constraints, and (e) only a nonnegativity constraint.
(f)–(j) Same set of figures but with peak Fourier intensities of 104

photons.

Fig. 6. Diagonal cut through of Fourier intensities from the origin
to the bottom right corner, with peak photon counts of 106 (dashed
blue line) and 104 (solid red line).

photons, due to the very high dynamic range of the Fourier
data, there are numerous pixels at the higher spatial frequencies
whose value becomes zero with photon noise. Reconstructions
were attempted with both a true support, Fig. 2(c), and nonneg-
ativity constraints or with only a nonnegativity constraint, using
the CHIO algorithm with α = 0.4 and β = 0.7. Due to the Pois-
son noise in Fourier intensity, g′(x, y) could contain imaginary
values after an inverse Fourier transform from G′(u, v). In every
iteration, the imaginary part of g′(x, y) was set to zero.

Same as the noise-free case, only CHIO was used in the first
200 iterations, after which point, we iterated between 49 iter-
ations of CHIO and one iteration of ER. We found that when
a large amount of noise was present in the Fourier intensity
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data, CHIO (and HIO) using a support constraint would pro-
duce gk(x, y) with decreasing mean value. When the mean
value of gk(x, y) becomes negative, the phase of the DC term
of Gk(u, v) becomes π instead of 0, producing a g′

k(x, y) with
negative mean value after the Fourier magnitude projection. In
this case, the algorithm would act in a unstable fashion, with
Etrue wildly oscillating. To avoid wildly oscillating Etrue, one
could either run ER when the mean value of gk(x, y) is less
than some positive threshold value, or keep the phase of DC
term of Gk(u, v) to be 0, which ensures that the mean value of
g′

k(x, y) stays positive. For the experiment with noisy Fourier
data, we kept the phase of the DC term of G′

k(u, v) to be 0. Iterat-
ing between CHIO and ER after iteration 200 further stabilized
convergence.

Note that Etrue fluctuated over iterations by a modest amount
when using both constraints, but remained much calmer and
gave a reconstruction with lower Etrue at iteration 1000 with only
a nonnegativity constraint, comparing blue and red curves in
Fig. 5(c). The magnitude of fluctuations when using both con-
straints increased with increasing levels of noise in the Fourier
data. For the case with the greatest noise, when the peak Fourier
intensity has 104 photons, using both constraints caused Etrue to
fluctuate in the first 200 iterations. When we started to iterate
between CHIO and ER after iteration 200, better reconstructions
with lower Etrue were eventually achieved, as shown in Figs. 5(h)
and 5(i).

The fluctuating behavior of Etrue over iterations when using
both a true support and nonnegativity constraints is likely caused
by the noisy Fourier data. The closest object estimate, obtained
using the correct Fourier phase imposed onto the corrupted
Fourier magnitude, has energy outside of the support, in the
form of zero-mean, independent random noise. However, with
the support constraint imposed, the algorithm would attempt to
drive the pixel values outside of the object support to zero, where
there should be non-zero noise. This inconsistency between
the Fourier data and the support constraint likely caused the
algorithm to behave more violently than desired.

With only a nonnegativity constraint, the inconsistency prob-
lem was still present. Since the noise was not centrosymmetric,
the noisy Fourier magnitude no longer preserved Hermitian sym-
metry. This was inconsistent with the object being real-valued.
The closest possible object estimate, after setting the imaginary
part of which to zero, contained negative values. However, the
inconsistency problem with only a nonnegativity constraint was
affecting the convergence much less. Comparing Fig. 5(d) with
5(e), we observed that using only a nonnegativity constraint
could give somewhat better results with lower Etrue.

For objects with centrosymmetric supports, such as squares
or circles, the twin-image stagnation problem often hinders
the convergence severely [13,14]. In that case, we found that
using CHIO with only a nonnegativity constraint would often
stagnate with the twin-image problem, although the reconstruc-
tion would appear to have the correct support even without
employing a support constraint, presumably because the infor-
mation about the object support is implicitly enforced by the
Fourier magnitude data. It is possible that a better algorithm
could be developed using only a nonnegativity constraint,
which could circumvent the twin-image problem. So far, we
have found using HIO with both constraints with many thou-
sands of iterations, without any iteration of ER in between,
can eventually circumvent the stagnation mode [15], pro-
vided that a good estimate of the centrosymmetric support is
available.

In summary, for objects with a noncentrosymmetric and non-
convex support, one can sometimes reconstruct the object with
only a nonnegativity constraint, with results in this paper as a
clear example. With no noise, this can sometimes be done to
machine precision. In this case, the CHIO algorithm was supe-
rior to the more popular HIO algorithm. Alternating between
CHIO and a small number of iterations of ER expedited conver-
gence to machine precision. The ability for CHIO to converge
when using only a nonnegativity constraint could be explained
by the fact that the input pixel value is a continuous function
of the previous output pixel values [10]. Its success persisted
even when significant noise was present in the Fourier magni-
tude data. When using both a true support and nonnegativity
constraints with highly noisy Fourier data, the algorithm would
often quickly converge to an answer with relatively small error
metric, but then quickly diverge to an estimate with no resem-
blance to the true object, and oscillate between the two cases.
We hypothesize the cause of that behavior to be an inconsis-
tency between the noisy Fourier data and the support constraint.
The divergent behavior was eliminated by alternating with ER
or by keeping the phase in the DC term of the Fourier transform
to be 0. Using only the nonnegativity constraint in this case
yielded much more stable reconstructions. We also found that
using a support constraint along with nonnegativity for the initial
iterations (which causes the reconstruction to converges faster
initially), and then switching over to nonnegativity only (which is
more stable) for the remaining iterations resulted in a faster, more
stable reconstruction than using the same constraints for all itera-
tions. These results are consistent with previous results showing
that expanding the support constraint in later iterations is
helpful [2].
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