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Sharpness metric maximization is a method for reconstructing coherent images that have been aberrated due to
distributed-volume turbulence. This method places one or more corrective phase screens in the digital-propagation
path that serve to increase overall sharpness of the image. As such, this study uses sharpness metric maximization
on 3D irradiances obtained via frequency-diverse digital holography. We vary the number of corrective phase
screens in the propagation path and sharpen images of a realistic, extended object via multi-plane sharpness metric
maximization. The results indicate that image reconstruction is possible when using fewer corrective screens than
aberrating screens, but that image quality increases with a greater number of corrective screens. © 2021 Optical

Society of America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/AO.427719

1. INTRODUCTION

Distributed-volume atmospheric turbulence poses unique
problems when imaging distant objects. These problems arise
from the fact that different points within the field of view experi-
ence generally different aberrations after propagation to a pupil
plane. This phenomenon, known as anisoplanatism [1], results
in different point-spread functions (PSFs) in different areas of
the image (i.e., the imaging system is linear, shift variant). In
contrast, isoplanatism occurs when all of the aberrations occur
close to or within the pupil plane of the imaging system. In this
case, each point on the object experiences the same aberrations
(i.e., the imaging system is linear, shift invariant). In general, the
degree of anisoplanatism can be assessed via the area of interest
in the object plane relative to the isoplanatic patch, where more
anisoplanatic scenarios have a greater density of isoplanatic
patches.

When correcting coherent imagery in the presence of
turbulence-induced aberrations, one can reconstruct the image
by introducing a phase correction in one or more planes within
the propagation volume. One can achieve this via hardware,
for example, with a deformable mirror that imparts a phase
correction, or by applying phase corrections in one or more
planes within a model of the propagation volume and digitally
propagating back to the object. The latter method requires an
estimate of the complex-valued field for digital propagation to
take place. In either case, however, anisoplanatic aberrations
require for the phase to be corrected in multiple planes if an

image is to be reconstructed over multiple isoplanatic patches.
In hardware, one avenue is multiconjugate adaptive optics [2,3].
This paper will instead focus on digital reconstruction in the
form of multi-plane sharpness metric maximization (SMM).

In the past, SMM, or image sharpening, has been used with
coherent imagery to correct for both isoplanatic and aniso-
planatic aberrations. Thurman and Fienup developed image
sharpening for isoplanatic phase errors and compared it to
digital shearing laser interferometry [4]. They later looked at
anisoplanatic phase errors with a single aberrating and cor-
recting screen [5]. Tippie and Fienup extended upon that work
to include multiple aberrating screens and multiple correcting
screens [6,7]. Those efforts both made use of digital holography
to estimate the field in the pupil plane before reconstructing
the image via SMM. Farriss et al. used SMM with frequency-
diverse digital holography (also known as 3D holographic
laser radar [8,9]) to correct for isoplanatic aberrations [10],
and the approach in this study builds on that work by increas-
ing the number of aberrating screens along with the degree of
anisoplanatism.

In this study, we also use digital holography to obtain field
estimates for the digital propagations that take place in SMM.
In general, there are several digital holographic recording
geometries [11–13], and we opt to use the off-axis image-plane
recording geometry (IPRG) for its straightforwardness when
windowing pupil estimates in the Fourier plane [14,15]. Here,
we use frequency-diverse digital holography to obtain a stack of
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complex-valued fields in the pupil, from which one can generate
a 2D irradiance image for each frequency as well as a 3D irradi-
ance image of the distant object. One can generate range images
of the object from the 3D irradiance by taking the range to be
the pixel location of maximum irradiance in the z direction for
every transverse x−y pixel. Figure 1 shows an example where (a)
and (b) show the truth reflectance and truth range map for a sim-
ulated truck object, (c) shows a 2D irradiance image of the truck
averaged over a narrow bandwidth of illuminating frequencies
(described in Sections 2 and 3), and (d) shows a range image of
the truck obtained from the 3D irradiance. In the presence of
turbulence, we feed the complex-valued pupil data to the SMM
algorithm to obtain reconstructed versions of Figs. 1(c) and
1(d). In Fig. 1(d), we present the range image modulo the range
ambiguity interval (which we describe in Section 2), hence the
range wrap that appears below (in front of ) the truck.

In practice, we use SMM to increase the sharpness of the
3D irradiance image by optimizing the phase values in multi-
ple planes within the digital-propagation path. There are two
shortcomings when performing multi-plane SMM. First,
large quadratic phase factors can form in the corrective phase
estimates when optimizing over two or more screens (where
neither of which is coincident with the object plane). These
quadratic phases act together as a telescope that demagnifies
the resultant image. Solutions with telescoping occur because

image sharpness generally increases when the irradiance is more
concentrated in a smaller area/volume. These solutions are
undesirable, but there are methods to combat them, such as
employing a Fourier domain constraint [6,7]. This study uses
regularization of the corrective phase screens to mitigate against
telescoping, and, in particular, limits the magnitude of the
quadratic phase component that forms in the corrective phase
screens. Second, when correcting with multiple corrective phase
screens, multiple phase solutions can yield images of similar
quality. This issue of degenerate solutions is an outstanding area
of research that goes beyond the scope of this paper.

