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We explore the feasibility of measuring chromatic aberrations using a technique based on phase retrieval, primarily
for the purpose of diagnostics on the OMEGA EP laser. A computational model and optimization strategy are
described, issues of numerical efficiency are addressed, and the potential limitations of the method are studied
using mathematical analysis and Monte Carlo simulations. The algorithm performs well in simulation and yields
encouraging results in a small-scale laboratory experiment. ©2021Optical Society of America
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1. INTRODUCTION

Phase retrieval is a computational method for estimating the
phase of an electromagnetic field based on measurements of the
intensity in one or more planes. For wavefront-sensing appli-
cations, the phase of interest is in the pupil plane of an optical
system, and typically the aperture and image-plane intensity are
known [1,2]. The image-plane intensity is often an image of a
single point source, known as the point spread function (PSF).
The iterative process of retrieving the phase involves forming an
initial estimate of the wavefront in the pupil plane, simulating
a propagation of that field to the image plane (which typically
involves a Fourier transform), and comparing the resulting
intensity distribution with the measured intensity via an error
metric. The wavefront estimate is then modified to improve
agreement in the image plane, based on a calculation of the
gradient (and possibly the second-order derivative) of the error
metric with respect to wavefront parameters. A wide variety of
strategies to improve the wavefront estimate exists, and may
generally be understood in the broader mathematical context of
nonlinear optimization [3–5].

Among the various applications of this general approach is
the improvement of diagnostic tools for the OMEGA EP laser
[6,7]. In this case, phase retrieval complements measurements
provided by a conventional Shack–Hartmann wavefront sensor
(SHWFS) with an estimate of non-common path error, and
of differential pistons between regions of the segmented beam
[8,9]. A proposed way to improve this system is to also estimate
for chromatic aberrations in the system. These can arise in a
chirped-pulse amplification (CPA) laser such as OMEGA EP in
the form of residual angular dispersion from the pulse stretcher

and compressor, which significantly degrade focal-spot quality
[10,11]. They can also arise in the form of axial dispersion (also
called axial color or longitudinal chromatic aberration) due to
transmissive elements [12]. These, if uncompensated for, can
lead to significant reduction of the focused intensity for a large
beam or a short (femtosecond) pulse. This effect increases more
for multi-pass lens-based image-relayed amplifiers. A special
compensator was installed for the Multi-Terawatt Optical
Parametric Amplification Line (MTW-OPAL) laser (20 fs) at
the Laboratory for Laser Energetics, without which the intensity
would have been reduced more than five times [13]. Even for
picosecond pulses, this effect can be nonnegligible. A detailed
beam propagation simulation for the Advanced Radiographic
Capability (ARC) laser system at the National Ignition Facility
(NIF) estimates a 30% reduction in intensity [14].

In this paper, we will explore the feasibility of joint retrieval
of angular dispersion, axial dispersion, and monochromatic
aberrations through simulations, theoretical analysis, and a
laboratory demonstration.

2. SIMULATION MODEL

A. Modal Chromatic Aberrations

A general way to model chromatic aberration would be to allow
the wavefront estimate for each spectral component to vary
independently of the others, and this has been shown to be
effective in phase-retrieval simulations [15] with a small number
of discrete wavelengths. However, the work reported in [15]
retrieved wavefronts for five discrete spectral components dis-
tributed over a bandwidth of 176 nm, which is much larger than
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the bandwidths typically seen on OMEGA EP, such as 3.5 nm
for fully amplified compressed pulses and 8 nm for unamplified
test shots. For a coarse spectral sampling, the dependency of
Fraunhofer diffraction on wavelength alone has significant
effects, i.e., a wavefront estimate for one spectral component
produces a noticeably different PSF than if the same wavefront
was applied to another spectral component. The distinct effects
of applying a wavefront estimate to a particular spectral compo-
nent means that the particular distribution of wavefronts over
the spectrum that produces the correct broadband PSF is rela-
tively unambiguous. For a model with denser spectral sampling,
on the other hand, the effects of applying the same wavefront
modification to different spectral components are more similar
to one another, which makes the correct distribution of wave-
fronts across the spectrum harder to determine. In this case,
we can instead use a modal approach to modeling chromatic
effects, and require that the wavefronts estimated for the various
spectral components be related in a physically meaningful way.
For example, the simplest form of angular dispersion can be
modeled as a wavefront tilt that varies linearly with wavelength.
Similarly, first-order longitudinal chromatic aberration is a
defocus that varies linearly with wavelength. By forcing the spec-
trally varying components of the wavefronts to fit this model, we
can mitigate uniqueness problems that would arise if they were
allowed to vary independently. This approach has the added
benefit of reducing the dimensionality of the parameter space
that must be searched to find the optimal phase estimate, which
generally reduces time to convergence. This does come at the
expense of reducing the scope of the chromatic effects that can
be modeled, but the modal approach can be extended to include
higher-order effects, or instead may be followed up by another
round of optimization with another more-detailed model as part
of a bootstrapping process. In the present work, a linear model
was adequate to fit the data.

