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1 Introduction

In recent years, direct imaging of exoplanets and exozodiacal dust clouds around nearby stars has
generated significant interest in the astronomical community. Instruments called coronagraphs
aim to enable this by suppressing bright starlight from a source centered on the optical axis while
transmitting the signals from faint off-axis sources in a region of interest at the detector plane
known as the dark zone. Direct imaging is made challenging, however, by the large flux ratios
and small angular separations for astrophysical sources of interest. This is particularly true for
terrestrial planets in the habitable zones of nearby Sun-like stars, for which the flux ratio can
exceed 1010 at angular separations smaller than 0.1 arcseconds.1 Two of the four flagship mission
concepts submitted to the Astro2020 Decadal Survey, the Large UV/Optical/IR Surveyor
(LUVOIR),2 and Habitable Exoplanet Observatory (HabEx)3 include direct imaging of Earth-
like exoplanets as a primary scientific target.4

In this extremely high-contrast regime, optical wavefront errors on the order of tens of pic-
ometers from fabrication defects and misalignments introduce a bright speckle halo around the
image of the star that overwhelms the faint image of an orbiting planet or circumstellar disk. This
speckle halo evolves slowly over time in response to minute changes in the thermal and mechani-
cal state of the observatory. Stellar coronagraphs rely critically on closed-loop wavefront sensing
and control using deformable mirrors (DMs) to iteratively compensate for these aberrations over
time and ensure that the scientific goals of the mission are achieved. For this reason, NASA’s
Exoplanet Exploration Program (ExEP) has identified wavefront sensing and control as a key
technology for enhancing the capabilities of future space-based direct imaging missions.5

One key trade study for these missions will be the use of on-orbit wavefront sensing and
control, where all computations associated with the sensing and control algorithms are carried
out by the flight computer, versus ground in-the-loop operations, in which data and control com-
mands are relayed to and from a ground-based computing node. On-orbit wavefront sensing and
control is advantageous because DM commands can be updated more frequently without requir-
ing ground communications; however, successfully implementing it is very challenging due to
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the demands placed on the flight computer by the wavefront sensing and control algorithms and
the added complexity of deploying software in space. As a case in point, the Roman Space
Telescope Coronagraph Instrument (CGI) modified its wavefront sensing and control operational
mode to ground in-the-loop in response to the preliminary design review in order to reduce the
complexity of its flight hardware and software.6,7 Therefore, developing more computationally
efficient algorithms is essential to providing a path toward feasibility for on-orbit operations.

To date, laboratory experiments have attained deepest contrast using model-based wavefront
control algorithms such as stroke minimization (SM)8 and electric field conjugation (EFC).9

Such algorithms use a computer model of the coronagraph to solve an inverse problem in each
wavefront control iteration given an estimate of the aberrated electric field measured at the
coronagraph detector, to avoid noncommon path aberrations that would be introduced using
a dedicated wavefront sensing instrument. SM and EFC find solutions by first forming a deriva-
tive matrix, called a Jacobian matrix, that models the electric field response of each pixel within
the focal-plane control region to each DM actuator. This transforms the wavefront control inverse
problem into a large linear system of equations that one then solves for the optimal command
vector.

A disadvantage of SM and EFC is the computation required to evaluate and manipulate
Jacobian matrices. Calculating a Jacobian matrix using a finite-difference approximation requires
that the coronagraph model be evaluated, at minimum, once for each DM actuator; since the
number of actuators for a modern coronagraph is typically in the thousands, this represents
a substantial computational effort. Moreover, because the Jacobian matrix is only a first-order
approximation of a nonlinear system, it must be periodically recalculated as the DM commands
evolve away from the linearization point during closed-loop control. Worse still, in broadband
observing scenarios, a separate Jacobian must be calculated for each controlled wavelength.

Software packages such as fast linear least-squares coronagraph optimization (FALCO)10

have been developed specifically to address this issue by utilizing a coronagraph model highly
optimized for speed; the practical improvement in calculation time depends on the specific type
of coronagraph as well as the available computing resources. However, the fundamental fact
remains that regardless of how rapidly one calculates the Jacobian matrix, its size becomes prob-
lematic when the number of DM actuators, the number of samples within the control region,
or both become large. This, in turn, translates to stricter processing requirements for the flight
computer aboard a future space mission. For current state-of-the-art laboratory testbeds such as
the high contrast imaging testbed (HCIT)11 and the high contrast imager for complex aperture
telescopes (HiCAT)12 that each use a pair of DMs with a combined actuator count on the order of a
few thousand, this has not yet proven to be an obstacle. However, LUVOIR has identified a base-
line requirement of two DMs each with 128 × 128 actuators, or up to 32,768 actuators in total
under the assumption that all actuators are active and available for wavefront correction.2 As we
show later in the paper, in this case SM and EFC consume up to 35 GB of memory while comput-
ing wavefront control solutions, dominated by storage of Jacobian matrices and other arrays
derived from Jacobians, which is a highly nontrivial requirement for space-qualified hardware.

In this paper, we present a new approach in which we compute the gradient of the objective
function of the control problem using a technique known as reverse-mode algorithmic differ-
entiation (RMAD)13 and then use standard gradient-based optimization techniques to find wave-
front control solutions. The computation of the gradient requires effort comparable to that of a
single evaluation of the objective function,13–16 which itself is comprised of one evaluation of the
coronagraph model per controlled wavelength. Furthermore, gradient calculation only consists
of inexpensive linear operations on gradient vectors; large matrices are not calculated or manip-
ulated at any time. As a consequence, our approach is asymptotically more efficient in both
memory consumption and CPU time as a function of the number of DM actuators and number
of samples in the dark zone than methods based on a Jacobian matrix, while simultaneously
eliminating the cost of calculating the Jacobian matrix beforehand. With a pair of 64 × 64

DMs and a small dark zone extending out to 12λ0∕D, our proposed algorithm consumes approx-
imately half as much memory as SM; with a pair of 128 × 128 DMs, our algorithm reduces
memory consumption by more than 90%.

A closely related method is COFFEE,17 which also utilizes gradient-based optimization with
an analytically derived gradient, but which is based on a fully nonlinear model of the DM
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response, whereas our algorithm is founded on the same linearity approximation as SM and EFC.
This approximation has the advantage that the proposed wavefront control objective function is
globally convex, so a gradient-based optimization algorithm is guaranteed to converge to the
globally optimal solution. Moreover, it enables the algorithm to utilize estimates of the electric
field at the coronagraph detector, which are straightforward to obtain using techniques such as
pairwise probing,18 Kalman filtering,19,20 or the self-coherent camera.21 On the other hand,
COFFEE has no such convergence guarantee and must use estimates of the amplitude and phase
aberrations in the coronagraph entrance pupil (EP), which are more difficult to obtain.

This paper is structured as follows. In Sec. 2, we review the linearized control model for
focal-plane wavefront control, the semianalytical coronagraph forward model, and the SM
algorithm. In Sec. 3, we provide a basic overview of RMAD, which we use to differentiate the
proposed objective function. In Sec. 4, we define the objective function for the proposed algo-
rithm and derive its gradient. In Sec. 5, we show simulations of the proposed algorithm using
an example coronagraph design and analyze its performance. Finally, in Sec. 6, we analyze
the relative computational efficiency of the proposed algorithm compared to SM and offer
perspectives on future approaches to system identification using the principles outlined in this
paper.

1.1 Notation

In this paper, we primarily deal with discrete quantities such as DM actuator commands and
arrays of samples of spatially varying fields and masks. These vector-valued quantities are
denoted with boldface lettering. In certain contexts, such as when performing a Fourier transform
operation, the input should be treated as a two-dimensional (2D) array rather than a one-dimen-
sional vector; though we will not explicitly denote these two cases, the appropriate choice should
be clear from context.

AT and A† denote the ordinary transpose and Hermitian transpose of the matrix A, respec-
tively. Rf·g and If·g denote the real and imaginary parts of a complex variable. Finally,
elementwise multiplication between a pair of vectors is denoted by the operator ∘; when this is
omitted, ordinary matrix multiplication is assumed.

2 Review of Focal-Plane Coronagraphic Wavefront Control

In this section, we review the principles of coronagraph modeling and focal-plane wavefront
control using a linearized model of the DM correction. We will use the material presented
in Secs. 2.1 and 2.2 to derive an analytic gradient with respect to the DM correction later in
Sec. 4.2, forming the basis for our proposed algorithm. In Secs. 2.3 and 2.4, we review the
construction and implementation of conventional Jacobian-based wavefront control algorithms,
focusing specifically on the SM algorithm.8 Much of this section follows Groff et al.,22 though
the notation has been adapted to be consistent with the remainder of this paper.

2.1 Linearized Deformable Mirror Model

Figure 1 shows an unfolded optical layout of a Lyot-type coronagraph. For narrow-band light
with wavelength λ, the electric field at the EP in the k’th control iteration can be written as

EQ-TARGET;temp:intralink-;e001;116;186EEP;k ¼ P ∘ expfigg ∘ expfiϕ1;kg; (1)

where P is the complex-valued EP function, g is the complex-valued aberration, and ϕ1;k is the
phase imparted by the in-pupil deformable mirror (DM1). In practice, P contains both amplitude
transmittance and phase errors estimated prior to commencing wavefront control; as a result,
g primarily describes small residual aberrations.

We write the phase of the in-pupil DM as a combination of the phase in the previous iteration
and an update in the current iteration, ϕ1;k ¼ ϕ1;k−1 þ Δϕ1;k:
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EQ-TARGET;temp:intralink-;e002;116;591EEP;k ¼ P ∘ expfigg ∘ expfiðϕ1;k−1 þ Δϕ1;kÞg: (2)

In the small-aberration regime, one can compute a first-order Taylor series expansion of both
the aberrations and the DM update. Neglecting the cross-term between the two, we obtain

EQ-TARGET;temp:intralink-;e003;116;544EEP;k ≈ P ∘ expfiϕ1;k−1g ∘ ð1þ igþ iΔϕ1;kÞ: (3)

The objective of the wavefront control problem is to determine a sequence of DM phase
updates Δϕ that conjugate the unknown aberrations g. To make the problem finite-dimensional,
we write the phase update in terms of the actuator command vector a1;k and influence functions
for DM1, F1:

EQ-TARGET;temp:intralink-;e004;116;463Δϕ1;k ¼
4π

λ

XNact

j¼1

a1;j;kf1;j ¼
4π

λ
F1a1;k; (4)

where λ is the imaging wavelength,Nact is the total number of active DM actuators, and f1;j is the
influence function for the j’th actuator. We insert this expression into Eq. (3) and propagate from
the coronagraph EP to the dark zone within the detector plane using the linear operator Cf·; λg to
obtain

EQ-TARGET;temp:intralink-;e005;116;362EDZ;k ≈ CfP ∘ expfiϕ1;k−1g ∘ ð1þ igÞ; λg þ i
4π

λ

XNact

j¼1

a1;j;kCfP ∘ expfiϕ1;k−1g ∘ f1;j; λg: (5)

We now make two definitions to simplify Eq. (5). First, we define the aberrated focal-plane
electric field Eab;k as

EQ-TARGET;temp:intralink-;e006;116;285Eab;k ≜ CfP ∘ expfiϕ1;k−1g ∘ ð1þ igÞ; λg: (6)