In simulation and experiment, it is often useful and efficient
to simulate turbulence via one or more 2D phase screens that
are placed throughout the propagation path. Given a finite
number of screens, the question of where to place the screens
throughout the propagation path to best approximate the effects
of distributed-volume turbulence becomes an issue. The same
issue arises when placing corrective phase screens throughout
the propagation path in multi-plane SMM, as well as other
approaches [16,17]. In this study, we refer to a study by Paxman
et al., which develops a prescription for finding the optimal
phase plane configuration for a given turbulence profile [18].

SMM algorithms can struggle with oversharpening. In par-
ticular, when treating phases on a point-by-point basis, the
SMM algorithms can optimize the corrective phase screens in

Fig. 1. (a) Truth reflectance map, (b) truth range map, (c) 2D frequency-averaged irradiance image taken through vacuum, and (d) range image
taken through vacuum.
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such a way that most of the light in the image plane concen-
trates to just a few pixels. From a raw sharpness standpoint,
this outcome yields an extremely sharp image. To combat this
effect, we recommend that one uses some form of bootstrapping
where the corrective phase screens are constrained to lower
order components for the first few rounds of optimization and
gradually allowed to include higher order information. Previous
researchers have used Zernike polynomials as a bootstrapping
basis [4] as well as the method of sieves [7] (though both of these
studies used point-by-point optimization for the final boot-
strapping cycle). This paper will follow a more recent approach
by Thurman in which one downsamples corrective phase
screens prior to optimization [19]. This choice provides a more
sparse basis for the initial optimization and also constrains the
phase screens to include only lower order phase information at
first. As the algorithm progresses, we reduce the downsampling
factor and allow the corrective phase screens to develop higher
order terms.

Given the phase plane configurations provided by Paxman’s
method, this study examines multi-plane SMM when using
fewer corrective phase screens than simulated aberrating screens
and quantifies performance via two metrics. Section 2 describes
the simulated imaging system and the SMM algorithm that
we used to reconstruct images in the presence of simulated
distributed-volume turbulence. Section 3 sets up the simulated
trade space as well as the metrics used to quantify perform-
ance. Section 4 shows the simulation results and discusses the
implications, and Section 5 concludes the paper.

2. ALGORITHM DESCRIPTION

In this section, we describe the overall 3D imaging setup as well
as the SMM algorithm that reconstructs the images. Starting
with the imaging system, we began our simulation with the
truth reflectance and truth range of a scaled truck [cf. Figs. 1(a)
and 1(b)] that is approximately 0.5 m in length. We illuminated
the truck with a modified point source in the pupil plane that
generated a tapered square illumination pattern (via separable
Tukey windows in the x and y directions) for each frequency.
We sequentially illuminated the truck with 32 equally spaced,
discrete frequencies over a 4 GHz bandwidth with a central
frequency ν0 of 300 THz (and corresponding wavelength
λ0 = 1 µm). We obtained the initial field in the object plane via

G(xO, y O; ν)= T(xO, y O) ◦U(xO, y O; ν)

◦ [N (0, 0.5)+ iN (0, 0.5)]

◦ exp[i(4πν/c )Z(xO, y O)], (1)

where xO and y O are the transverse coordinates in the object
plane, G(xO, y O; ν) is the field scattering from the object plane
for a given frequency ν, T(xO, y O) is the underlying object
amplitude reflectance (which is independent of frequency),
U(xO, y O; ν) is the illuminating field at the object, N (µ, σ 2)

is a Gaussian-distributed independent variable with meanµ and
variance σ 2, c is the speed of light in vacuum, Z(xO, y O) is the
truth range of the object, and ◦ denotes a Hadamard product.
The circular complex Gaussian random numbers in Eq. (1)
ensure that rough-surface scattering is properly simulated, and

the exponential term applies the proper phase from the object
depth for each frequency, ν. Equation (1) holds for optically
rough objects from which light reflects diffusely. However,
real-world objects often exhibit regions of specular reflection or
“glints.” In practice, we do not expect the presence of glints to
adversely affect SMM, as glints have been shown to aid in the
convergence of sharpening algorithms [5,20]. The dependence
of SMM on the underlying object reflectance presents a rich
trade space that is beyond the scope of this paper.

Note that Eq. (1) does not provide speckle diversity between
different frequencies, as the circular complex Gaussian ran-
dom numbers are frequency independent. This assumption is
valid for the extremely narrow bandwidths relative to the mean
frequency that we employed in this study, as changes in phase
from rough surface scattering due to changes in frequency were
negligible (in the 10 s of milliradians across the full bandwidth).
The reader should note that 3D imaging with frequency-diverse
digital holography [in the context of Eq. (1)] requires a con-
sistent speckle realization across all illumination frequencies,
which poses a problem for rotating/vibrating objects. This paper
does not address the issues associated with rotating/vibrating
objects in the context of 3D imaging, but researchers have devel-
oped modified 3D imaging modalities that are robust to target
motion [21].