In our model, we will assume that there is an initial estimate of
the monochromatic wavefront W0 measured by a SHWFS, and
that there is also non-common path error between the SHWFS
and the focusing optics that must be estimated in terms of a
monochromatic wavefront WM , in addition to the chromatic
aberrations (λ− λr )WC , so that

W(ξ, η; λ)=W0(ξ, η)+WM(ξ, η)+ (λ− λr )WC (ξ, η),

(1a)

WM(ξ, η)≡

N∑
n=0

an Zn(ξ, η), (1b)

WC (ξ, η)≡

Nc∑
n=0

c n Zn(ξ, η), (1c)

where ξ and η are pupil-plane coordinates, λ is the wavelength
of a single spectral component, and Zn is the nth Zernike
polynomial. The monochromatic wavefront at a reference
wavelength λr (which we will nominally take to be the center of
the spectrum) is the sum of the known component W0, and the
unknown wavefront WM , while chromatic effects are accounted
for by the second sum with coefficients c n , which modify the
reference wavefront for each spectral component.

The phase retrieval algorithm will jointly estimate the
unknown monochromatic wavefront along with the chro-
matic aberrations in terms of the sets of coefficients an and
c n , respectively. The exit pupil amplitude is assumed to be a
known aperture with transmittance P (ξ, η), and each spectral
component has a scalar amplitude weight of Ak . For this work,
we assume that Ak captures the only dependence of the pupil
amplitude on wavelength, i.e., that P (ξ, η) is the same for every
spectral component. Each spectral component is propagated
from the pupil plane to the image plane separately, so if there are
K total spectral components, the kth field is

g k(ξ, η)= Ak P (ξ, η) exp

[
i2π

λk
W(ξ, η; λk)

]
,

(2a)

Gk(x , y )=
∫ ∫

∞

−∞

g k(ξ, η) exp

[
−

i2π

λk z
(xξ + yη)

]
dξdη,

(2b)

for k = {1, . . . , K }, and where z is the distance from the exit
pupil to the detector. Note that the wavelength λ appears not
only in W(ξ, η; λk) due to chromatic aberrations, but also
in the propagation kernel i2π/(λk z), which effectively scales
the sampling ratio (Q) according to wavelength in the discrete
Fourier transform (DFT) that numerically evaluates Eq. (2b).
The sampling ratio is defined as

Q =
λz

D1p
, (3)

where D is the exit pupil diameter, and1p is the sample spacing
in the image plane [16]. The total PSF in the image plane is the
incoherent sum of the spectral components:

I (x , y )=
K∑

k=1

|Gk(x , y )|2. (4)

For this study, we chose the error metric for optimization to be
the normalized sum-squared difference between a simulated
PSF Is and the measured data PSF Id :

E =

∑
i, j

{[
α Is (xi , y j )+ β

]
− Id (xi , y j )

}2∑
i, j Id (xi , y j )

2 , (5)

where i and j index the elements of the arrays that represent Is

and Id , andα andβ are the optimal bias and gain for the given Is

and Id , respectively [17].
In addition to the physical model, a corresponding gradient

calculation is a key component of the phase retrieval process.
Nonlinear optimization algorithms typically rely on the gradi-
ent of the error metric to guide their progress in a direction that
minimizes it [4,18], and an analytic calculation of the gradient
is much more efficient than a finite-differences technique based
only on knowledge of the forward model. For this work, we
utilize reverse-mode algorithmic differentiation [19,20], which
is advantageous in that previous calculations for the portions of
the model that are common to other problems may be reused
and combined with the gradient of the unique portion of the
model [20–22], which in this case is Eq. (1). Using the notation
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of [19], in which the partial derivative of the final error metric E
with respect to a given parameter value x is written as

x̄ ≡
∂E
∂x
, (6)

the derivatives with respect to the optimization variables in
Eq. (1) are given by

c̄ n =
∑
i, j ,k

Zn(ξi , η j )WC (ξi , η j ; λk), (7a)

WC (ξi , η j ; λk)=W(ξi , η j ; λk)(λk − λr ), (7b)

c̄ n =
∑
i, j ,k

Zn(ξi , η j )W(ξi , η j ; λk)(λk − λr ), (7c)

and

ān =
∑
i, j ,k

Zn(ξi , η j )W M(ξi , η j ; λk), (8a)

W M(ξi , η j ; λk)=W(ξi , η j ; λk), (8b)

ān =
∑
i, j ,k

Zn(ξi , η j )W(ξi , η j ; λk), (8c)

where i and j index the elements of the arrays that represent Zn ,
and W , WC , and W M are the partial derivatives of the error met-
ric with respect to W , WC , and WM , respectively. The derivation
for W is analogous to the example shown in [20].