In addition, letting Npix denote the number of pixels inside the dark zone, we define the
Npix × Nact control Jacobian matrix for DM1, G1;k, as a matrix whose j’th column, G1;k½j�,
corresponds to the j’th DM actuator and is given by

EQ-TARGET;temp:intralink-;e007;116;214G1;k½j� ≜ i
4π

λ
CfP ∘ expfiϕ1;k−1g ∘ f1;j; λg: (7)

These two definitions enable us to write the electric field in the dark zone in the more
manageable form

EQ-TARGET;temp:intralink-;e008;116;147EDZ;k ≈ Eab;k þG1;ka1;k: (8)

As described in Sec. 1, the aberrated field Eab is estimated experimentally using techniques
such as pairwise probing,18 Kalman filtering,19,20 or the self-coherent camera.21

Fig. 1 Simplified, unfolded optical layout of a Lyot-type coronagraph with DMs for wavefront con-
trol. Planes EP, A, B, C, and D contain the coronagraph EP, pupil-plane mask, focal-plane mask,
Lyot stop, and detector, respectively. Marginal rays from the on-axis host star are shown in blue,
whereas rays from an off-axis planet are shown in red. Reproduced with modifications from
Ref. 23, Fig. 6.
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2.1.1 Calculating the Jacobian matrix

Though it is possible to evaluate the columns of the Jacobian matrix analytically using Eq. (7),
which requires Nact evaluations of the coronagraph model, in practice it is more straightforward
to use a finite-difference approximation. In the least-expensive approximation, a forward finite
difference, each column of G1;k is computed as

EQ-TARGET;temp:intralink-;e009;116;668G1;k½j� ≈
C
n
P ∘ exp

n
i
�
ϕ1;k−1 þ h 4π

λ f1;j
�o

; λ
o
− CfP ∘ expfiðϕ1;k−1Þg; λg

h
; (9)

where h is a small real-valued step size. This requires only one additional evaluation of the model
because the subtracted term is common to all columns. For large h, the approximation error is
dominated by higher-order terms from the Taylor series expansion of the DM phase; for small h,
floating-point error dominates. One can also use a more accurate central difference approxima-
tion with lower error from nonlinear terms, but at the cost of 2Nact model evaluations:

EQ-TARGET;temp:intralink-;e010;116;558G1;k½j� ≈
C
n
P ∘ exp

n
i
�
ϕ1;k−1 þ h 4π

λ f1;j
�o

; λ
o
− C

n
P ∘ exp

n
i
�
ϕ1;k−1 − h 4π

λ f1;j
�o

; λ
o

2h
:

(10)

Because the performance of the wavefront control loop relies critically on the accuracy of
the Jacobian matrix, one should carefully consider the approximation used to compute it.

Second, we note that since the Jacobian matrix, as defined by Eq. (7), is given in terms of the
DM commands from the previous control iteration, the matrix should be recomputed each time
the commands are updated. However, as we saw above, this requires a large number of corona-
graph model evaluations since Nact is typically in the thousands. Therefore, one can instead
linearize around the initial DM commands and reuse the same matrix for each control iteration,
at the cost of slower control convergence.8 Properly scheduling how often a Jacobian matrix
should be recomputed to achieve optimal contrast and fast convergence is one aspect of the
experimental validation process; for the purposes of this paper, we will assume the approach
with the least computational overhead and only compute the Jacobian matrix once, using a
forward finite difference as given in Eq. (9).

2.1.2 Two deformable mirrors

The situation as described up to this point becomes somewhat more complicated when a second
deformable mirror (DM2) is introduced into an intermediate plane some distance along the opti-
cal axis from the EP, which enables multiwavelength control of both phase and amplitude aber-
rations over a symmetric dark zone.8 The angular spectrum operator24 AfE;Δz; λg describes
paraxial propagation of a monochromatic electric field E with wavelength λ over a distance Δz:

EQ-TARGET;temp:intralink-;e011;116;254AfE;Δz; λg ¼ IFFTfHðΔz; λÞ ∘ FFTfEgg; (11)

where FFTf·g and IFFTf·g are the forward and inverse fast Fourier transform (FFT) operators,
respectively. H is the angular spectrum transfer function in the Fourier (spatial frequency)
domain:

EQ-TARGET;temp:intralink-;e012;116;187HðΔz; λÞ ¼ exp

�
i
2πΔz
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλfxÞ2 − ðλfyÞ2

q �
: (12)

For the sake of notational brevity, we define the operator P as

EQ-TARGET;temp:intralink-;e013;116;129PfE;ψ;Δz; λg ≜ Afψ ∘ AfE;Δz; λg;−Δz; λg; (13)

which represents propagation of E over distance Δz, elementwise multiplication with the com-
plex-valued transmittance function ψ , and subsequent propagation by the same distance in the
reverse direction. The contribution from DM2 is then modeled by applying P to the electric field
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in Eq. (3) yielding the field in the plane immediately before the apodizing mask in plane A of
Fig. 1:

EQ-TARGET;temp:intralink-;e014;116;711E 0
A;k ¼ PfEEP;k; expfiϕ2;kg;ΔzDM; λg: (14)

We write the phase from DM2 in the recursive form ϕ2;k ¼ ϕ2;k−1 þ Δϕ2;k as we did for
DM1 earlier. Expanding EEP;k using Eq. (3) and using the first-order approximation
expfiΔϕ2;kg ≈ 1þ iΔϕ2;k, we rewrite Eq. (14) as

EQ-TARGET;temp:intralink-;e015;116;641

E 0
A;k ¼ PfP ∘ expfiϕ1;k−1g ∘ ð1þ igÞ; expfiϕ2;k−1g;ΔzDM; λg

þ iPfP ∘ expfiϕ1;k−1g ∘ Δϕ1;k; expfiϕ2;k−1g;ΔzDM; λg
þ iPfP ∘ expfiϕ1;k−1g; expfiϕ2;k−1g ∘ Δϕ2;k;ΔzDM; λg
− PfP ∘ expfiϕ1;k−1g ∘ g; expfiϕ2;k−1g ∘ Δϕ2;k;ΔzDM; λg
− PfP ∘ expfiϕ1;k−1g ∘ Δϕ1;k; expfiϕ2;k−1g ∘ Δϕ2;k;ΔzDM; λg: (15)

The final terms contain higher-order crossterms between the DM2 phase update and, respec-
tively, the small aberrations and DM1 phase update, which we discard to obtain

EQ-TARGET;temp:intralink-;e016a;116;515

E 0
A;k ≈ PfP ∘ expfiϕ1;k−1g ∘ ð1þ igÞ; expfiϕ2;k−1g;ΔzDM; λg

þ iPfP ∘ expfiϕ1;k−1g ∘ Δϕ1;k; expfiϕ2;k−1g;ΔzDM; λg
þ iPfP ∘ expfiϕ1;k−1g; expfiϕ2;k−1g ∘ Δϕ2;k;ΔzDM; λg; (16a)

EQ-TARGET;temp:intralink-;e016b;116;435 ¼ E 0
A;k;ab þ E 0

A;k;DM1 þ E 0
A;k;DM2: (16b)

Similarly to the single-DM case, the field in the EP consists of a linear combination of terms
pertaining to the aberrations, an update term from DM1, and an update term from DM2. Also as
before, we represent the DM2 control update as a linear combination of influence functions F2

weighted by the command vector a2:

EQ-TARGET;temp:intralink-;e017;116;376Δϕ2;k ¼
4π

λ
F2a2;k: (17)

Finally, the field at the detector is obtained by propagating the field in Eq. (16a) through the
coronagraph:

EQ-TARGET;temp:intralink-;e018;116;310E 0
DZ;k ¼ CfE 0

A;k; λg ¼ E 0
ab;k þG 0

1;ka1;k þG 0
2;ka2;k; (18)

where the prime (′) is included to distinguish from the single-DM result in Eq. (8), and where
we have defined the Jacobian matrices for each DM by propagating each individual influence
function to the coronagraph detector plane. This can be written more succinctly as

EQ-TARGET;temp:intralink-;e019;116;241E 0
DZ;k ≈ E 0

ab;k þGkak; (19)

where the augmented Jacobian matrix and command vector are formed by concatenation:

EQ-TARGET;temp:intralink-;e020;116;197Gk ¼ ½G 0
1;k G 0

2;k � ak ¼
�
a1;k
a2;k

�
: (20)

In the remainder of this paper, we will focus on wavefront control using two DMs, and there-
fore will drop the primes (′) when referring to the quantities in Eq. (19) hereafter.

2.2 Semianalytical Coronagraph Model

In the previous section, we described an approximate linear decomposition of the focal-plane
electric field in terms of a generic linear operator Cf·; λg that represents propagation through the
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coronagraph. Though Cf·; λg can be modeled in numerous ways depending on the specific
coronagraph type of interest, in this paper, for simplicity, we restrict our attention to Lyot-type
coronagraphs with small focal spot occulters, such as the classical Lyot coronagraph, apodized
pupil Lyot coronagraph (APLC),25 and hybrid Lyot coronagraph.26 In this case, Cf·; λg can be
described by the semianalytical model developed by Soummer et al.,27 which we review here.

Recall from Eq. (21) that with small aberrations and a pair of DMs, the electric field immedi-
ately before the apodizing mask can be written as a linear combination of terms that include the
aberrations and the command updates for the in-pupil and out-of-pupil deformable mirror DM1
and DM2:

EQ-TARGET;temp:intralink-;e021;116;628E 0
A;k ¼ E 0

A;k;ab þ E 0
A;k;DM1 þ E 0

A;k;DM2: (21)

The field immediately after the apodizing mask A is

EQ-TARGET;temp:intralink-;e022;116;582EA;k ¼ A ∘ E 0
A;k: (22)

The field inside the opaque part of the occulter is given by

EQ-TARGET;temp:intralink-;e023;116;537EB;k ¼
ΔxΔy
λ

M ∘ MFTfEA;k; x; y; θx; θyg; (23)

where M is the complex transmittance of the focal-plane mask. Note that in this treatment,
following Soummer et al.,27 M is a small transmitting aperture so that 1 −M is an opaque focal
spot. MFT denotes the matrix Fourier transform:27,28

EQ-TARGET;temp:intralink-;e024;116;460MFTfEA;k; x; y; θx; θyg ≜ expf−i2πθxxTgEA;k expf−i2πyθTy g; (24)

where ðx; yÞ and ðθx; θyÞ are the discrete coordinates for the pupil plane and occulter plane; also
note that we treat EA;k as a 2D array rather than as a vector in this expression. In paraxial Fourier
optics, ðθx; θyÞ are proportional to spatial frequency via wavelength:

EQ-TARGET;temp:intralink-;e025;116;388ðθx; θyÞ ¼ ðλfx; λfyÞ: (25)

The occulter-plane coordinates are chosen so that the field EB;k is computed only within the
extent of the occulter, which makes the MFT very efficient relative to the FFT.27 The field
immediately after the Lyot stop L is calculated by applying Babinet’s principle:

EQ-TARGET;temp:intralink-;e026;116;319EC;k ¼ L ∘
	
RfEA;kg −

ΔθxΔθy
λ

MFTfEB;k; θx; θy; x; yg


: (26)

Here, Rf·g denotes coordinate reversal (flipping) along both coordinate axes. The field
contributed by the DMs at the detector is found using a final Fourier transformation:

EQ-TARGET;temp:intralink-;e027;116;249EDM;k ¼
ΔxΔy
λ

MFTfEC;k; x; y; θx; θyg: (27)

The total dark-zone electric field including the experimentally estimated aberrated field Êab;k

is then

EQ-TARGET;temp:intralink-;e028;116;180EDZ;k ¼ Êab;k þ EDM;k½1DZ�; (28)

where 1DZ is the indicator function for the coronagraphic dark zone that has a value of unity for
pixels inside the dark zone and zero elsewhere, and EDM;k½1DZ� is interpreted as the set of
elements of EDM;k that correspond to nonzero values of 1DZ, organized into a vector with length
Npix. Because this is the behavior of array indexing operations in several programming
languages including Python, we will refer to this operation henceforth as “array indexing.”
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Finally, the integrated dark-zone intensity is

EQ-TARGET;temp:intralink-;e029;116;723IDZ;k ¼ E†

DZ;kEDZ;k: (29)

2.3 Stroke Minimization

The SM algorithm8 finds the least-norm actuator update that causes the integrated dark-zone
intensity IDZ;k to reach a desired target IT;k:

EQ-TARGET;temp:intralink-;e030;116;645argmin
ak

aTk ak subject to IDZ;k < IT;k: (30)

This is solved via the method of Lagrange multipliers by treating the constraint as an equality
constraint and minimizing the scalar Lagrangian function

EQ-TARGET;temp:intralink-;e031;116;581Lk ≜ aTk ak þ μðIDZ;k − IT;kÞ: (31)

Given an estimate of the aberrated dark-zone electric field Eab;k, the total intensity is written
as

EQ-TARGET;temp:intralink-;e032a;116;523

IDZ;k ¼ E†

DZ;kEDZ;k (32a)

EQ-TARGET;temp:intralink-;e032b;116;477

¼ aTkRfG†

kGkgak þ 2RfE†

ab;kGkgak þ E†

ab;kEab;k (32b)

EQ-TARGET;temp:intralink-;e032c;116;452¼ aTkMkak þ bTk ak þ dk; (32c)

where we have defined the auxiliary quantities

EQ-TARGET;temp:intralink-;e033;116;428Mk ¼ RfG†

kGkg bk ¼ 2RfG†

kEab;kg dk ¼ E†

ab;kEab;k; (33)

where the real part in the definition ofMk follows from the fact that ak is purely real andG
†

kGk is
Hermitian. Note that Mk in this context should not be confused with the focal-plane mask trans-
mittance in Eq. (23). Inserting Eq. (32c) into Eq. (31), it becomes apparent that the Lagrangian is
a quadratic function of ak:

EQ-TARGET;temp:intralink-;e034;116;344Lk ¼ aTk ak þ μðaTkMkak þ bTk ak þ dk − IT;kÞ: (34)

To obtain the optimal set of actuator commands as a function of the Lagrange multiplier μ, we
compute the gradient of the Lagrangian with respect to the actuator command vector:

EQ-TARGET;temp:intralink-;e035a;116;287

∂Lk

∂aTk
¼ 2ak þ μ½ðMk þMT

k Þak þ bk� (35a)

EQ-TARGET;temp:intralink-;e035b;116;230¼ 2ak þ μð2Mkak þ bkÞ: (35b)

The critical point a�kðμÞ occurs where the gradient vanishes:

EQ-TARGET;temp:intralink-;e036a;116;2060 ¼ 2a�k þ μð2Mka�k þ bkÞ (36a)

EQ-TARGET;temp:intralink-;e036b;116;163a�kðμÞ ¼ −
1

2

	
1

μ
IþMk



−1
bk: (36b)

The final step is to perform a line search on μ, increasing μ and recomputing a�k until the original
constraint IDZ;k < IT;k in Eq. (30) is satisfied. In practice, evaluating Eq. (36b) directly is not
recommended because it necessitates inversion of a large matrix Mk with Nact × Nact elements,
which requires N3

act þ 2N2
act operations and has poor numerical stability properties.29 A better

approach is to solve the linear system
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EQ-TARGET;temp:intralink-;e037;116;7352

	
1

μ
IþMk



ak ¼ −bk; (37)

using matrix decomposition methods; for this particular problem, we can exploit the fact that
the matrix 2ðI∕μþMkÞ is symmetric and positive definite, enabling it to be solved using
the Cholesky decomposition using only N3

act∕3þ 2N2
act operations and with greatly improved

numerical stability.30 We will operate under the assumption of this strategy when we analyze
the relationship between our proposed algorithm and SM later in Sec. 6.

Notice that the gradient of the Lagrangian in Eq. (35b) is given symbolically in terms of
a matrix Mk, which is itself the square of the Jacobian matrix Gk with dimension Npix × Nact.
In other words, we first compute a quantity with Npix × Nact degrees of freedom in order to
evaluate a gradient vector with only Nact degrees of freedom. The reason for this extra effort
is that we have written the gradient in terms of the derivative of a vector-valued variable,
EDM;k½1DZ� in Eq. (28), with respect to another vector:

EQ-TARGET;temp:intralink-;e038;116;565Gk ¼
∂EDM;k½1DZ�

∂ak
: (38)

As we will show in Secs. 3 and 4, by manipulating only vector-valued derivatives of a scalar
quantity instead, one can arrive at the desired gradient using far fewer model evaluations and
eliminating the need to calculate Gk altogether.

2.4 Broadband Stroke Minimization

With a pair of DMs (one in-pupil and one out-of-pupil), the SM inverse problem can be aug-
mented to enable multiwavelength wavefront control by adding intensity constraints for each
control wavelength of interest.8,22 It is impossible for all wavelength constraints to be simulta-
neously satisfied due to the inherent chromaticity of both the coronagraph and the DM phase
update, so we introduce scalar, nonnegative weighting factors δl to trade off between correction
at the center wavelength λ0 and correction at a given λl. This is expressed by the modified
Lagrangian function

EQ-TARGET;temp:intralink-;e039;116;362L 0
k ¼ aTkak þ μ

XL
l¼1

δlðaTkMk;lak þ bTk;lak þ dk;l − IT;k;lÞ: (39)

The extra subscripts l reflect the fact that the coronagraph response and aberrated electric
field are functions of wavelength. Each term inside the summation is linear in all variables except
for ak, so we can rewrite in a form identical to Eq. (34):

EQ-TARGET;temp:intralink-;e040;116;275L 0
k ¼ aTk ak þ μðaTkM 0

kak þ b 0T
k ak þ d 0

k − I 0T;kÞ; (40)

where

EQ-TARGET;temp:intralink-;e041;116;231M 0
k ≜

XL
l¼1

δlMk;l b 0
k ≜

XL
l¼1

δlbk;l d 0
k ≜

XL
l¼1

δldk;l I 0T;k ≜
XL
l¼1

δlIT;k;l: (41)

The broadband solution a�k is then obtained using the same procedure as for the monochro-
matic case described in Sec. 2.3.

3 Algorithmic Differentiation

Algorithmic differentiation, also known as automatic differentiation, is a family of techniques for
analytically evaluating the derivatives of numerical algorithms. By this we mean the following:
given a finite sequence of differentiable operations implemented as a computer algorithm, which
we term the forward model, algorithmic differentiation numerically evaluates the partial
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derivatives of the output with respect to the algorithm’s inputs and intermediate variables. Unlike
finite-difference methods, the derivative values yielded by algorithmic differentiation are accu-
rate to machine precision.16 Also, unlike symbolic techniques such as those used by computer
algebra software tools such as Mathematica,31 at no point is a closed-form expression for the
derivative written down; instead, derivative values are propagated either through the forward
model or backward through a related model that is constructed from the forward model.
The former case is known as forward-mode algorithmic differentiation, whereas the latter is
known as RMAD.13,14 This enables simple and efficient handling of algorithms containing loops
and conditional branching,16 and as we will see shortly, this also enables highly complicated
algorithms to be constructed and differentiated in a modular way that improves software reus-
ability and testability.

The theory and practice of algorithmic differentiation techniques is a rich and complex area
developed over the last several decades, and a full treatment is out of scope for this paper. In this
section, we will instead provide a brief overview of the principles and consequences of algo-
rithmic differentiation that are most relevant to the problem at hand, wavefront control of a time-
varying coronagraph. In particular, we will focus on RMAD, which is especially suitable for
computing derivatives of algorithms whose output is a scalar variable. For a rigorous introduc-
tion to RMAD and its application to optical phase retrieval, we refer the reader to Ref. 15. For a
complete treatment of algorithmic differentiation, we refer the reader to Ref. 13.

With RMAD, the chain rule of calculus is recursively applied to generate an adjoint model
that propagates partial derivative values in reverse order with respect to the forward model,
beginning from the output. Each operation in the adjoint model corresponds to exactly one oper-
ation in the forward model, and the intermediate variables of the adjoint model, known as adjoint
variables,13 represent the derivative of the forward model with respect to the corresponding inter-
mediate variable in the forward model, which we term forward variables. To compute a deriva-
tive using RMAD, one evaluates the forward model given a specific value for the inputs (termed
the forward sweep13), passes the values of the forward variables to the adjoint model as param-
eters, and finally evaluates the adjoint model to calculate the value of each adjoint variable
(termed the reverse sweep13). Figure 2 shows these concepts for a simple forward model.

Differentiation using a finite-difference approximation requires at least one forward sweep
for each input variable, regardless of the number of output variables; each scalar element of a
vector is treated as a separate variable. Conversely, differentiation using RMAD requires exactly
one forward sweep and one reverse sweep per output variable, where, as before, each scalar
element of a vector is treated separately, regardless of the number of inputs. Consequently, when
the forward model consists of many inputs but only a single output, RMAD involves many times
fewer model evaluations than finite-difference methods; this concept, known as the cheap gra-
dient principle,15 makes RMAD extremely effective for solving large-scale nonlinear optimiza-
tion problems such as coronagraphic wavefront control.

Each operation in the adjoint model is related to its corresponding operation in the forward
model as follows. If two forward variables are related by y ¼ fðxÞ, then15

Fig. 2 Simple example demonstrating the basic principle of RMAD. The forward model, comprised
of the differentiable functions fn , is evaluated left-to-right and computes the values of the forward
variables xn as well as a scalar output J . The adjoint model is then evaluated right-to-left and
computes the derivatives of J with respect to each xn . A single evaluation of the forward model
is referred to as a forward sweep; similarly, a single evaluation of the adjoint model is termed
a reverse sweep. The operations of the adjoint model are related to fn and xn by Eq. (43).
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EQ-TARGET;temp:intralink-;e042;116;735

∂J
∂x

¼ ∂J
∂y

∂fðxÞ
∂x

; (42)

where J is the scalar output of the forward model and ∂fðxÞ∕∂x is interpreted as the partial
derivative of f with respect to x, evaluated around the particular value of x computed during
the forward sweep. To simplify the notation, we define the adjoint variables a such that for any
forward variable a, a† ≜ ∂J∕∂a, where † denotes the Hermitian transpose, so that

EQ-TARGET;temp:intralink-;e043;116;651x ¼
	
∂fðxÞ
∂x



†

y: (43)

By convention, if a is a column vector, ∂J∕∂a is a row vector; we include the Hermitian
transpose in the definition of a so that a is also a column vector. Because x and y are vectors
and J is a scalar, the adjoint variables x and y are gradient vectors; therefore, we refer to Eq. (43)
as the gradient propagation rule.