Once we obtained the simulated fields at the object (one for
each frequency), we propagated through multiple Kolmogorov
phase screens to the pupil plane via the split-step beam propa-
gation method [22]. In these simulations, the total propagation
distance was z= 2 km, and we maintained an M ×M grid
resolution (where M = 512) for all propagation arrays.
Additionally, all propagation grids had the same pixel pitch,
δ = 1.98 mm. We also satisfied Fresnel scaling, which is oth-
erwise known as critical sampling of the angular spectrum
transfer function, such that z=Mδ2/λ0 [23]. We generated
phase screens using the approach by Lane et al., which uses the
Kolmogorov Fourier spectrum with added subharmonics [24].
In the pupil plane, we applied a D= 50 cm diameter circular
aperture and thin-lens function to focus the incoming light
to a 508× 508 focal-plane array (FPA) that was conjugate to
the object plane. Here, the image plane sampling quotient was
two, meaning that there were two pixels per diffraction-limited
transverse resolution element. For each illuminating frequency,
ν, we interfered each field with a tilted reference beam of the
same frequency and measured the resultant irradiance of the
hologram (with no added measurement noise). In accordance
with Ref. [11], we performed a fast Fourier transform (FFT)
of each hologram and windowed out the appropriate complex
pupil field estimate. This resulted in a stack of pupil fields for
the entire illumination bandwidth (one pupil field for each
frequency within1ν).

There are two range-specific parameters that are of interest,
namely, the range resolution and the range ambiguity inter-
val. The range resolution, δz, provides the smallest discernible
element that one can perceive in the z direction and is given by

δz =
c

21ν
, (2)

where1ν is the illuminating bandwidth. The range ambiguity
interval,1z, is given by
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1z=
c

2δν
, (3)

where δν is the spacing between adjacent illumination frequen-
cies. In practice, the range ambiguity interval is the maximum
range in the z direction before which wrapping occurs. This
wrapping means that all range images display range modulo
the range ambiguity interval, as evidenced by the horizon-
tal range wrap in Fig. 1(d). In this study, δz = 3.75 cm and
1z= 1.20 m. Additionally, the diffraction-limited trans-
verse resolution, determined by the aperture diameter, D, was
1.22λ0z/D= 4.88 mm.

Once we obtained our stack of pupil field estimates, we fed
the pupil information into the SMM algorithm. Following
along with Fig. 2, we first propagated our pupil fields back to
the object plane through our corrective phase screens. Again, we
used the split-step beam propagation method, which makes use
of the angular spectrum method for vacuum propagations. On
the first iteration, the corrective phase screens were initialized to
zero, so the resultant object fields were aberrated. In general, the
number and placement of the corrective phase screens differed
from the original aberrating screens. In the object plane, we took
a Fourier transform along the frequency dimension followed by
a modulus squared operation to obtain the 3D irradiance. From
there, we calculated the sharpness of the 3D irradiance and the
gradients of the sharpness metric with respect to the parameters
of each corrective phase screen. Finally, we fed this information
into our optimizer of choice, described later, which tweaked
the values of the corrective phase screens to increase the image
sharpness.

With the overview for SMM laid out, we now discuss the
internal mechanisms behind the algorithm. As previously men-
tioned, this study used a downsampling bootstrapping method,
described by Thurman [19], which downsampled corrective
phase screens prior to optimization. After we optimized the
downsampled phase screens, we used Gaussian interpolation
kernels to upsample the optimized screens back to their original
resolution for propagation. The Gaussian kernel interpolation
served as a de facto form of regularization that smoothed the
phase estimates prior to propagation. This step provided more
physical phase estimates and prevented the formation of branch
points in the phase function, which occasionally developed
in Ref. [19], which used nearest neighbor interpolation. To
condense the mathematical equations to come, we denote a
downsampling operation on the nth 2D input corrective phase
screen φ̂(n)(xn, yn) as

φ̂
(n)

down = Ad φ̂
(n)
, (4)

where φ̂
(n)

is a vector version of φ̂(n)(xn, yn), φ̂
(n)

down is a vector
version of φ̂(n)down(xn, yn) (which is the 2D downsampled cor-
rective phase screen), and Ad is a matrix that downsamples the

vector φ̂
(n)

via decimation for which the prescribed physical
sample spacing in both x and y directions is d . Explicitly stated,
Ad is a sparse matrix, where all rows contain a one at locations

where we desire to sample φ̂
(n)

and zeros for every other entry.
Ad has M2

opt columns and κ2 rows, where Mopt is the number of
pixels across an Mopt ×Mopt optimization region over which we
optimize the phase (with pixel pitch δ), and κ is given by

κ = ceil

[
Mopt − 1

round (d/δ)

]
+ 1. (5)

In Eq. (4), the downsampling process results in a κ2-length
vector, which we reshape into a κ × κ downsampled corrective
phase screen over the optimization region (with pixel pitch
Moptδ/κ). Upon further examination of Eq. (5), one can see that
if the prescribed sample spacing, d , exceeds the linear dimension
of the optimization region [i.e., if round(d/δ)≥Mopt − 1],
then κ = 2 and we downsample the corrective phase screen to
a 2× 2 array. Additionally, for values of d < δ, we always set
κ =Mopt, which corresponds to no downsampling.