B. Efficient Polychromatic Field Propagation

The simulation of polychromatic field propagation in this appli-
cation presents a challenge in terms of computational efficiency.
For many broadband systems, Fraunhofer propagation of elec-
tric fields can be simulated with a spatial sample spacing that is
consistent across the spectrum by appropriately zero-padding
the fast Fourier transform (FFT) input arrays for each spectral
component. The amount of padding required is dependent on
the chosen wavelengths [23]:

Mk =
λk

λr
Mr . (9)

Here Mk is the array size of the kth spectral component, and Mr

is the array size of the reference spectral component. However,
this relationship is problematic for simulation of a narrow spec-
trum with many wavelength components since the incremental
changes to λk/λr may be quite small, which requires that Mr

be large enough to ensure that each array size Mk be an integer,
giving

1M ≥ 1⇒Mr ≥
λr

1λ
, (10)

where1M =Mk −Mk−1, and1λ= λk − λk−1. This require-
ment can increase memory usage and overall run time, and
forces the choice of sample density in the pupil to be dependent
on the desired spectral sample density, which is inconvenient

especially when fitting a model to intensity data that are available
in both pupil and image planes. In this case, it is worth consid-
ering other DFT algorithms that can simulate propagation over
a finely sampled spectrum without the array size restrictions of
the FFT, such as the matrix triple product (MTP) [24,25] or
chirp z transform (CZT) [26,27], as demonstrated in [28]. The
real-world performance of these algorithms depends on a variety
of factors, such as the array size, sample densities (of the pupil
and image planes as well as the spectrum), and the particular
computer hardware on which the code runs. Therefore, our
approach is to automatically benchmark implementations of the
FFT, MTP, and CZT for a given simulation model before begin-
ning phase retrieval and choose whichever is fastest. Because
the results of these algorithms are all mathematically equivalent
(except in cases where the FFT would require a non-integer pad
size to be accurate), the results are consistent to within the limits
of floating-point precision. We note that the floating-point
roundoff error may accumulate differently depending on the
algorithm, but consider this effect to be negligibly small for our
application.

3. LOCAL MINIMA

In nonlinear optimization, it is possible that local minima in
the error metric surface can cause the optimizer to stagnate at an
incorrect solution [4], where every nearby estimate has a larger
error metric. In this section, we show that the introduction of
chromatic variables in phase retrieval also introduces some local
minima, and determine how they may be avoided. As a simple
test case, we simulated PSFs with 1.2 waves peak-to-valley (PV)
of tip/tilt and one wave of defocus across an 8 nm bandwidth
(or equivalently stated as 0.15 waves/nm and 0.125 waves/nm,
respectively), where the PV magnitude WPV of a chromatic
aberration WC over a bandwidth B = (λK − λ1) is defined as

WPV = B {max [WC (ξ, η)]−min [WC (ξ, η)]} , (11)

with the maximum and minimum operations being limited
to the nonzero region of a hard-edged circular aperture. The
angular dispersion magnitude is

W (1,2)
C (ξ, η)= c 1 Z1(ξ, η)+ c 2 Z2(ξ, η), (12a)

W (1,2)
PV = B

{
max

[
W (1,2)

C (ξ, η)
]
−min

[
W (1,2)

C (ξ, η)
]}
, (12b)

and the axial dispersion magnitude is

W (4)
C (ξ, η)= c 4 Z4(ξ, η), (13a)

W (4)
PV = B

{
max

[
W (4)

C (ξ, η)
]
−min

[
W (4)

C (ξ, η)
]}
,

(13b)
where Z1, Z2, and Z4 correspond with tip, tilt, and defocus,
respectively. The PSFs are shown in Fig. 1, both with and with-
out the addition of 1.5 waves of monochromatic defocus. The
error metric was then evaluated for a set of PSFs with a range of
values for the angular and axial dispersion as defined in Eqs. (12)
and (13), and plotted the resulting 2D slice through parameter
space [29] in Fig. 2. The global minimum is in the center of the
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(a)

(b)

Fig. 1. PSF with axial and angular dispersion (a) in-focus and
(b) 1.5 waves PV out of focus. Both are shown raised to the 0.25 power.

plot, corresponding to the true values (and zero error). Besides
the global minimum in Fig. 2(a), there are also three local min-
ima that appear where one or both of the signs of the dispersion
parameters are reversed. However, when the additional known
defocus is included, as in Fig. 2(b), two of the local minima
disappear from the error surface.