The adjoint variables are linked by a linear transformation given by ð∂fðxÞ∕∂xÞ†, which is the
adjoint of the Jacobian matrix of the operation f. However, to evaluate Eq. (43) does not neces-
sitate that the Jacobian matrix be explicitly formed in general. Rather, for nearly all operations
common for building models of optical systems, the gradient propagation rule has a simple
closed-form expression. Table 1 includes several such examples; for a more exhaustive collec-
tion, see Ref. 15. For a simple example with a concrete forward model, see Appendix A.

The RMAD adjoint model may be constructed manually by utilizing Eq. (43), or by auto-
mated transformation of the computation graph associated with the forward model, such as the
one shown in Fig. 2. The fully automatic case, which is implemented by frameworks such as
TensorFlow32 or Jax,33 can be highly useful because it enables the programmer to specify only
the forward model and then obtain partial derivatives for arbitrary model variables with no addi-
tional effort. Indeed, the ability to automatically and efficiently obtain derivatives of complicated
models is one of the principal advantages of algorithmic differentiation over traditional
techniques.

On the other hand, building the adjoint model manually, although more laborious, can enable
the programmer to leverage computational optimizations that are difficult for, or inaccessible to,
automated frameworks, such as retaining the minimal set of forward variables required for the
reverse sweep. In the application considered here, computational demand is an important con-
sideration; therefore, in Sec. 4.2, we explicitly construct the adjoint model for the proposed
control problem.

Table 1 Gradient propagation rules for some operations commonly found in models of optical
systems. Here, x, y, and a are complex-valued vectors, A is a complex-valued matrix, and 1S
is an indicator function for the set S with a value of unity for elements in S and zero otherwise.
For the FFT operation, we assume that x is reshaped into a 2D array. The equation number in
Ref. 15 corresponding to each operation is shown on the right for convenience.

Forward model Adjoint model Ref. equation number15

y ¼ xþ a x ¼ y (47)

y ¼ a ∘ x x ¼ a� ∘ y (48)

y ¼ Ax x ¼ A†y (50)

y ¼ ax x ¼ a�y (51)

y ¼ jxj2 x ¼ 2x ∘ Rfyg (53)

y ¼ expfixg x ¼ Ify ∘ y�g (57)

y ¼ x½1S � x½1S � ¼ y (59)

y ¼ FFTfxg x ¼ IFFTfyg (95)
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In this case, an additional advantage of algorithmic differentiation is that it can be applied
recursively. Referring again to Fig. 2, the only requirements on the functions fn are that they are
differentiable and have known behavior (i.e., they cannot be black boxes); each fn may itself
consist of a complicated forward model. Evaluating the total forward model then involves evalu-
ating the forward model for each fn sequentially and passing input and output variables between
models as necessary. Likewise, evaluating the total adjoint model simply involves evaluating the
adjoint model for each fn in the same manner.

This concept proves to be very powerful, because it enables one to build up very complicated
differentiable models starting from elementary operations by forming self-contained building
blocks that can be combined to form larger pieces, which can be themselves used to build more
complicated models, and so on. Since each piece can be derived, implemented, and tested in
isolation from the others, this makes model development and verification straightforward.15

Appendix B contains several such examples that we encountered in Sec. 2, including the angular
spectrum propagation operator and the matrix Fourier transform.

4 Proposed Algorithm

In this section, we will describe the application of gradient-based optimization with algorithmic
differentiation to focal-plane wavefront control for coronagraphy. This section is structured as
follows: in Sec. 4.1, we present a high-level overview of our proposed approach and describe its
objective function. In Sec. 4.2, we derive the adjoint model of the objective function for RMAD.
Finally, in Sec. 4.3, we discuss how to use the objective function and adjoint models to compute
control solutions using gradient-based optimization.

4.1 Fundamental Principles

The basic premise of the proposed algorithm is to find wavefront control solutions by minimiz-
ing an appropriate scalar objective function Jk in each control iteration using gradient-based
optimization:

EQ-TARGET;temp:intralink-;e044;116;380a�k ¼ arg min
ak

Jkðak; Êab;k; IT;kÞ: (44)

As in Sec. 2.3, ak, Êab;k, and IT;k denote the actuator commands, the estimate of the aberrated
electric field in the coronagraph dark zone, and the target intensity integrated over the dark zone,
respectively. In this context, the asterisk denotes the optimality of the solution, not complex
conjugation. The critical points of the objective function occur where the gradient with respect
to ak vanishes:

EQ-TARGET;temp:intralink-;e045;116;275

∂Jk
∂aTk

¼ ak ¼ 0: (45)

Our approach is to use RMAD to construct an adjoint model for Jk that computes this
gradient. Then, Jk and its adjoint model are provided to a gradient-based optimization algorithm
that iteratively minimizes Jk to calculate the control solution a�k. For now, it suffices to assume
that the optimization algorithm is a black box that accepts an objective function and a function
that computes its gradient and returns a solution. We will return to this topic in more detail
in Sec. 4.3.

As described in Sec. 2.3, to solve the Lagrange multipliers problem in Eq. (31), the
Lagrangian Lk is minimized with respect to ak for a range of different values of the Lagrange
multiplier μ, and of these, the least-norm akðμÞ that achieves the target integrated intensity is
selected as the solution. The Lagrangian is a quadratic function of ak as we showed in Eq. (34),
and therefore each minimization subproblem is globally convex. Thus, it would be possible to
directly replace the solution of each subproblem obtained by solving Eq. (37) with one obtained
with gradient-based optimization, but we would be forced to repeat the optimization for many
different values of μ. We would like to avoid this while still maintaining the desirable property of
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global convexity. One way to do so is to replace the linear intensity penalty in Lk with a quadratic
penalty, forming a new objective function Jk with the same solutions:14

EQ-TARGET;temp:intralink-;e046;116;711Jk ¼ aTk ak þ ηðIDZ;k − IT;kÞ2: (46)

In this formulation, the scalar η is no longer interpreted as a Lagrange multiplier whose value
is obtained by optimization. Instead, η is a penalty parameter that encodes the relative importance
of minimizing actuator stroke and matching the target intensity in each control iteration, and
whose value is chosen a priori as a parameter of the optimization problem. In practical terms,
the advantage of framing the control problem in this way is that a solution is obtained by solving
only a single optimization problem per control iteration. The downside is that the optimization
problem becomes poorly conditioned as η becomes large,14 which slows convergence to the
solution in a given control iteration. We found that a good choice is η ¼ η00∕I2T;k, where η00
is a constant, so that the penalty term in Eq. (46) has the form

EQ-TARGET;temp:intralink-;e047;116;570ηðIDZ;k − IT;kÞ2 ¼ η00

	
IDZ;k − IT;k

IT;k



2

; (47)

and is interpreted as the square of the fractional deviation of the modeled intensity IDZ;k from the
target intensity IT;k, scaled by η00. This helps to ensure that the intensity penalty is adequately
enforced as the system converges to high contrast and the target intensity becomes extremely
small. For simplicity one can choose η00 ¼ 1, but we explore the effect of different values later
in Sec. 5.

The monochromatic objective function in Eq. (46) is extended to the multiwavelength case
by introducing separate penalty terms for each wavelength of interest, weighted by the nonneg-
ative coefficients δl:

EQ-TARGET;temp:intralink-;e048;116;430J 0
k ¼ aTk ak þ η

X
l

δlðIDZ;k;l − IT;k;lÞ2: (48)

4.2 Adjoint Model

In this section, we derive the adjoint model that evaluates the gradient of the objective function in
Eq. (48) with respect to the control solution ak. We make extensive utilization of the gradient
propagation rules derived in Ref. 15; therefore, we will not explicitly derive the rule associated
with each forward model operation unless specified otherwise. For convenience, we refer again
to Table 1, which lists the gradient propagation rules for the basic operations utilized in Sec. 2.

To begin, we use the fact that the derivative of the objective function with respect to itself is
unity:

EQ-TARGET;temp:intralink-;e049;116;278J 0
k ¼

∂J 0
k

∂J 0
k
¼ 1: (49)

The gradient contribution from the actuator stroke penalty term in the objective function is

EQ-TARGET;temp:intralink-;e050;116;224ak ¼ 2akJ 0
k: (50)

Starting with Eq. (48) at the end of the forward model and working backward, we have the
following. The adjoint dark-zone intensity IDZ;k;l at the l’th control wavelength is

EQ-TARGET;temp:intralink-;e051;116;166IDZ;k;l ¼ 2ηδlðIDZ;k;l − IT;k;lÞJ 0
k; (51)

and the adjoint dark-zone electric field vector EDZ;k;l is

EQ-TARGET;temp:intralink-;e052;116;119EDZ;k;l ¼ 2EDZ;k;l ∘ IDZ;k;l: (52)

We now propagate the gradient backward through the semianalytical coronagraph model in
Eqs. (22)–(27). We recall from Eq. (28) that EDZ;k;l is a vector of electric field values of pixels
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inside the dark zone 1DZ. Using the gradient propagation rule for the array indexing operator in
Table 1, we initialize the adjoint electric field contributed by the DMs, EDM;k;l, as a 2D array of
zeros, and then populate it with the elements of EDZ;k;l as

EQ-TARGET;temp:intralink-;e053;116;696EDM;k;l½1DZ� ¼ EDZ;k;l: (53)

Using the gradient propagation rule associated with the matrix Fourier transformation
derived in Appendix B.2, we next have

EQ-TARGET;temp:intralink-;e054;116;639EC;k;l ¼ ΔxΔy
λl

IMFTfEDZ;k;l; θx; θy; x; yg; (54)

where IMFT denotes the inverse matrix Fourier transformation, defined as

EQ-TARGET;temp:intralink-;e055;116;583IMFTfE; θx; θy; x; yg ≜ expfi2πxθTx gE expfi2πθyyTg: (55)

Similarly, moving backward to the occulter plane, we have

EQ-TARGET;temp:intralink-;e056;116;537EB;k;l ¼ −
ΔθxΔθy

λl
IMFTfL ∘ EC;k;l; x; y; θx; θyg: (56)

The adjoint apodizer-plane field has two contributing terms: one from the coordinate-
reversed term in Eq. (26) and one from the field impinging on the occulter in Eq. (23).
Therefore, the desired adjoint variable is a linear combination of the two. Reversing the coor-
dinates of a variable in the forward model also reverses the coordinates of its adjoint as derived in
Appendix B.3; thus, we have

EQ-TARGET;temp:intralink-;e057;116;432EA;k;l ¼ RfL ∘ EC;k;lg þ
ΔxΔy
λl

IMFTfM� ∘ EB;k;l; θx; θy; x; yg; (57)

whereM� is the complex conjugate ofM. Note that by omitting the complex conjugation of L in
Eqs. (56) and (57), we have assumed that the Lyot stop transmittance is purely real-valued, which
is true for every Lyot-type coronagraph at the time of writing. Allowing the apodizing mask to be
complex-valued, the adjoint field immediately before the apodizer is

EQ-TARGET;temp:intralink-;e058;116;341E 0
A;k;DM1;l ¼ E 0

A;k;DM2;l ¼ A�EA;k;l: (58)

At this point, we propagate the gradient through the adjoint model for the two DMs, using the
forward model described in Sec. 2.1.2. Before proceeding, we remind ourselves that the operator
Pf·g defined in Eq. (13) in fact consists of a pair of angular spectrum propagations with an
intermediate multiplication. Because we are interested in finding the gradient with respect to
an intermediate variable, it is easier to treat each of these operations separately. Hence, we
expand E 0