Similarly, for upsampling, we write

φ̂
(n)

comb = AT
d φ̂

(n)

down, (6)

where φ̂
(n)

comb is an M2
opt-length vector embedded with the val-

ues of φ̂
(n)

down separated by zeros, and superscript T denotes a

transpose. After application of Eq. (6), we reshape φ̂
(n)

comb into
an Mopt ×Mopt array over the optimization region, which we

denote with φ̂(n)comb(xn, yn). This array is nonzero at the original
downsampling locations [cf. Eq. (4)]. To obtain a smooth cor-
rective phase screen over the optimization region, we interpolate
the array with a Gaussian kernel given by

g d (xn, yn)=
1

2πd2
exp

(
−

x 2
n + y 2

n

2d2

)
, (7)

which we use to obtain an Mopt ×Mopt corrective phase screen
given by

φ̂(n)(xn, yn)= φ̂
(n)
comb(xn, yn) ∗ g d (xn, yn), (8)

Fig. 2. Overview of SMM.
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where ∗ denotes a 2D convolution. This operation provides
us with a smooth corrective phase screen over the Mopt ×Mopt

optimization region. In general, the optimization region can be
smaller than or equal in size to the entire M ×M propagation
grid, though we zero padded prior to propagation if Mopt < M.

In addition to the sampling operators defined in Eqs. (4) and
(6), we define a propagation operator given by

Pz1→z2{U; |z2 − z1|}, (9)

where P denotes an angular spectrum propagation that propa-
gates an input 2D field, denoted by U , from z1 to z2. Here, we
take the positive z direction to be pointing from the object to the
pupil with the object located at z= 0. As such, we denote back-
wards propagations with

P†
z2→z1
{U; |z2 − z1|}, (10)

whereP† is the adjoint angular spectrum propagator.
Our sharpness metric of choice is given by

S = S1 +9q , (11)

where S is the total metric, such that

S1 =
∑

xO ,y O ,zO

s 1(xO, y O; zO)

=

∑
xO ,y O ,zO

sgn(β − 1)I β(xO, y O; zO), (12)

and

9q =−α

N∑
n=1

6∑
q=4

|a (n)q |
2. (13)

In Eq. (12), I (xO, y O; zO) is the reconstructed 3D irradi-
ance, and β is a sharpness exponent [20], and, in Eq. (13), α is
a regularization parameter, a (n)q is the q th Zernike coefficient
in the nth corrective phase screen, and N is the total number
of corrective phase screens. S1, given in Eq. (12), is the base
sharpness term that the algorithm seeks to maximize.9q , given
in Eq. (13), is a quadratic-phase (specifically, the defocus and
astigmatism Zernike polynomials) regularization term that
penalizes phase solutions that have large quadratic phases and
thus mitigates against the aforementioned telescoping effect.
Together, S1 and9q sum to the total metric that we maximized.

Every time we calculated sharpness in the algorithm, we
used reverse-mode algorithmic differentiation (RMAD) [25]
to numerically compute analytic gradients of S with respect
to the phase in each plane. RMAD is particularly useful for
optimization problems such as this for two reasons: (1) numer-
ically computing analytic gradients is less computationally
burdensome than calculating finite-difference gradients, and
the computational cost of each gradient calculation is compa-
rable to evaluating the forward model; and (2) RMAD breaks
the differentiation process into bite-sized chunks that can easily
be modified when reconstructing with a different propagation
geometry, phase screen configuration, or term in the metric. In
Appendix A, we lay out the forward and gradient models for 3D
multi-plane SMM in a fashion similar to Ref. [10].

Table 1. Turbulence Scenarios

Scenario
C2

n(m
−2/3)×

10−15 σ 2
χ D/r0 2/θ0

1 11.3 0.135 10 27.0
2 22.2 0.264 15 40.5
3 35.8 0.427 20 53.9

3. SIMULATION SETUP AND EXPLORATION

In this section, we explore the trade space as well as the param-
eters used in SMM. We always used the scaled truck as the
extended, realistic object, and we simulated three turbulence
scenarios, shown in Table 1.