We can explain the appearance of these minima and their
relation with defocus by analogy to the well-known twin image
problem in monochromatic phase retrieval [30–32]. The root
cause is that the absolute value of the Fourier transform of any
complex signal f (u) is the same as that of its complex conjugate
flipped about the origin f ∗(−u), which means that the twin
phase in the pupil produces a simulated PSF identical to the
measured one, creating an ambiguity. This is given in the 1D
case as

F{ f (u)} ≡
∫
∞

−∞

f (u) exp [−i2πuν] du, (14a)

|F{ f (u)}| = |F{ f ∗(−u)}|, (14b)

where we note that in two dimensions, reversing both coor-
dinate axes is equivalent to a 180◦ rotation about the origin.
Similarly, we find that if the sign of axial dispersion is reversed,
the defocus element of each spectral component reverses sign
and becomes that of its twin. Consider the case of a field of a

(a)

(b)

Fig. 2. Error metric as a function of the two dispersion variables,
with the global minimum (correct values) in the center of the plot
at coordinates (1.2, 1). The contour lines mark error metric values
separated by 0.3 (on a logarithmic scale). (a) Two local minima that
are present in the in-focus case (b) disappear when known defocus is
added.

spectral component λ= λr + δλ having the amplitude weight
A(δλ), angular dispersion c 1, and axial dispersion c 4:

g (ξ ; δλ)= A(δλ) exp

[
i
2π

λ

(
δλc 1ξ + δλc 4ξ

2)] . (15)

The field corresponding to the twin phase is then

g ∗(−ξ ; δλ)= A(δλ) exp

{
−i

2π

λ

[
δλc 1(−ξ)+ δλc 4(−ξ)

2]}
(16)

= A(δλ) exp

{
i
2π

λ

[
δλc 1ξ + δλ(−c 4)ξ

2]} ,
(17)

thereby showing that formation of the twin is equivalent to
reversal of the sign of the axial dispersion while keeping the sign
of the angular dispersion, i.e.,
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g ∗(−ξ ; δλ, c 4)= g (ξ ; δλ,−c 4), (18a)

|F{g (ξ ; δλ,−c 4}| = |F{g (ξ ; δλ, c 4}|. (18b)

It has also been observed, in studies of monochromatic phase
retrieval, that enforcing a known sign of the defocus term
prevents an optimization from forming the twin phase as its
estimate because the twin requires reversing the sign of every
Zernike term with even radial symmetry (the components with
odd radial symmetry are the same in the twin as for the true
wavefront). In this case with chromatic aberrations, we can add a
known defocus a4 to the wavefront [Eq. (19)],

g (ξ ; δλ,c 1, c 4, a4)

= A(δλ) exp

[
i
2π

λ

(
δλc 1ξ + δλc 4ξ

2
+ a4ξ

2)] , (19)

g (ξ ; δλ,−c 1, c 4)= A(δλ) exp

{
i
2π

λ

[
δλ(−c 1)ξ + δλc 4ξ

2]} (21a)

= A(δλ) exp

{
−i

2π

λ

[
(−δλ)c 1(−ξ)+ (−δλ)c 4(−ξ)

2]} (21b)

=
A(δλ)

A(−δλ)
g ∗(−ξ,−δλ, c 1, c 4). (21c)

and observe that flipping the sign of c 4 is not sufficient to form
the twin while a4 is fixed [Eq. (20)]:

g (ξ ; δλ, c 1,−c 4, a4)= A(δλ) exp

{
i
2π

λ

[
δλc 1ξ + δλ(−c 4)ξ

2
+ a4ξ

2]} (20a)

= A(δλ) exp

{
−i

2π

λ

[
δλc 1(−ξ)+ δλc 4(−ξ)

2
− a4(−ξ)

2]} (20b)

= g ∗(−ξ ; δλ, c 1, c 4,−a4) (20c)

6= g ∗(−ξ ; δλ, c 1, c 4, a4). (20d)

This effect can be visualized with the ray trace in Fig. 3, which
shows axial dispersion causing each spectral component to
focus at a different horizontal position, and angular dispersion
causing the focal points to spread vertically. The opposite sign
of axial dispersion between the truth and twin images means
that the blue rays, for example, cross in front of the nominal
focal plane for the truth, but behind the focal plane for the twin.
The red rays, representing the other end of the spectrum, do
the opposite, and the green rays at the reference wavelength are
unchanged. In the focal plane, both the true geometric PSF and
the twin image are the same. At the defocus plane, the true PSF
has one end of the spectrum further out of focus than the other,
but the twin image is clearly flipped. So, the known defocus has
removed the ambiguity in the sign of the axial dispersion.

Fig. 3. Defocus eliminates the axial dispersion twin.