A;k;DM1;l in Eq. (21) as

EQ-TARGET;temp:intralink-;e059a;116;235ψDM1;k−1;l ≜ expfiϕ1;k−1;lg; (59a)

EQ-TARGET;temp:intralink-;e059b;116;190ψDM2;k−1;l ≜ expfiϕ2;k−1;lg; (59b)

EQ-TARGET;temp:intralink-;e059c;116;167EEP;k−1;DM1;l ≜ P ∘ ψDM1;k−1;l; (59c)

EQ-TARGET;temp:intralink-;e059d;116;144EEP;k;DM1;l ≜ iEEP;k−1;DM1;l ∘ Δϕ1;k;l; (59d)

EQ-TARGET;temp:intralink-;e059e;116;120E 0
IP;k;DM1;l ≜ AfEEP;k;DM1;l;ΔzDM; λlg; (59e)

EQ-TARGET;temp:intralink-;e059f;116;96EIP;k;DM1;l ≜ E 0
IP;k;DM1;l ∘ ψDM2;k−1;l; (59f)

EQ-TARGET;temp:intralink-;e059g;116;72E 0
A;k;DM1;l ≜ AfEIP;k;DM1;l;−ΔzDM; λlg; (59g)
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where the subscript “IP” is an abbreviation for “intermediate plane.” Similarly, for DM2,
we have

EQ-TARGET;temp:intralink-;e060a;116;711E 0
IP;k−1;DM2;l ≜ AfEEP;k−1;DM1;l;ΔzDM; λlg; (60a)

EQ-TARGET;temp:intralink-;e060b;116;668EIP;k−1;DM2;l ≜ E 0
IP;k−1;DM2;l ∘ ψDM2;k−1;l; (60b)

EQ-TARGET;temp:intralink-;e060c;116;644EIP;k;DM2;l ≜ iEIP;k−1;DM2;l ∘ Δϕ2;k;l; (60c)

EQ-TARGET;temp:intralink-;e060d;116;621E 0
A;k;DM2;l ≜ AfEIP;k;DM2;l;−ΔzDM; λlg: (60d)

From here, the adjoint model follows two separate paths to account for the fact that E 0
A;k;DM1;l is a

function only of Δϕ1;k;l, and likewise E 0
A;k;DM2;l is only a function of Δϕ2;k;l. We additionally

make use of the gradient propagation rule for the angular spectrum propagator derived in
Appendix B.1. We begin with DM2:

EQ-TARGET;temp:intralink-;e061a;116;558EIP;k;DM2;l ¼ AfE 0
A;k;DM2;l;ΔzDM; λlg; (61a)

EQ-TARGET;temp:intralink-;e061b;116;514Δϕ2;k;l ¼ −iE�
IP;k−1;DM2;l ∘ EIP;k;DM2;l: (61b)

Using the expansion in terms of influence functions in Eq. (17), the adjoint contribution from
the l’th wavelength is

EQ-TARGET;temp:intralink-;e062;116;477a2;k;l ¼ 4π

λl
F†

2Δϕ2;k;l: (62)

We now return to Eq. (59d) to propagate through the adjoint model for the DM1 update:

EQ-TARGET;temp:intralink-;e063a;116;424EIP;k;DM1;l ¼ AfE 0
A;k;DM1;l;ΔzDM; λlg; (63a)

EQ-TARGET;temp:intralink-;e063b;116;380E 0
IP;k;DM1;l ¼ ψ�

DM2;k−1;l ∘ EIP;k;DM1;l; (63b)

EQ-TARGET;temp:intralink-;e063c;116;355EEP;k;DM1;l ¼ AfE 0
IP;k;DM;l;−ΔzDM; λlg; (63c)

EQ-TARGET;temp:intralink-;e063d;116;331Δϕ1;k;l ¼ −iE�
EP;k−1;DM1;l ∘ EEP;k;DM1;l; (63d)

EQ-TARGET;temp:intralink-;e063e;116;306a1;k;l ¼ 4π

λl
F†

1Δϕ1;k;l: (63e)

The total gradient is formed by concatenating the individual gradients for DM1 and DM2, sum-
ming the contributions from each control wavelength, and including the contribution from the
aTk ak term in the objective function, yielding the final result:

EQ-TARGET;temp:intralink-;e064;116;250ak ¼ 2ak þ
XL
l¼1

�
a1;k;l
a2;k;l

�
: (64)

4.3 Computing Control Solutions

At this point, we have derived a forward model that evaluates the objective function J 0
k in

Eq. (48), as well as an adjoint model that evaluates its gradient with respect to the DM actuator
commands ak. In practice, both the forward model and adjoint model will be implemented as
subroutines in a user’s programming language of choice, parameterized by the focal-plane elec-

tric field estimate Êab;k, the penalty parameter η, and the target dark-zone integrated intensity IT;k.

Given concrete values for Êab;k, η, and IT;k, these subroutines become functions of ak alone. The
parameterized forward model and adjoint model are provided to a gradient-based optimization
algorithm along with a starting guess for the solution, which then attempts to minimize the
objective function.
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Though any gradient-based optimization algorithm is theoretically sufficient to solve the
proposed control problem, the specific choice affects both the rate of convergence to the global
optimum in each control iteration, as well as the memory efficiency. Quasi–Newton algorithms
such as the well-known Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm utilize the com-
puted gradient to iteratively approximate the inverse of the Hessian matrix of second derivatives
and converge more rapidly than first-order methods such as gradient descent and the conjugate
gradient method.14 However, because the BFGS algorithm stores the full approximate inverse
Hessian matrix with dimension Nact × Nact, it can become memory-inefficient and slow when the
number of actuators becomes large. The limited-memory BFGS algorithm (L-BFGS)14 instead
stores the Ngrad ≪ Nact most recent gradient vectors, with which it implicitly computes inverse
Hessian-vector products to determine the search direction. The optimal choice of Ngrad is prob-
lem-dependent, but in many cases a value between 3 and 20 is acceptable.14 Many software
libraries provide standard implementations of a range of gradient-based optimization algorithms,
including both BFGS and L-BFGS. For these reasons, we primarily employ the L-BFGS algo-
rithm to compute solutions and will make this assumption when analyzing the computational
complexity of the proposed algorithm in Sec. 6.

As we noted in Sec. 4, the proposed objective function is globally convex, so the control
solution is independent of the choice of starting guess. However, a starting guess that is closer to
the solution will help the optimization algorithm converge to the global optimum more rapidly;
a good choice in this context is to provide the actuator solution obtained in the previous control
iteration, with a−1 ¼ 0.

5 Simulation Results

In this section, we present simulation results using the proposed algorithm and compare its CPU
time and memory efficiency to the SM algorithm. To compare the algorithms as fairly as pos-
sible, all simulations were performed on a computing server with 527 gigabytes of RAM and run
on a single 3.2 GHz core. For simplicity, the simulations were noiseless and assumed perfect
knowledge of the aberrated electric field.

5.1 Coronagraph Design

To place the simulation results in a context relevant to future high-contrast imaging missions, we
simulated the small-angle APLC design34 for LUVOIR architecture “A,” submitted to the 2020
Astrophysics Decadal Survey (courtesy of Rémi Soummer). This design produces an annular
dark zone extending from 3.5λ0∕D to 12λ0∕D with a nominal raw contrast of 10−10 over a 10%
fractional bandpass. The EP mask, apodizing mask, and Lyot stop are each 1000 × 1000 arrays,
and the focal-plane mask is an opaque circular spot with radius 3.4λ0∕D. Figure 3 shows the
coronagraph masks in each plane along with the aberration-free stellar image.

We simulated control over the full extent of the dark zone and assumed a center wavelength
of λ0 ¼ 550 nm. The detector plane was Nyquist sampled at the shortest wavelength, resulting in
a total of 1640 samples inside the control region. The two DMs were modeled after square
MEMS DMs with Gaussian influence functions separated by a distance with Fresnel number
1562.5, which is consistent with the reference optical design in Ref. 35. We considered several

Fig. 3 Coronagraph masks for the LUVOIR-A APLC design used for simulating the proposed con-
trol algorithm described in Sec. 4. The aberration-free stellar image is shown in the rightmost
panel, with the nominal inner and outer dark zone radii indicated in white.
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different DM formats: 50 × 50, 64 × 64, and 128 × 128. These are representative of, respec-
tively, Boston Micromachines 2K and 4K MEMS DMs available with current technology, and
future DMs expected to be available by the projected LUVOIR launch date in the late 2030s.2 We
assumed for simplicity that all actuators were active and utilized by the control loop in every
iteration; in a realistic scenario, some fraction of these actuators, primarily those outside the
nominal beam radius at the pupil, will be disconnected from the control electronics and unavail-
able for wavefront control. Furthermore, actuators that have a sufficiently weak impact on the
control problem can be ignored by examining the columns of the Jacobian matrix for SM, or the
elements of the gradient vector ak for the proposed algorithm. Therefore, the DM formats con-
sidered in this paper serve primarily as concrete examples to illustrate the scaling properties of
the two algorithms relative to one another.

5.2 Comparison with Stroke Minimization

We introduced a 5-nm peak-to-valley phase-only wavefront error with an inverse-square power
spectral density into the EP of the coronagraph and simulated the proposed method and SM.
Both algorithms used three control wavelengths across the 10% fractional bandpass of the
coronagraph. The control weights δl were chosen to have a value of unity at the center wave-
length and 0.5 at the band-edge wavelengths. In each iteration, the target intensity was chosen as
IT;k ¼ 0.7IT;k−1, which was informed by our experience with SM experiments on the HiCAT12

testbed. A total of 25 iterations were performed for each algorithm, which was sufficient to
converge to the target 10−10 contrast.

For the proposed method, the penalty parameter was chosen as ηk ¼ 1∕I2T;k as described in
Sec. 4.1. For numerical stability, the actuator commands were measured in units of waves at
the center wavelength so that both terms in the objective function in Eq. (48) were within a
few orders of magnitude of one another. The L-BFGS optimization algorithm14 provided by
the scipy.optimize package36 was used to solve the optimization problem in each control
iteration. In this implementation, the L-BFGS algorithm terminates when

EQ-TARGET;temp:intralink-;e065;116;395kakk∞ ≜ max
i
jak;ij ≤ ε; (65)

where ak;i is the i’th element of the gradient vector ak and ε is a small real number. Smaller
choices for ε yield numerical solutions closer to the global optimum, at the cost of longer
convergence time. We found that acceptable solutions could be obtained with a relatively coarse
value ε ¼ 10−3 and Ngrad ¼ 10 gradient vectors for the approximation of the inverse Hessian
matrix.