Moving left to right in Table 1, C 2
n gives a measure of the

strength of turbulence in the atmosphere [26], where here
the C 2

n profile in the z direction is a constant. σ 2
χ is the log-

amplitude variance, which gives a gauge for the strength of
scintillation in the pupil plane after propagation through the
distributed-volume turbulence [26], and D/r0 tells us how
many times the path-integrated Fried coherence diameter, r0,
fits across our pupil. This ratio informs us of the strength of the
turbulence-induced blur in the images. Finally,2/θ0 is the ratio
of the angular field of view,2, to the isoplanatic angle, θ0, which
informs us of how many isoplanatic patches fit across the area
of interest in the object plane. We simulated each scenario with
10 Kolmogorov phase screens, whose configuration in z was
determined by the Paxman method [18].

In these simulations, we did not simulate noise or pixel sat-
uration at the FPA during the digital holographic detection
process. This choice resulted in near-pristine complex-valued
fields that we fed into the SMM algorithm. In terms of the SMM
process itself, we performed empirical trade studies that varied
β [cf. Eq. (12)] as well as α [cf. Eq. (13)]. The β study informed
us that the optimal value for β on average was 0.88. Note that
this study used only a single speckle realization, and a previous
study on 2D SMM empirically showed that the optimal value
forβ was 0.5, provided a single speckle realization [4]. However,
the difference in average error between β = 0.88 and β = 0.5
was minute in the simulations with 3D SMM. The α study
suggested that a value of α = 1× 104 was optimal in producing
high quality range images and in mitigating against telescoping,
though that particular value depends heavily on the scale of S1

and on the value of β. In general, there is a trade-off with α,
where larger values of α prevent telescoping and any demagni-
fication in the image, but they sometimes struggle to improve
image quality. Smaller values ofα sometimes offer higher quality
images at the cost of demagnification. For this study, we used
β = 0.88 andα = 1× 104.

For each of the scenarios listed in Table 1, we performed
SMM while decreasing the total number of corrective phase
screens, N. For each number of corrective phase screens, we
used the Paxman method with a uniform C 2

n profile to generate
the optimal corrective phase screen configuration for each case.
Based on the fact that the field of view of interest was com-
parable in size to the simulated pupil, the Paxman algorithm
generally placed the aberrating and corrective phase screens in
a nearly equally spaced configuration each time. For each of the
30 reconstruction scenarios (three turbulence scenarios and
10 corrective phase screen configurations), we simulated 10
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independent realizations of turbulence for our SMM algorithm
to correct.

When using the downsampling method of bootstrapping
described in Ref. [19], we used six cycles of bootstrapping and
performed five iterations of limited-memory Broyden Fletcher
Goldfarb Shanno (L-BFGS) optimization per cycle [27]. The
bootstrapping process began with a prescribed downsampled
spacing, d , such that d/r (n)0 = 8, where r (n)0 was the assumed
r0 at the nth corrective phase screen, and divided d/r (n)0 by two
until it equaled 0.25, for six spacings in total. We determined
the assumed value of r (n)0 for the corrective phase screens by
calculating r0 at each screen that we required to obtain the true
path-integrated D/r0 in the pupil plane, given the number
and configuration of corrective phase screens and a uniform
C 2

n profile. For example, when using fewer corrective phase
screens, we reduced the assumed r0 associated with each screen
to achieve the appropriate D/r0. We then set r (n)0 to the assumed
r0 at each screen by this method. In this process, the algorithm
assumed knowledge of both the true D/r0, as well as the fact
that the turbulence was uniform over the propagation path. The
performance of SMM when the C 2

n profile is unknown is still an
active area of research, but we expect the algorithm to converge
to adequate solutions when the exact C 2

n profile is unknown
based on the fact that our algorithm showed success when using
fewer corrective phase screens than aberrating screens, and based
on the fact that previous researchers have optimized corrective
phase screens without any knowledge of the strength of the tur-
bulence [4–7]. We expect our algorithm to perform adequately
even if guesses for r (n)0 that are not informed by the true value of
r0 for each screen are used in the bootstrapping process.

When upsampling the downsampled phase screens for use
in propagation [cf. Eq. (6)], we set Mopt = 256, so that we
optimized the phase screens over a region that is 0.25 times

the total area of the propagation arrays. This central region is
where most of the light exists in each z plane, so it allowed us to
more efficiently optimize the corrective phase screens. Before
propagation, however, we always zero padded the Mopt ×Mopt

arrays to M ×M arrays.
Figure 3 shows an example reconstruction where α = 0

for illustration purposes. Here, the top row shows the 2D
frequency-averaged irradiance images, and the bottom row
shows the range images. Recall that we obtain the 2D frequency-
averaged irradiance from the stack of object fields, and we obtain
the range image from the 3D irradiance after performing a
Fourier transform along the frequency dimension [cf. Fig. 2].
Explicitly stated, range images relate to the 3D irradiance via