A somewhat similar effect is found when we try flipping the
sign of angular dispersion. Without known defocus, we have, in
the focal plane [Eq. (21)],

That is, reversing the sign of angular dispersion produces the
twin phase of the field at the opposite end of the spectrum,

g (ξ,−δλ); however, the magnitudes of fields differ if the
spectral weights are not equal. Furthermore, propagating the
same wavefront at two different wavelengths does not pro-
duce the same PSF due to the scaling of diffraction effects
with wavelength (i.e., the appearance of 2π/λ in the complex
exponential). The degree to which they are similar depends
on the difference in wavelength, so, if the bandwidth of a
polychromatic simulation is small, the effect will be subtle. In
mathematical terms,

|F{g (ξ ; δλ,−c 1, c 4)}| =
A(δλ)

A(−δλ)
|F{g ∗(−ξ,−δλ, c 1, c 4)}|,

(22a)

|F{g (ξ ; δλ,−c 1, c 4)}| ≈ |F{g (ξ ; −δλ, c 1, c 4)}|. (22b)
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Therefore, whether or not the twin presents a true ambiguity,
or merely a strong local minima, depends on the shape of the
spectrum. If it is asymmetric such that A(δλ) 6= A(−δλ) and is
not too narrow, then the true PSF and twin image may be differ-
ent enough that the error metric at the twin will be significantly
larger than the error metric at the true solution. If defocus is
added, we find

g (ξ ; δλ,−c 1, c 4, a4)= A(δλ) exp

{
i
2π

λ

[
δλ(−c 1)ξ + δλc 4ξ

2
+ a4ξ

2]} (23a)

= A(δλ) exp

[
−i

2π

λ

(
δλc 1ξ − δλc 4ξ

2
− a4ξ

2)] (23b)

= A(δλ) exp

{
−i

2π

λ
[(−δλ)c 1(−ξ)+ (−δλ)c 4(−ξ)

2
− a4(−ξ)

2
]

}
(23c)

=
A(δλ)

A(−δλ)
g ∗(−ξ ; −δλ, c 1, c 4,−a4) (23d)

6=
A(δλ)

A(−δλ)
g ∗(−ξ ; −δλ, c 1, c 4, a4). (23e)

So, known defocus also removes the ambiguity in the sign of
angular dispersion, as it did for axial. This is also illustrated by
the ray trace in Fig. 4, where the difference between the truth
and twin is the direction of angular dispersion. In the focal
plane, they are similar, but the spectral components are out
of order. In the defocus plane, the truth and twin are clearly
opposites.

Finally, we consider the third local minima that appeared
in the error metric surface of Fig. 2(a) and persisted in
Fig. 2(b), where the signs of angular and axial dispersion are
simultaneously reversed. In this case,

g (ξ ; δλ,−c 1,−c 4, a4)= A(δλ) exp

{
i
2π

λ

[
δλ(−c 1)ξ + δλ(−c 4)ξ

2
+ a4ξ

2]} (24a)

= A(δλ) exp

{
i
2π

λ

[
(−δλ)c 1ξ + (−δλ)c 4ξ

2
+ a4ξ

2]} (24b)

=
A(δλ)

A(−δλ)
g (ξ ; −δλ, c 1, c 4, a4). (24c)

|F{g (ξ ; δλ,−c 1,−c 4, a4)}| =
A(δλ)

A(−δλ)
|F{g (ξ ; −δλ, c 1, c 4, a4)}|. (25)

Now, we see that each spectral component δλ has taken on
the wavefront of its counterpart on the opposite side of the
spectrum, −δλ. However, similar to the case where angular
dispersion was reversed alone, the PSF produced is different due
to the scaling effect of the wavenumber 2π/λ in the complex
exponential and any asymmetry in the spectrum. In contrast to
the previous cases, a known defocus does not resolve the ambi-
guity because these are not twin images. Instead, the individual
spectral components have swapped places in the image plane.
This is also illustrated in Fig. 5, where we see that in both planes
the size and location of individual monochromatic PSFs are
correct except for having the wrong wavelength.

In summary, the two minima that occur when a single
dispersion term is flipped are removed if a known defocus is
enforced, because the twin phase at each spectral component
would require the reference defocus to also be flipped. The local
minimum that still remains in Fig. 2(b) sits where the disper-
sion coefficients are reversed together, which is equivalent to

reversing the sign of the δλ; however, this is not a true ambi-
guity due to the wavelength dependence of diffraction and
possibly asymmetry in the spectrum. These effects are sub-
tle over a small bandwidth such as the 8 nm in pulses from
OMEGA EP, but may produce a significantly higher error
metric than the true solution. If so, then a sufficient strat-
egy for avoiding this minimum is to check the error metric
against a threshold value after the optimizer converges, and
if it is too high, reverse the signs of the dispersion coefficients
and perform another round of local nonlinear optimization.