For SM, the Lagrange multiplier line search was carried out using a multiplicative step size
β ¼ ffiffiffi

2
p

; this choice was also informed by the authors’ experience with SM experiments on
HiCAT. In other words, at the n’th step of the Lagrange multiplier line search with value μn
and actuator solution a�kðμnÞ calculated using Eq. (36b), if the integrated dark-zone intensity
constraint IDZ;k < IT;k in Eq. (30) is not satisfied, then the next Lagrange multiplier value is
chosen as μnþ1 ¼ βμn. A logarithmic line search with β > 1 takes progressively larger step sizes
as the number of search steps increases; therefore, it takes fewer search steps to reach the optimal
value μ� for which IDZ;k ¼ IT;k than, for example, a high-resolution backtracking line search
whose step size decreases as the optimal value is approached.14 A side effect, though, is that
such a line search will almost certainly overstep μ� before terminating, producing a larger-than-
desired intensity correction in each control iteration. In a noiseless simulation with perfect
knowledge of the aberrated electric field and no model mismatch, this simply causes our imple-
mentation of SM algorithm to slightly overshoot the intensity constraint in the optimistic direc-
tion. However, in an experimental scenario with noise, estimation error, and model mismatch,
overstepping μ� can cause the control loop to become unstable.

Figure 4 shows the total CPU time and worst-case memory consumption for both SM and
the proposed algorithm with each DM format, as well as achieved contrast and peak-to-valley
actuator stroke as a function of control iteration. Figure 5 shows the final DM solutions com-
puted by the proposed algorithm and SM. We note here that because all simulations were
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carried out on an identical single-core processor, the CPU times shown in Fig. 4 are a proxy for
total floating-point operations; in a real flight system, the elapsed time of each control iteration
will be dominated by exposure times for image acquisition. We measured memory consump-
tion as a time series during execution of each simulation using the Python memory-
profiler tool, from which we calculated the overall maximum at any given time. This
represents the minimum memory requirement for a target platform to support execution of
each simulation.

From these results, we can gather several important conclusions. First, the CPU time of the
SM algorithm is dominated in all cases by the computation of the Jacobian matrix, shown in light
blue. Once this has completed, the SM algorithm computes control solutions more rapidly than
our proposed algorithm for the 50 × 50 and 64 × 64 formats. On the contrary, the CPU time of
our algorithm is effectively invariant to the DM format; therefore, the overall computation of SM
compared with our algorithm for these cases is tied directly to the degree to which the Jacobian
evaluation calculations are minimized. However, as the problem size grows, a threshold is
reached at which SM will be slower in CPU time than our algorithm regardless of the speed
of Jacobian calculation; for the 128 × 128 case, even under the assumption of zero Jacobian
calculation time, the difference in CPU time between the two algorithms is more than a factor
of two. We reiterate that the CPU time in and of itself is not critical to the success of the control
loop in a space environment due to the comparatively long times associated with data acquis-
ition. Nevertheless, in order for a wavefront control algorithm to be feasibly implemented on
flight hardware in an on-orbit operational scenario, minimizing the computational demand
placed on the flight computer is an important consideration.

We also reiterate that these simulations were carried out under the least-expensive relinea-
rization scenario for SM, which was computing the Jacobian once prior to the start of closed-

(a)

(c)

(b)

(d)

Fig. 4 (a) Total CPU time, (b) worst-case memory consumption, and (c) contrast and (d) peak-to-
valley actuator stroke as a function of iteration for the proposed algorithm and SM with each DM
actuator format. The CPU time associated with precomputing the Jacobian matrix for SM prior to
the beginning of closed-loop control is also shown in light blue. All simulations were performed on
identical single-core processors, so here the CPU time is a proxy for total demand placed on the
processor by each algorithm. Because computation times in practice are a function of available
resources, architecture, and implementation, the results in (a) serve to illustrate the relative, rather
than absolute, performance of the two algorithms. In a real system, the duration of the control loop
will be dominated by data acquisition times.
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loop control. As experiments have demonstrated, a real control loop with model mismatches will
require at least one Jacobian recalculation prior to convergence, and in many cases more than
one.7,37,38 Meanwhile, our proposed algorithm by construction is linearized around the current
state of the DMs at all times, because the current commands simply serve as parameters to the
forward and adjoint models.

Now we turn our attention to arguably the more important metric shown in Fig. 4: memory
consumption. Here, because the Jacobian matrix is dense and has no particular structure to
exploit, its memory footprint is unavoidable. For the smallest problem, the 50 × 50 format, the
Jacobian matrix is manageable in size, and the worst-case memory consumption of SM and our
proposed method are comparable (1.78 GB by SM versus 1.71 GB by the proposed algorithm).
For the 64 × 64 format, the two algorithms differ by approximately a factor of two in memory
consumption, with SM consuming ∼3.34 GB versus 1.71 GB by our proposed algorithm. At the
largest problem size, the 128 × 128 format, SM consumes ∼35 GB of memory, whereas our
proposed algorithm still only consumes ∼1.75 GB: a reduction of ∼95%. As was the case for
the CPU time metrics, our proposed method’s memory footprint is more or less invariant to
the problem size, for reasons analyzed in Sec. 6.

5.3 Dependence on Penalty Parameter

We simulated the proposed algorithm with multiple values of the penalty parameter scaling
factor η00 to examine its effect on the efficiency and contrast convergence of the proposed algo-
rithm. Figure 6 shows these results. As discussed in Sec. 4.1, with a quadratic intensity penalty
term, the solutions are guaranteed to achieve the target contrast within a tolerance determined
by the value of the penalty parameter η. With a larger value of η00, the algorithm adheres to the
target more closely, but requires more numerical iterations of the optimization algorithm to find
a solution, ultimately increasing CPU time. Conversely, decreasing η00 reduces CPU time,
at the cost of greater variability in the achieved intensity.

(a)

(b)

Fig. 5 Final DM actuator solutions for the 128 × 128 actuator format obtained by (a) the proposed
algorithm and (b) SM. Note that the solutions from each algorithm are plotted using different color
scales. While they share broadly similar low-order features, the SM solutions feature additional
high-order components because the algorithm begins to compensate for diffraction effects from
pupil features after the wavefront aberrations are fully corrected.

Will, Groff, and Fienup: Jacobian-free coronagraphic wavefront control using nonlinear optimization

J. Astron. Telesc. Instrum. Syst. 019002-19 Jan–Mar 2021 • Vol. 7(1)



6 Discussion

6.1 Computational Complexity

In this section, we comment on the time and memory complexity of our proposed algorithm and
SM. We note again that in this context, “time complexity” refers specifically to CPU load rather
than the elapsed time of the control loop; in a real system, data acquisition times will be the
dominant source of the duration of the loop.

6.1.1 Time complexity

We found that with the parameter values from Sec. 5, the CPU time performance of our algo-
rithm was mostly driven by the angular spectrum propagations between the two DMs; this is
the principal reason for which the CPU times in Fig. 4(a) varied so little with actuator count.
Our pupil-plane arrays were 1000 pixels across and zero-padded by a factor of 1.05, giving
a total array size NP ¼ 10502. We observed no difference in the achieved contrast in various
simulations using a range of padding factors between 1.05 and 2, indicating that a factor of
1.05 was sufficient to capture the behavior of DM2, which is separated from the pupil by a
relatively large Fresnel number of NF ¼ 1562.5. By comparison, the dark zone only contained
1640 samples, and the DM command vector only had Nact ¼ 2 × 1282 elements.

More concretely, our algorithm requires four angular spectrum operations to evaluate
Eqs. (59e), (59g), (60a), and (60d) in the forward model and an additional three in the adjoint
model in Eqs. (61a), (63a), and (63c), each involving a pair of FFTs and an elementwise multi-
plication; the dominant contribution is from the FFTs, whose time complexity is proportional to
NP log2ðNPÞ floating-point operations (flops).28 Therefore, decreasing NP either using lower-
resolution masks or by further decreasing zero-padding margins impacts the most computation-
ally expensive component of propagation.

Conversely, increasing the actuator count only impacts two operations in the forward model,
Eqs. (4) and (17), their corresponding adjoint model operations in Eqs. (62) and (63e), and

(a) (b)

(c)

Fig. 6 Mean dark-zone contrast as (a) a function of iteration, (b) total elapsed CPU time, and
(c) peak-to-valley actuator stroke as a function of iteration for three different values of the penalty
parameter scaling factor η00 for the 128 × 128 DM actuator format. As η00 is reduced, our algorithm
converges more rapidly to a solution in each control iteration, but the achieved contrast deviates
more from the target contrast on average.
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finally Eq. (64), all of which are linear in Nact
30 and are lower-dimensional in the first place. It is

worth noting that we used the hcipy package39 to model the DMs, which represents the in-
fluence function matrices F1 and F2 as sparse matrices with NIF ≪ NP nonzero elements in each
column, where “IF” stands for “influence function,” by exploiting the fact that the individual
influence functions are highly localized, significantly reducing the actual flops for Eqs. (4), (17),
(62), and (63e) to approximately 1

2
NIFNact each, and where the factor of 1∕2 accounts for the

fact that each matrix only corresponds to a single DM, whereas Nact is the total over both DMs.
In the future, we will explore convolutional models for the DM surfaces as an alternative that
does not necessitate the construction of influence function matrices at all. The time complexity
of calculating solutions with the L-BFGS algorithm is similarly linear in Nact, requiring
Nactð4Ngrad þ 1Þ flops to evaluate the product between the inverse Hessian matrix approximation
and the gradient each time the gradient is evaluated.14

The number of control wavelengths L also has a strong impact because each wavelength
requires a separate evaluation of the coronagraph model Cf·g and its adjoint model, multiplying
the angular spectrum operation count for each gradient evaluation by L. The number of L-BFGS
iterations required to converge to a solution in each control iteration, which is problem depen-
dent, has a similar effect by requiring multiple gradient evaluations, each of which involves
a forward and reverse sweep; we denote the total number of gradient evaluations needed for
L-BFGS convergence by NLBFGS. Therefore, in this approximation, the time complexity of our
proposed algorithm scales with actuator count and pupil array size as

EQ-TARGET;temp:intralink-;e066;116;493tprop ∝ NLBFGS½L½14NP log2ðNPÞ þ 7NP þ 2NIFNact þ Nact� þ Nactð4Ngrad þ 1Þ�: (66)

The first term represents the cost of evaluating the gradient, which consists of, respectively,
the seven angular spectrum propagations, each involving two FFTs and one elementwise multi-
plication, four products between the actuator command vector and influence function matrices,
and the linear combination of gradient vectors at each wavelength in Eq. (64). The second term
represents the cost of the L-BFGS algorithm as explained above.

For SM, evaluating each monochromatic Jacobian Gl;k with Eq. (9) requires Nact þ 1 eval-
uations of the operator Cf·g. The particular implementation of Cf·g thus determines the required
number of flops per DM actuator; with L control wavelengths, this value is multiplied by L. In
our simulations in Sec. 5, for the sake of simplicity we used the same implementation of Cf·g
used by our proposed algorithm. However, as we have noted, packages such as FALCO in fact
use a separate forward model with greatly reduced array sizes, which reduces the number of flops
for Jacobian calculation substantially. Reusing the Jacobian also amortizes this cost over multi-
ple iterations. Second, computing M 0

k from Eq. (41) requires LN2
actNpix flops.

30 Finally, solving
the linear system in Eq. (37) using the Cholesky decomposition as explained in Sec. 2.3 requires
N3

act∕3þ 2N2
act flops. This linear system must be solved separately for each Lagrange multiplier

value μ encountered during the line search, multiplying this value by a problem-dependent con-
stant factor Nμ.