R(xO, y O)= argmax
zO

{I (xO, y O; zO)}, (14)

where R(xO, y O) is the range image.
The columns in Fig. 3 correspond to original aberrated

imagery (left), imagery obtained via SMM (middle), and ideal
imagery if SMM arrived at the exact corrective phase screens to
undo the original aberrations (right). There are a few things to
notice here, one being that the 2D frequency-averaged irradi-
ance images do not resemble the truck object, in general, due to
speckle noise. The range images on the other hand have many
identifiable features. In addition, the corrected range image of
the truck (although significantly improved compared to the
aberrated image) exhibits some obvious demagnification when
compared to the ideal range image. This outcome is because
there is no regularization present in this example (i.e., α = 0),
so the range image exhibits crisp features and edges, but a gross
demagnification. It should be noted that in general, SMM can-
not reconstruct global tip-tilt aberrations that cause translations
in the final images, as translations do not affect our sharpness

Fig. 3. Example image reconstructions withα = 0, D/r0 = 15, and N = 10.
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metric, S, at all. In general there are unavoidable translation
discrepancies between the corrected and ideal imagery.

We use the following metrics to gauge performance. First, we
define

ε= min
m,x ′O ,y

′
O


√√√√√√√

∑
xO ,y O

W(xO, y O) ◦

∣∣∣mod
{

R(xO, y O)− R̂
(

xO−x ′O
m ,

y O−y ′O
m

)
+1z/2, 1z

}
−1z/2

∣∣∣2∑
xO ,y O

W(xO, y O) ◦ |R(xO, y O)|
2

 , (15)

where R(xO, y O) is the ideal range image, R̂(xO, y O) is the
corrected range image, m is a uniform transverse magnifica-
tion in xO and y O directions, x ′O and y ′O are shift parameters,
W(xO, y O) is a window function, and the mod{R, 1z} oper-
ation makes an input R modulo 1z. In this case, the modulo
operation ensures that range jumps near the range wraps do not
contribute to ε. In these simulations, we selected the window
function to be a 256× 256 pixel array of ones embedded in the
M ×M range images. The windowing served to null out the
range information where the irradiance was near zero, which
is not informative. This metric compares ideal range images
to corrected range images with translational differences and
magnification differences removed. We used ε to gauge range
image quality while also keeping track of the magnification
term m to determine how well the quadratic-phase regulariza-
tion was working to prevent demagnification. For this study,
we performed magnifications on the 2D frequency-averaged
irradiances followed by discrete Fourier transform sub-pixel
registration [28] for m ranging from one to two and calculated ε
to find the optimal magnification and translation to apply to the
range images.

After obtaining the parameters m, x ′O , and y ′O that provided
the minimum value of ε, we also used the mean structural simi-
larity index measure (MSSIM) as a metric to gauge how similar
the ideal range images were to the corrected range images (with
the parameters m, x ′O , and y ′O that minimized error). MSSIM
provides an objective measure of structural similarities between
a signal and reference image, and the metric is tailored to cor-
relate with image similarity as determined by the human visual
system [29]. The metric has a maximum value of one when
the two images have the exact same values pixel-to-pixel, and
it provides us a gauge for just how similar the corrected range
images are to their ideal counterparts (cf. Figs. 3 and 4).

4. RESULTS

Here, we show results for the aforementioned trade space.
Figure 4 shows a corrected range image for all three scenarios
in Table 1 and for several values of the number of corrective
phase screens, N, in the reconstruction. The image quality of the
truck decreases as D/r0 increases and increases as N increases,
although for N = 10, the reconstructions for all three values of
D/r0 are relatively good. It is also apparent that it is possible to
successfully reconstruct range images when N is less than the
number of aberrating screens, particularly for smaller values of
D/r0.

Quantitatively, Fig. 5 displays the error, ε, versus N in
(a), MSSIM versus N in (b), the magnification correction
m versus N in (c), and the average algorithm runtime in (d).
Figures 5(a)–5(c) display the average value for each turbulence

scenario in Table 1, as well as the results for each individual
realization with the color matching the corresponding average
for each data point. Figure 5(d) shows the timing results for five
realizations as opposed to 10, with error bars corresponding to
±1 standard deviation.

The error trends in Fig. 5(a) agree with the qualitative results
in Fig. 4, with the error, ε, decreasing on average for each turbu-
lence strength as N increases. It is also apparent that the average
error increases overall as D/r0 increases. Note that the error
metric, ε, in Fig. 5(a) also indicates that the average error for
images corrected with N = 10 and D/r0 = 15 is comparable
to the average error when N = 1 and D/r0 = 10; however, the
images in Fig. 4 do not bear this out qualitatively. Additionally,

Fig. 4. Corrected range images for all turbulence scenarios in
Table 1 and several corrective phase screen configurations.
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Fig. 5. (a) Error, ε, versus N, (b) MSSIM versus N, (c) magnification correction, m, versus N, and (d) algorithm runtime versus N for all turbu-
lence scenarios in Table 1.

the relative change in the average error as N increases is not as
severe as a qualitative analysis of Fig. 4 would suggest.