4. MONTE CARLO SIMULATION
To test the strategy presented in Section 3, the algorithm was run
through a series of trials with a variety of simulated true refer-
ence wavefronts and various starting guesses for the dispersion
parameters. In all cases, the true chromatic aberrations were
1.2 waves PV of angular dispersion and one wave PV of axial
dispersion across an 8 nm bandwidth (or equivalently stated
as 0.15 waves/nm and 0.125 waves/nm, respectively), which
are comparable to previously estimated values for OMEGA
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Fig. 4. Defocus eliminates the angular dispersion twin.

Fig. 5. Defocus does not eliminate the joint axial-angular twin.

EP [8]. The spectral weights for intensity given as the square of
the spectral weights for amplitude, S(λ)= A2(λ), are shown
in Fig. 6. This is representative of measured spectra in fully
amplified shots of OMEGA EP, which follow from the spec-
tral gain of the Nd-doped phosphate glass amplifiers in the
main beamline. The randomized true reference wavefronts
were each the sum of a known part W0 (simulating data from
a SHWFS) with a magnitude 0.4 waves rms and an unknown
part WM (simulating non-common path error) that had to be
retrieved and had a magnitude of 0.11 waves rms. Defocus in the
amount of 1.5 waves was also added, and assumed to be known.
In each case, the true PSF had a peak value of 72× 103 pho-
tons, and shot noise was included as well as seven electrons rms
Gaussian read noise after applying an assumed 80% quantum
efficiency. The trial cases included five independent random
realizations of W0, five independent random realizations of
WM , and 64 initial estimates for the dispersion parameters.
These three sets of parameters were combined to make a total
of (5× 5× 64)= 1600 trials. The initial estimates for the
dispersion parameters were selected from a uniform distribution
of parameter values ranging between a factor of −2 and +2
times the true values. The random Zernike coefficients used
to simulate W0 were drawn from a power law distribution that
mimics atmospheric turbulence, and the coefficients of the
non-common path wavefront were generated using statistics
based on previous calibrations of non-common path error in
OMEGA EP diagnostics [8]. A representative wavefront at the
central wavelength and polychromatic PSF including dispersion
are shown in Fig. 7.

Fig. 6. Intensity spectrum (S = A2) used in Monte Carlo
simulations.

(a)

(b)

Fig. 7. Representative example of random simulated data.
(a) Wavefront aberration (defocus removed for visualization) and
(b) PSF (0.25 power stretch).

Both the unknown part of the monochromatic reference
wavefront and the dispersion terms were retrieved, but it was
found that a good solution was more likely to be obtained if
the optimization proceeded in two stages. In the first stage, the
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Fig. 8. Phase-retrieval error metric versus error of the reconstruc-
tion, where the error is computed over the full bandwidth. Successful
cases have low estimation error, and failed cases are identifiable by a
large error metric in the PSF fit. In this example, cases above the red
dashed line are considered failed cases, and the ones below the line are
considered successful.

monochromatic reference wavefront was optimized alone while
the dispersion terms were left at zero. Once that converged, a
second stage was carried out by first choosing a random ini-
tial estimate for the dispersion, and then allowing both the
monochromatic and dispersion terms to vary in a second round
of optimization. This progression in stages is analogous to
bootstrapping methods that have proved successful in other
phase-retrieval applications [32,33]. In combination with
the twin phase check described at the end of Section 3, this
strategy was successful in all but two of the 1600 tested cases.
For the successful cases, the estimated wavefronts came within
one thousandth of a wave rms of the true solution, where the
mean difference within the rms is computed over all spectral
components. In the failed cases, the normalized root-mean-
squared error (NRMSE), the square root of Eq. (5), between the
estimated and true PSFs was in the neighborhood of 10 times
greater than the error metric for successful cases, as shown by
the outliers in Fig. 8. Therefore, if one of these failures occurs in
practice, it can be recognized by the large residual error metric
and recovered from by performing another optimization run
from a different random starting point.

5. LABORATORY EXPERIMENT

To test the proposed chromatic aberration retrieval algorithm
in a real-world scenario, we also applied the method to a small-
scale laboratory test setup. This test bed was previously built
to generate and measure chromatic aberrations with a method
that utilizes a 2D grating to simultaneously disperse spectral
components and provide focus diversity [34,35]. In this section,
we seek to reproduce that measurement with the approach dis-
cussed in this paper. For consistency with [34], we will represent
angular and axial dispersion in terms of pulse front delay (PFD)
and radial group delay (RGD), respectively, which for an optical
field u(x , y , �) are defined asβ andγ such that

u(x , y , �)= a0(x , y )A(�) exp[iφ0(x , y )]

× exp

{
i�

[
βx

x
r0
+ βy

y
r0
+ γ

(
r
r0

)2
]}

,

(26)

where a0(x , y ) is the amplitude, A(�) is the spectral weight,
φ0(x , y ) is the phase at the reference wavelength, r0 is the nomi-
nal beam radius, and�≡ω−ω0 is defined as the difference in
angular frequency between a given spectral component and the
reference.