Under the simplistic assumption that our proposed algorithm and SM use the same imple-
mentation for Cf·g, the time complexity of SM grows approximately as
EQ-TARGET;temp:intralink-;e067;116;228

tSM ∝ LðNact þ 1Þ½8NP log2ðNPÞ þ 4NP þNIFNact� þLN2
actNpix þNμ

	
2N2

act þ
1

3
N3

act



: (67)

The first term represents the contribution from the Jacobian calculation and is identical to
Eq. (66) minus the operations from the adjoint model and L-BFGS algorithm, and with Nact þ 1

in place of NLBFGS. The second term is the contribution from the calculation ofM 0
k, and the final

term is the contribution from the linear solver and Lagrange multiplier line search.
Comparing Eqs. (66) and (67), we can make several useful conclusions. First, under the

assumptions above, SM is dominated by the complexity of evaluating the Jacobian matrix since,
in our simulations, NP ≫ Nact. However, if the first term of Eq. (67) can be made very small by
minimizing NP as achieved by FALCO, the rightmost term dominates, which is cubic in Nact and
grows much more rapidly than Eq. (66), which is only linear in Nact. When Nact becomes suf-
ficiently large, this term becomes even larger than the contribution from the angular spectrum
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propagations in Eq. (66) regardless of how quickly the Jacobian matrix is computed; our results
in Sec. 5 suggest that this inflection point is somewhere between the 64 × 64 and 128 × 128 DM
formats.

6.1.2 Memory complexity

For our proposed algorithm, apart from storing the model parameters themselves, only four for-
ward variables are needed for the reverse sweep: EDZ;k;l in Eq. (52), EIP;k−1;DM2;l in Eq. (61b),
ψDM2;k−1;l in Eq. (63b), and EEP;k−1;DM1;l in Eq. (63d). This means that the theoretical minimum
total number of complex-valued array elements stored by the proposed algorithm, including the
Ngrad gradient vectors stored by L-BFGS (see Sec. 4.3), is 3LNP þ LNpix þ 1

2
NgradNact, where

the factor of 1
2
accounts for the fact that the actuator gradient vectors are purely real. From this we

can see that the array sizes NP, Nact, and Npix compound additively.
For the worst-case simulation in Sec. 5, where L ¼ 3, NP ¼ 10502, Npix ¼ 1640, and

Nact ¼ 2 × 1282, assuming double-precision floating point representation, this totals to
∼0.15 GB. This value is dominated by the intermediate pupil-plane forward variables, which
are much higher-dimensional than the gradient vector or dark zone as we discussed in Sec. 6.1.1;
in fact, decreasing Nact to 2 × 642 only reduces the storage requirement to ∼0.148 GB. This
analysis agrees with the results in Sec. 5, which showed that the memory consumption of the
proposed algorithm was essentially invariant to Nact. In reality, the simulation of the proposed
algorithm consumed ∼1.75 GB of storage during execution, most of which is accounted for by
the numerical model itself and other simulation variables such as the control history.

On the other hand, SMmust compute and store L separate complex-valued Jacobian matrices
along with the real-valued matrix M 0

k from Eq. (41). Solving the linear system in Eq. (37)
through the Cholesky decomposition30 generates two additional triangular matrices each with
N2

act real-valued elements. Therefore, the minimum storage for SM is given by LNpixNact þ 3
2
N2

act

complex numbers. Here, the problem is twofold: the quadratic dependence on Nact and the fact
that simultaneous increases in Npix and Nact compound multiplicatively rather than additively as
before. Using the same values from above, this equates to ∼26.4 GB, a modest underestimate of
the 35 GB actually consumed by the simulation, or 2.1 GB when Nact ¼ 2 × 642, slightly less
than the 3.34 GB used in reality. Our simple analysis does not account for details specific to
the implementation of the linear solver such as temporary array allocations, which may explain
the discrepancy between our predictions and the true values and meaning that these figures
should be taken as a lower bound.

6.2 System Identification

Sun et al.40,41 recently described an approach to system identification that learns the parameters
of the Jacobian matrix for a given control problem from experimental data using a reinforcement
learning approach based on the expectation-maximization (EM) algorithm, which reduces model
mismatch and improves control convergence. However, the control model that generates the
Jacobian matrix is fully described by a much smaller number of free parameters. In this paper,
only the gradient with respect to the DM actuator update was derived, but it is straightforward to
derive gradients with respect to many other model parameters, such as pupil transmittance, pupil
shear, and the DM influence function, by defining appropriate adjoint variables in the adjoint
model. Using these analytic gradients could enable a straightforward approach to system iden-
tification wherein the controller alternates between optimizing DM solutions to improve dark-
zone contrast, and optimizing against the system parameters given the measured data history to
tune the parameters of the forward model.

7 Conclusions and Future Work

In this paper, we describe an approach to focal-plane wavefront control that uses fast analytic
gradients to efficiently obtain DM solutions without requiring the explicit computation of a
Jacobian matrix. We tested the proposed algorithm in simulation using the small-angle APLC
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design for the LUVOIR-A mission concept and showed that it has improved asymptotic com-
putational efficiency compared with current Jacobian-based algorithms, such as SM and EFC.
The benefits are especially pronounced when the number of DM actuators are large; for the
128 × 128 case, our algorithm consumes ∼5% of the RAM utilized by SM. By reducing the
overall computational demands of wavefront control, we argue that our algorithm opens a path
toward feasibility for on-orbit wavefront control, which will be a key trade study for future flag-
ship observatories with a focus on direct imaging such as LUVOIR and HabEx. Future work will
involve experimental demonstration of the proposed algorithm on a high-contrast optical testbed,
computational enhancements to improve CPU time and memory efficiency, and the extension to
system identification outlined in Sec. 6.2.

8 Appendix A: Reverse-Mode Algorithmic Differentiation:
A Simple Example

Consider a scalar variable J defined as the output of a sequence of three operations,
J ¼ fðgðhðxÞÞÞ, with a vector-valued input variable x. For generality, we assume that the func-
tions g and h each take a vector as input and produce a vector as output. To implement J as a
numerical algorithm, we introduce the forward variables x1 and x2 to represent intermediate
quantities in the computation of J:

EQ-TARGET;temp:intralink-;e068;116;504x1 ¼ hðxÞ; x2 ¼ gðx1Þ; J ¼ fðx2Þ: (68)

The derivative ∂J∕∂x is expanded using the familiar chain rule of calculus

EQ-TARGET;temp:intralink-;e069;116;460

∂J
∂x

¼ ∂J
∂x2

∂x2
∂x1

∂x1
∂x

: (69)

Applying the definition of the adjoint variables from Sec. 3, we find that

EQ-TARGET;temp:intralink-;e070;116;403x†2 ≜
∂J
∂x2

¼ ∂f
∂x2

; (70)

EQ-TARGET;temp:intralink-;e071;116;348x†1 ≜
∂J
∂x1

¼ ∂J
∂x2

∂x2
∂x1

¼ x†2
∂g
∂x1

; (71)

EQ-TARGET;temp:intralink-;e072;116;313x† ≜
∂J
∂x

¼ ∂J
∂x2

∂x2
∂x1

∂x1
∂x

¼ x†1
∂h
∂x

: (72)

Transposing Eqs. (70)–(72), we can write this more succinctly as the following sequence:

EQ-TARGET;temp:intralink-;e073;116;278x2 ¼
	
∂fðx2Þ
∂x2



†

; x1 ¼
	
∂gðx1Þ
∂x1



†

x2; x ¼
	
∂hðxÞ
∂x



†

x1: (73)

With any particular value for x, the values of x1, x2, and J are computed by the sequence in
Eq. (68). The values of x, x1, and x2 are then used to evaluate the sequence of operations in
Eq. (73) from left to right, ultimately yielding the desired derivative, x. In the parlance introduced
in Sec. 3, Eq. (68) describes a forward model that computes the forward variables x, x1, and x2.
Likewise, Eq. (73) comprises the adjoint model that evaluates the adjoint variables x2, x1, and x.

As discussed in Sec. 3, though the adjoint model in Eq. (73) is written in terms of the
Jacobian matrices of the operations g and h, in practice the Jacobian matrices need not be explic-
itly constructed; instead, the adjoint model usually will be written as a sequence of closed-form
operations in a similar fashion to the forward model. For instance, consider a concrete example
with the following forward model:

EQ-TARGET;temp:intralink-;e074;116;116x1 ¼ expfixg; x2 ¼ FFTfx1g; J ¼ kx2k2; (74)

where k · k denotes the Euclidean norm. Using the well-known fact that ∂J∕∂x†2 ¼ 2x2, along
with the gradient propagation rules in Table 1, we can write down the adjoint model easily as
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EQ-TARGET;temp:intralink-;e075;116;735x2 ¼ 2x2; x1 ¼ IFFTfx2g; x ¼ Ifx1 ∘ x�1g; (75)

where * denotes complex conjugation without transposing. Note that the adjoint model is a
function of the forward variables x1 and x2; the values of these variables are cached during
the forward sweep and passed as parameters to the adjoint model, which is then evaluated by
the reverse sweep.

9 Appendix B: Additional Gradient Propagation Rules

9.1 Angular Spectrum Propagator

Let Y ¼ AfX;Δz; λg. By Eq. (11), we can write this as the following sequence of operations:

EQ-TARGET;temp:intralink-;e076a;116;590Y1 ¼ FFTfXg; (76a)

EQ-TARGET;temp:intralink-;e076b;116;547Y2 ¼ HðΔz; λÞ ∘ Y1; (76b)

EQ-TARGET;temp:intralink-;e076c;116;525Y ¼ IFFTfY2g: (76c)

Using the gradient propagation rules in Table 1, the corresponding adjoint model is

EQ-TARGET;temp:intralink-;e077a;116;503Y2 ¼ FFTfYg; (77a)

EQ-TARGET;temp:intralink-;e077b;116;459Y1 ¼ H�ðΔz; λÞ ∘ Y2; (77b)

EQ-TARGET;temp:intralink-;e077c;116;436X ¼ IFFTfY1g: (77c)

Recognizing from Eq. (12) that H�ðΔz; λÞ ¼ Hð−Δz; λÞ, we arrive at the final result:

EQ-TARGET;temp:intralink-;e078;116;413X ¼ AfY;−Δz; λg; (78)

which is simply an angular spectrum propagation of the adjoint variable Y in the reverse
direction.

9.2 Matrix Fourier Transform

Let Y ¼ MFTfX; x; y; θx; θyg. We proceed similarly to above, writing down the sequence of
operations comprising Eq. (24) in sequential order:

EQ-TARGET;temp:intralink-;e079a;116;295Y1 ¼ X expf−i2πyθTy g; (79a)

EQ-TARGET;temp:intralink-;e079b;116;250Y ¼ expf−i2πθxxTgY1: (79b)

We emphasize that for this operation, X is to be treated as a 2D array, and the multiplications
above are matrix multiplications. The adjoint model is then

EQ-TARGET;temp:intralink-;e080a;116;216Y1 ¼ expfi2πxθTx gY; (80a)

EQ-TARGET;temp:intralink-;e080b;116;172X ¼ Y1 expfi2πθyyTg: (80b)

Putting the two expressions together, we have

EQ-TARGET;temp:intralink-;e081;116;148X ¼ expfi2πxθTx gY expfi2πθyyTg; (81)

which represents an inverse Fourier transform from the coordinate axes ðθx; θyÞ to the axes
ðx; yÞ, or more succinctly

EQ-TARGET;temp:intralink-;e082;116;90X ¼ IMFTfY; θx; θy; x; yg: (82)
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9.3 Coordinate Reversal

In Sec. 2.2, we denoted the operation of reversing the coordinates of a 2D array X by RfXg.
This can be represented by a row permutation followed by a column permutation, both using
the antidiagonal matrix

EQ-TARGET;temp:intralink-;e083;116;680P ¼

2
6664
0 0 · · · 0 1

0 0 · · · 1 0

..