In Fig. 5(b), on the other hand, the average MSSIM correlates
more strongly with the quality of the images in Fig. 4. This result
makes sense because MSSIM is a gauge for the structural simi-
larity between two images given the human visual system. The
individual realization results for MSSIM are also more tightly
clustered around the mean as compared to the error results,
which have more outliers (especially in the strongest turbulence
scenario). Furthermore, there is a noticeable increase in MSSIM
as N increases from nine to 10 for all turbulence strengths, but
most noticeably for the strongest turbulence. This result is likely
because we become model matched when N = 10, and the cor-
rective phase screens exist in the same locations as the aberrating
screens. Additional studies could explore the affects of using
more corrective phase screens than aberrating screens (i.e., when
N>10).

In Fig. 5(c), the magnification correction m is fairly constant
for all turbulence scenarios, but it is larger on average for the
stronger turbulence scenarios. This outcome suggests that more
telescoping occurs for the stronger turbulence reconstructions.
It is possible that the optimal value ofα is turbulence dependent,
and, in general, if demagnification is undesirable, then we could
increase α to limit demagnification at the possible cost of image
quality. There are some outliers for the stronger turbulence
scenarios for which we required a large magnification (m ∼ 1.2).

It also appears that m increases slightly as N increases. This is
most likely due to the fact that greater numbers of corrective
phase screens have more of an effect on the range images, which
causes them to be more susceptible to magnification.

Finally, in Fig. 5(d), the average algorithm runtime appears
to be directly proportional to the number of corrective phase
screens used in the reconstruction, N, with little variation.
For the timing results, we used the same 32 CPU cores and
128 GB of RAM for all realizations to ensure an apples-to-apples
comparison study. Here, we examined only five realizations to
reduce computing time. Since we performed the same number
of L-BFGS iterations for each simulation, the algorithm run-
time increases proportionally with N. This outcome is mainly
due to the number of FFT calculations that take place within
the algorithm, which is proportional to N as well. The relative
runtime differences for varying N make it clear that there is
an inherent trade-off to adding more corrective phase screens:
the reconstruction quality increases as N increases, but the
algorithm runtime increases as well.

5. CONCLUSION

This study extended previous image sharpening work and
demonstrated that image reconstruction is possible when
using fewer corrective phase screens than aberrating screens.
It examined multi-plane SMM on 3D irradiances provided
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by frequency-diverse digital holography with no added mea-
surement noise. The results indicate that reconstruction was
successful for sufficiently great N and for all turbulence sce-
narios examined. In general, we required a greater number of
corrective phase screens for stronger turbulence [cf. Fig. 4].
The error trends indicate that error decreases on average as N
increases, and that error is higher for stronger turbulence sce-
narios on average [cf. Fig. 5(a)]. The MSSIM results show that
MSSIM increases on average as N increases and as the turbu-
lence becomes weaker, and that there is a noticeable uptick when
N = 10 for all turbulence scenarios, which is probably because
the reconstruction model matches the simulation model [cf.
Fig. 5(b)]. Additionally, the amount of demagnification in the
range images is higher on average for the stronger turbulence
scenarios and when N is larger [cf. Fig. 5(c)]. This suggests that
larger values of αmight be necessary for stronger turbulence. In
general there is a trade-off between image quality and demag-
nification with respect to α. Finally, when increasing N, the
algorithm runtime increases as well [cf. Fig. 5(d)].

Moving forward, there is room for further study of SMM
on the 3D irradiance. For example, other regularization terms
besides quadratic-phase regularization should be examined
and compared in a wide trade study. Both the mean-squared
error and MSSIM show the same trends with N and with turbu-
lence strength, but it appears that MSSIM is more sensitive to
qualitative changes in the range images and is more consistent
across the individual realizations, which justifies its use in future
studies. As opposed to running a set number of optimization
iterations, future research should explore truncating the opti-
mization process according to a tolerance parameter (e.g., when
the gradient is less than a certain threshold). This tolerancing
would likely alter the algorithm runtime’s dependence on N.
Uplink scintillation in the object plane should also be tested in
future studies.

APPENDIX A

This section describes the RMAD process we used to generate
sharpness gradients for any general propagation geometry and
phase screen configuration. In the analysis, we denote estimated
variables with hats. Any 2D field that exists in a plane within
the propagation volume has a superscript (n) to denote that it

coincides with the nth corrective phase screen. In addition, the
coordinate arguments for these fields reflect the plane in which
they exist [e.g., (xn, yn) denote the 2D coordinates for the nth
corrective phase screen, and (xO, y O) and (x P , y P ) denote the
2D coordinates in the object and pupil planes, respectively]. In
keeping with the nomenclature in Ref. [25], we also define the
derivative of S with respect to some variable x as

x ≡
∂S
∂x

. (A1)

Additionally, we define an operation that vectorizes a 2D
array denoted by A into a vector as vec{A} and an operation that
reshapes some vector v in a 2D array as arr{v}.