A. Equipment and Methodology

The conceptual layout of the experimental setup is shown in
Fig. 9. A Superlum SLD-52 super-luminescent light-emitting
diode (SLED) served as a broadband light source, having a
bandwidth of approximately 100 nm and spectral distribu-
tion of intensity, where S(λ)= A2(λ), shown in Fig. 10. The
output of the SLED was fiber coupled, and collimated with a

Fig. 9. Experimental system layout. Reprinted from [34].

µ

Fig. 10. Intensity spectrum of the SLED.
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concave mirror before being passed through a square apodizer
(A) that had a 2D super-Gaussian profile and a full-width at
half-maximum (FWHM) for intensity at 7 mm. Therefore,
the value for the normalized beam radius used in Eq. (26) will
be r0 = 3.5 mm. Given the large bandwidth of the source,
significant chromatic dispersion can be introduced with a few
glass elements. To that end, the beam was relayed through a
pair of 103 mm plano–convex fused-silica lenses (L1 and L2),
which together provided γ = 10.0 fs of RGD. A fused-silica
wedge (W) with 1◦ apex angle imparted β = 2.5 fs of PFD (or
equivalently 2β = 5 fs PV PFD as recorded in [34]). For some
tests, a Semrock LL01-1030-12.5 narrowband filter (F) with a
FWHM bandwidth of less than 7.2 nm and central wavelength
of 1.03 µm was inserted to provide images that are effectively
monochromatic (the chromatic aberrations are negligible over
this range) and can serve as a reference. The beam was focused
with a 200 mm achromatic doublet, and images of the PSF
were captured by a JAI Pulnix TM-4200 GE monochrome
charge-coupled device (CCD) camera, which has a pixel pitch of
7.4 µm. For phase retrieval, the camera was translated along the
optical axis to provide focus diversity. The focus sweep was per-
formed first with the spectral filter, then again with it replaced
by a neutral density (ND) filter. For each image, the exposure
time was adjusted so that roughly 80% of the well depth was
filled at the brightest spot in the image. Because the broadband
illumination had much greater total energy than the monochro-
matic beam, a ND filter with optical density (OD) 2.0 was used
when the spectral filter was absent to prevent saturating the
detector. The nominal sampling ratio at the focal plane was Q =
[(1.03 µm)(200 mm)]/[(7.0 mm)(7.4 µm)] = 4.0, which is
twice the Nyquist limit for intensities and is expected to be more
than adequate. It should be noted that Q is dependent on wave-
length and so varies across the spectrum, and because the system
is not telecentric it depends on the detector shift as well. Since
the focus position was only roughly measured in these tests, the
nominal Q value was used merely as a starting point for later
optimization [21]. Images of the pupil amplitude distribution
were also obtained by removing the focusing lens and observing
the collimated beam.

1. Monochromatic

The set of data analyzed in this section was taken with the
narrowband spectral filter in place, to provide images with
no chromatic aberration. From these, we can measure the
monochromatic contribution to the wavefront without the risk
of confounding effects from dispersion. The beam intensity
distribution due to the apodizer (marked as A in Fig. 9) was mea-
sured by removing the focusing lens, and the square root of the
data was taken to produce the amplitude shown in Fig. 11(a).
The detector is not in a conjugate plane to the pupil for this
measurement, so some near-field diffraction effects are to be
expected. To compensate for this as well as to filter noise, the
measured amplitude was fit to a 2D super-Gaussian distribution
as shown in Fig. 11(b) for use in the starting point for phase
retrieval. A 1D horizontal slice through the center of the pupil
image and its super-Gaussian fit are shown in Fig. 12, where
we see that the pupil image data have bumps at the base of the

(a)

(b)

Fig. 11. Pupil amplitude. (a) Measured and (b) super-Gaussian fit.

Fig. 12. Pupil amplitude cut through. The circles mark measured
data points, and the solid line is the super-Gaussian fit.

curve that are likely the effect of near-field diffraction. The raw
PSF images were used without modification, and are shown in
Fig. 13. To account for overall signal bias and gain in the PSF
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(a)

(b)

Fig. 13. Measured PSFs with monochromatic filter. (a) Before focus
and (b) after focus.

images, a bias and gain insensitive error metric was used for the
phase retrieval [17].

The fitting process was carried out in multiple stages in which
a limited selection of parameters was allowed to vary. The first
variables to be optimized were focus, tip, tilt, and Q, providing
a low-order fit. Then, the wavefront was retrieved in terms of
Zernike polynomials, followed by adjustment of the point-by-
point representation of the pupil amplitude. In the final step, all
variables (wavefront, Q, and amplitude) were jointly optimized.