. ..
. ..

. ..
.

1 0 · · · 0 0

3
7775; (83)

so that

EQ-TARGET;temp:intralink-;e084;116;591Y ¼ PXP: (84)

Since P† ¼ P, we find that the gradient propagation rule is
EQ-TARGET;temp:intralink-;e085a;116;551

X ¼ PYP; (85a)

EQ-TARGET;temp:intralink-;e085b;116;506 ¼ RfYg: (85b)

Acknowledgments

This work was supported in part by the National Aeronautics and Space Administration under
Grant No. 80NSSC19K0120 issued through the Strategic Astrophysics Technology/Technology
Demonstration for Exoplanet Missions Program (SAT-TDEM; PI: R. Soummer). The authors
thank the reviewers for their helpful comments, as well as Rémi Soummer, Marshall Perrin,
Laurent Pueyo, Hari Subedi, Roser Juanola-Parramon, Neil Zimmerman, Matthew Bolcar,
Lee Feinberg, and Michael McElwain for many illuminating discussions. Disclosures: The
authors declare no conflicts of interest.

References

1. M. Perryman, The Exoplanet Handbook, 2nd ed., Cambridge University Press (2018).
2. The LUVOIR Study Team, “LUVOIR,” tech. rep., National Aeronautics and Space

Administration (2019).
3. The Habitable Exoplanet Observatory Study Team, “Habitable exoplanet observatory final

report,” tech. rep., Jet Propulsion Laboratory (2019).
4. J. Tumlinson et al., “The next great observatories: how can we get there?” Bull. AAS 51(7),

10 (2019).
5. National Aeronautics and Space Administration, “Exoplanet exploration program 2019

technology plan appendix,” (2019).
6. I. Y. Poberezhskiy et al., “Wide Field Infrared Survey Telescope (WFIRST): coronagraph

instrument engineering design and operational concept,” Proc. SPIE 11443, 114431V
(2020).

7. H. Zhou et al., “Roman CGI testbed HOWFSC modeling and validation,” Proc. SPIE
11443, 114431W (2020).

8. L. Pueyo et al., “Optimal dark hole generation via two deformable mirrors with stroke
minimization,” Appl. Opt. 48, 6296–6312 (2009).

9. A. Give’on, “A unified formailism [sic] for high contrast imaging correction algorithms,”
Proc. SPIE 7440, 74400D (2009).

10. A. J. Eldorado Riggs et al., “Fast linearized coronagraph optimizer (FALCO) I: a software
toolbox for rapid coronagraphic design and wavefront correction,” Proc. SPIE 10698,
10698V (2018).

11. E. Cady et al., “Demonstration of high contrast with an obscured aperture with the WFIRST-
AFTA shaped pupil coronagraph,” J. Astron. Telesc. Instrum. Syst. 2(1), 011004 (2016).

Will, Groff, and Fienup: Jacobian-free coronagraphic wavefront control using nonlinear optimization

J. Astron. Telesc. Instrum. Syst. 019002-25 Jan–Mar 2021 • Vol. 7(1)

https://doi.org/10.1117/12.2563480
https://doi.org/10.1117/12.2561087
https://doi.org/10.1364/AO.48.006296
https://doi.org/10.1117/12.825049
https://doi.org/10.1117/12.2313812
https://doi.org/10.1117/1.JATIS.2.1.011004


12. R. Soummer et al., “High-contrast imager for complex aperture telescopes (HiCAT): 5. First
results with segmented-aperture coronagraph and wavefront control,” Proc. SPIE 10698,
106981O (2018).

13. A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, 2nd ed., Society for Industrial and Applied Mathematics
(2008).

14. J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York (1999).
15. A. S. Jurling and J. R. Fienup, “Applications of algorithmic differentiation to phase retrieval

algorithms,” J. Opt. Soc. Am. A 31(7), 1348–59 (2014).
16. A. G. Baydin et al., “Automatic differentiation in machine learning: a survey,” J. Mach.

Learn. Res. 18(153), 1–43 (2018).
17. B. Paul et al., “High-order myopic coronagraphic phase diversity (COFFEE) for wave-front

control in high-contrast imaging systems,” Opt. Express 21(26), 31751–31768 (2013).
18. A. Give’on, B. D. Kern, and S. Shaklan, “Pair-wise, deformable mirror, image plane-based

diversity electric field estimation for high contrast coronagraphy,” Proc. SPIE 8151, 815110
(2011).

19. T. D. Groff and N. J. Kasdin, “Kalman filtering techniques for focal plane electric field
estimation,” J. Opt. Soc. Am. A 30(1), 128–39 (2013).

20. A. J. E. Riggs, N. J. Kasdin, and T. D. Groff, “Recursive starlight and bias estimation for
high-contrast imaging with an extended Kalman filter,” J. Astron. Telesc. Instrum. Syst.
2(1), 011017 (2016).

21. P. Baudoz et al., “The self-coherent camera: a new tool for planet detection,” Proc. Int.
Astron. Union 1(C200), 553–558 (2005).

22. T. D. Groff et al., “Methods and limitations of focal plane sensing, estimation, and control in
high-contrast imaging,” J. Astron. Telesc. Instrum. Syst. 2, 011009 (2016).

23. S. D. Will and J. R. Fienup, “Field stop diffraction and sampling effects in apodized pupil
Lyot coronagraphs,” J. Opt. Soc. Am. A 37, 629–642 (2020).

24. J. W. Goodman, Introduction to Fourier Optics, 4th ed., W.H. Freeman & Company,
(2017).

25. M. N’Diaye et al., “Apodized pupil Lyot coronagraphs for arbitrary apertures. V. Hybrid
shaped pupil designs for imaging Earth-like planets with future space observatories,”
Astrophys. J. 818, 163–171 (2016).

26. D. C. Moody, B. L. Gordon, and J. T. Trauger, “Design and demonstration of hybrid Lyot
coronagraph masks for improved spectral bandwidth and throughput,” Proc. SPIE 7010,
70103P (2008).

27. R. Soummer et al., “Fast computation of Lyot-style coronagraph propagation,” Opt. Express
15, 15935–15951 (2007).

28. A. S. Jurling, M. D. Bergkoetter, and J. R. Fienup, “Techniques for arbitrary sampling in
two-dimensional Fourier transforms,” J. Opt. Soc. Am. A A35, 1784–1796 (2018).

29. N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., Society for
Industrial and Applied Mathematics (2002).

30. G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University
Press (2013).

31. Wolfram Research, Inc., Mathematica, Version 12.1, Wolfram Research, Inc., Champaign,
IL (2020).

32. M. Abadi et al., “TensorFlow: large-scale machine learning on heterogeneous systems,”
2015, tensorflow.org.

33. J. Bradbury et al., “JAX: composable transformations of Python+NumPy programs,” (2018).
34. R. Juanola-Parramon et al., “The LUVOIR extreme coronagraph for living planetary

systems (ECLIPS) II. Performance evaluation, aberration sensitivity analysis and exoplanet
detection simulations,” Proc. SPIE 11117, 1111702 (2019).

35. Q. Gong et al., “Optical design of the extreme coronagraph for living planetary systems
instrument for the LUVOIR mission study,” J. Astron. Telesc. Instrum. Syst. 5(2), 025002
(2019).

36. P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,”
Nat. Methods 17, 261–272 (2020).

Will, Groff, and Fienup: Jacobian-free coronagraphic wavefront control using nonlinear optimization

J. Astron. Telesc. Instrum. Syst. 019002-26 Jan–Mar 2021 • Vol. 7(1)

https://doi.org/10.1117/12.2314110
https://doi.org/10.1364/JOSAA.31.001348
https://doi.org/10.1364/OE.21.031751
https://doi.org/10.1117/12.895117
https://doi.org/10.1364/JOSAA.30.000128
https://doi.org/10.1117/1.JATIS.2.1.011017
https://doi.org/10.1017/S174392130600994X
https://doi.org/10.1017/S174392130600994X
https://doi.org/10.1117/1.JATIS.2.1.011009
https://doi.org/10.1364/JOSAA.379609
https://doi.org/10.3847/0004-637X/818/2/163
https://doi.org/10.1117/12.790133
https://doi.org/10.1364/OE.15.015935
https://doi.org/10.1364/JOSAA.35.001784
tensorflow.org
tensorflow.org
https://doi.org/10.1117/12.2530356
https://doi.org/10.1117/1.JATIS.5.2.025002
https://doi.org/10.1038/s41592-019-0686-2


37. E. Sidick et al., “Optimizing the regularization in broadband wavefront control algorithm for
WFIRST coronagraph,” Proc. SPIE 10400, 1040022 (2017).

38. H. Zhou et al., “Wavefront control performance modeling with WFIRST shaped pupil
coronagraph testbed,” Proc. SPIE 10400, 1040005 (2017).

39. E. H. Por et al., “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics
and coronagraph simulator,” Proc. SPIE 10703, 1070342 (2018).

40. H. Sun, J. N. Kasdin, and R. Vanderbei, “Identification and adaptive control of a high-
contrast focal plane wavefront correction system,” J. Astron. Telesc. Instrum. Syst. 4(4),
049006 (2018).

41. H. Sun et al., “High-contrast integral field spectrograph (HCIFS): multi-spectral wavefront
control and reduced-dimensional system identification,” Opt. Express 28(15), 22412–22423
(2020).

Scott D. Will is a PhD candidate at the Institute of Optics, University of Rochester and with the
Makidon Optics Laboratory at the Space Telescope Science Institute. He has also worked with
the Optics Branch at NASA Goddard Space Flight Center as part of the NASA Pathways
Program. He received his BS degree in electrical engineering from the University at Buffalo
in 2015. His research interests include wavefront sensing and control, computational imaging,
and astronomical instrumentation.

Tyler D. Groff received his BS degree in mechanical engineering and astrophysics from Tufts
University and his PhD in mechanical and aerospace engineering from Princeton University
under an NESSF fellowship. He was the lab manager of the Princeton High Contrast
Imaging Laboratory and the CHARIS instrument at Subaru Telescope. He is currently the lead
engineer at Goddard Space Flight Center for the spectroscopy and polarization modes on the
Roman Space Telescope Coronagraph Instrument.

James R. Fienup received his AB from Holy Cross College and his MS and PhD degrees in
applied physics from Stanford University, where he was a National Science Foundation graduate
fellow. After performing research at ERIM, he became the Robert E. Hopkins Professor of
Optics at the University of Rochester. He is a fellow of SPIE and OSA, a member of the National
Academy of Engineering, and a recipient of SPIE’s Rudolf Kingslake Medal and Prize.

Will, Groff, and Fienup: Jacobian-free coronagraphic wavefront control using nonlinear optimization

J. Astron. Telesc. Instrum. Syst. 019002-27 Jan–Mar 2021 • Vol. 7(1)

https://doi.org/10.1117/12.2274440
https://doi.org/10.1117/12.2274391
https://doi.org/10.1117/12.2314407
https://doi.org/10.1117/1.JATIS.4.4.049006
https://doi.org/10.1364/OE.397070