Further, we denote the 3D object field as f̃ (xO, y O; zO) and
the stack of 2D object fields as f (xO, y O; ν). We denote a stack
of 2D fields located at the nth plane by F (n)′(xn, yn; ν), where
a prime signifies the field immediately after the nth phase plane
and a lack of prime signifies the field immediately preceding the
nth phase plane. We denote corrective phase screens in the nth
phase plane with φ̂(n)(xn, yn) and a unit-amplitude complex
phasor with phase equal to φ̂(n)(xn, yn)by8(n)(xn, yn). Finally,
Fx denotes a Fourier transform over variable x , ψq (xn, yn) is
the q th Zernike polynomial in the nth plane, and superscript ∗
denotes a complex conjugate.

We now lay out the mathematical forward and gradient
models for the total metric, S. For this purpose, we first deter-
mine the gradient of S with respect to each summand on the
righthand side of Eq. (11), which yields

S1 =9q = S = 1. (A2)

We then break the remaining model into bite-sized chunks

to obtain φ̂(n)down(xn, yn) as described in Tables 2–5 via RMAD
based on the information from Ref. [25]. The left columns
(forward models) are executed from bottom to top, and the right
columns (gradient models) are executed from top to bottom
for each table. The forward model begins with downsampled
corrective phase screens, φ̂(n)down(xn, yn), and ends with the
metric, S. In turn, the gradient model begins with S and ends
with the derivative of S with respect to downsampled corrective

phase screens, φ̂(n)down(xn, yn). Table 2 describes the model of the

Table 2. Forward and Gradient Models for S1

Forward Gradient

S1 =
∑

xO ,y O ,zO
s 1(xO , y O; zO) s 1(xO , y O; zO)= S1

s 1(xO , y O; zO)= sgn(β − 1)I β(xO , y O; zO) I (xO , y O; zO)= sgn(β − 1)s 1(xO , y O; zO) ◦ β I β−1(xO , y O; zO)

I (xO , y O; zO)= | f̃ (xO , y O; zO)|
2 f̃ (xO , y O , zO)= 2 f̃ (xO , y O; zO) ◦ Re{I (xO , y O; zO)}

f̃ (xO , y O; zO)=Fν{ f (xO , y O; ν)} f (xO , y O; ν)=F−1
zO
{ f̃ (xO , y O; zO)}

f (xO , y O; ν)=P†
z1→0{F

(1)′(x1, y1; ν); z1} F (1)′(x1, y1; ν)=P0→z1 { f (xO , y O; ν); z1}

Table 3. Forward and Gradient Models for Split-Step Propagation

Forward Gradient

F (n−1)(xn−1, yn−1; ν)=P†
zn→zn−1

{F (n)′(xn, yn; ν); zn − zn−1} F (n)′(xn, yn; ν)=Pzn−1→zn {F (n−1)(xn−1, yn−1; ν); zn − zn−1}

F (n)′(xn, yn; ν)= F (n)(xn, yn; ν) ◦8
(n)(xn, yn) 8(n)(xn, yn)=

∑
ν F (n)′(xn, yn; ν) ◦ F (n)∗(xn, yn; ν)

F (n)(xn, yn; ν)= F (n)′(xn, yn; ν) ◦8
(n)∗(xn, yn)



G252 Vol. 60, No. 25 / 1 September 2021 / Applied Optics Research Article

Table 4. Forward and Gradient Models for Phase Screen Downsampling

Forward Gradient

8(n)(xn, yn)= exp[−i φ̂(n)(xn, yn)] φ̂(n)(xn, yn)=−Im{8(n)(xn, yn) ◦8
(n)∗(xn, yn)}

φ̂(n)(xn, yn)= φ̂
(n)
comb(xn, yn) ∗ g d (xn, yn) φ̂

(n)
comb(xn, yn)= φ̂(n)(xn, yn) ∗ g ∗d (−xn,−yn)

φ̂
(n)
comb(xn, yn)= arr{φ̂

(n)

comb} φ̂
(n)

comb = vec{φ̂(n)(xn, yn)}

φ̂
(n)

comb = AT
d φ̂

(n)

down φ̂
(n)

down = Ad φ̂
(n)

comb

φ̂
(n)

down = vec{φ̂(n)down(xn, yn)} φ̂
(n)
down(xn, yn)= arr{φ̂

(n)

comb}

Table 5. Forward and Gradient Models for 9q

Forward Gradient

9q =−α
∑N

n=1

∑6
q=4 |a

(n)
q |

2 a (n)q =−2αa (n)q Re{9q }

a (n)q =
∑

xn ,yn
φ̂(n)(xn, yn) ◦ψq (xn, yn) φ̂(n)(xn, yn)=

∑6
q=4 a (n)q ψq (xn, yn)

base sharpness, S1, given a stack of complex-valued fields in the
object plane, Table 3 describes the propagation of fields from
plane to plane, Table 4 describes the downsampling process of
the corrective phase screens, and Table 5 describes the model of
the quadratic-phase regularization term,9q .
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