The optimization process converged to a solution where the
NRMSE value was 3.15%. The final wavefront and amplitude
estimates are shown in Fig. 14, where we see that the wavefront
is similar to the result in [34]. The estimated values of Q for
the defocus planes before and after focus were Q = 4.14 and
Q = 3.81, respectively, and the amounts of defocus were found
to be−1.77 µm and 2.14µm PV over the 7 mm nominal width
of the beam.

2. Full Bandwidth

A second set of PSF images, shown in Fig. 15, was captured with
the full spectrum of the SLED and exhibit a very subtle blurring

(a)

(b)
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Fig. 14. Final pupil estimate (monochromatic). (a) Wavefront and
(b) amplitude.

effect due to dispersion and the increased bandwidth. Because
these effects are small, the more-dominant aberrations were esti-
mated before the dispersion parameters to prevent them from
being pushed into a local minimum. As a first step in the process,
the estimates for focus, tip/tilt, and Q previously obtained from
the monochromatic data were re-optimized for the new images,
resulting in minor adjustments. Some variation in these values
between the monochromatic and full-bandwidth estimates is
expected because the detector was moved through focus before
and after when the filters were changed, and the positions were
not perfectly repeated. The monochromatic wavefront was
then estimated in terms of Zernike coefficients, using zeros
as the starting point and a super-Gaussian best fit as the pupil
amplitude. This is analogous to a situation where focus, tip, tilt,
and Q are constant and well-known system parameters, but the
wavefront and amplitude are variable (e.g., due to atmospheric
turbulence and thermal variations), and monochromatic images
are not available. For dispersion retrieval, eight discrete spectral
samples were selected for inclusion in the model (Fig. 16), and
the dispersion was parameterized in terms of coefficients that
vary tip, tilt, and focus linearly with wavelength. Last, all of the
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(a)

(b)

Fig. 15. Measured PSFs (full bandwidth). (a) Before focus and
(b) after focus.

µ

Fig. 16. Spectral samples used for dispersion model.

variables (wavefront, amplitude, Q, and dispersion) were jointly
optimized to produce the final estimate. The NRMSE between
the estimated PSFs and measured data is 2.88%.

Fig. 17. Final amplitude estimate (full bandwidth).
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Fig. 18. Final wavefront estimate (full bandwidth).

The final pupil amplitude and wavefront estimates are
shown in Fig. 17 and Fig. 18, respectively, where we see that the
monochromatic wavefront is again similar to the previous result
in [34]. The difference between this estimate and the one based
on monochromatic data in Section 5.A.1 is only 16.9 nm rms
over a 7 mm square pupil region. The Q and defocus amounts
stayed near the initial values obtained from the monochromatic
data, with Q = 4.17 and Q = 3.83 for before and after focus,
respectively, and defocus at −1.71 µm and 2.17 µm PV. The
final dispersion estimate consisted of 4.68 fs of PFD and 9.13 fs
of RGD, which differ by 6.4% and 8.7% from the expected val-
ues of 5.0 fs and 10.0 fs, respectively. Compared to the results in
[34], where the PFD estimate was within 0.5 fs of expectations
and the RGD within 0.1 fs, these results for PFD are similar,
while the RGD is less accurate. To visualize the scale of the chro-
matic aberrations, the difference between the wavefronts at the
two ends of the spectrum (0.949 µm and 1.09 µm) is shown in
Fig. 19, where we see the large change in focus due to RGD, as
well as a change in the horizontal tilt due to PFD.
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Fig. 19. Difference between the wavefront estimates at the two
ends of the spectrum illustrates the range of focus and tilt due to RGD
and PFD.

6. CONCLUSION

In this paper, we have developed a simulation model and opti-
mization process for the joint estimation of linear chromatic
aberrations in addition to monochromatic aberrations using
a measured broadband PSF together with a known aperture,
spectrum, and initial wavefront estimate. Particular attention
was paid to system parameters relevant to application to the
OMEGA EP laser.

To prevent ambiguities and local minima, we used a Zernike-
based parameterization of the chromatic aberrations, as well
as addition of known defocus to reduce sign ambiguities. A
remaining local minimum that produces the incorrect sign for
all chromatic aberration parameters does exist, but is not a true
ambiguity and can be identified if the spectrum is asymmetric
or not overly narrow. In simulation, we found a bootstrapping
strategy that first estimated the monochromatic wavefront cor-
rection followed by optimization of the chromatic parameters to
be highly successful.

A test of this approach in a laboratory experiment also pro-
duced encouraging results. Putting the method into practice for
OMEGA EP will require improving the simulation model to
more closely match the real properties of this complex system.
However, the method does provide the benefit of being less
susceptible to non-common path error than techniques that
require additional optical elements.
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