
Development of a concave freeform
surface measurement using
transverse translation-diverse phase
retrieval

Aaron M. Michalko
James R. Fienup

Aaron M. Michalko, James R. Fienup, “Development of a concave freeform surface measurement
using transverse translation-diverse phase retrieval,” Opt. Eng. 59(6), 064101 (2020),
doi: 10.1117/1.OE.59.6.064101

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 02 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Development of a concave freeform surface
measurement using transverse translation-diverse

phase retrieval

Aaron M. Michalko* and James R. Fienup
University of Rochester, Institute of Optics, Rochester, New York, United States

Abstract. Transverse translation-diverse phase retrieval (TTDPR), a ptychographic wavefront-
sensing technique, is a viable method for freeform optical surface metrology due to its relatively
simple hardware requirements, flexibility, and demonstrated accuracy in other fields. In TTDPR,
a subaperture illumination pattern is scanned across an optic under test, and the reflected inten-
sity is gathered on an array detector near focus. A nonlinear optimization algorithm is used to
reconstruct the wavefront aberration at the test surface from which we can solve for surface error,
using intensity patterns from multiple scan positions. TTDPR is an advantageous method for
aspheric and freeform metrology because measurements can be performed without null optics.
We report on the development of a concave freeform mirror measurement using this technique.
Simulations were performed to test algorithmic performance as a function of various parameters,
including detector signal-to-noise ratio and position uncertainty of the illumination, with <λ∕100
root-mean-square (rms) wavefront-sensing error achieved in most cases (λ ¼ 632.8 nm). An
experimental measurement is then demonstrated, and results of reconstructed surface form and
midspatial frequency error are presented. Surface reconstructions from two disjoint datasets
agree to 13-nm rms, or λ∕50 at λ ¼ 632.8 nm. © 2020 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.OE.59.6.064101]
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1 Introduction

Freeform optical surfaces, i.e., surface descriptions that lack rotational symmetry, are a powerful
technology due to their flexibility and aberration-correcting capabilities. However, optical met-
rology of freeform surfaces remains challenging. Unlike conic surfaces, freeforms generally do
not possess a stigmatic imaging configuration that would facilitate an interferometric null test.
Rather, the slope departure of a freeform shape from a base sphere can create unresolvable test
fringes on the detector of an interferometer in addition to introducing retrace errors. To overcome
these challenges, additional optics may be introduced, such as a computer-generated hologram
or custom null optics,1 or subaperture stitching may be used.2 Often, these methods tend to be
expensive and require complicated additional hardware to take a measurement.2 We are inter-
ested in an alternative metrology approach suitable for freeform surface characterization with
significantly reduced hardware requirements and associated cost.

One suitable technique is transverse translation-diverse phase retrieval (TTDPR), a ptycho-
graphic3 method of image-based wavefront sensing.4–7 TTDPR is an attractive technique for
optical surface metrology, particularly concave surface metrology, due to its relatively simple
hardware requirements.8,9 Using TTDPR, measurements of concave surfaces may only require
a source, a translating mask, and an array detector. A TTDPR measurement does not require
additional reference or imaging optics, reducing the cost and uncertainties associated with manu-
facturing and calibrating those optics. In addition, TTDPR does not suffer from retrace errors
when measuring an aspheric wavefront and is suitable to measure aspheric and freeform optics
without needing additional null optics.
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In this paper, we discuss the development of an optical measurement utilizing TTDPR.
In Sec. 2, we will discuss the computational forward model used to (1) reconstruct an unknown
wavefront aberration function and (2) calculate the surface topography error of an optical surface
using the reconstructed wavefront aberration function. In Sec. 3, we present a series of computer
simulations to investigate both the wavefront-sensing accuracy of TTDPR in the presence of
large aberrations and the accuracy of the surface error calculations. In Sec. 4, we discuss the
results of a laboratory measurement of a concave freeform mirror.

2 Measurement Model

2.1 Exit Pupil Field Reconstruction

TTDPR is a method for reconstructing a complex field of interest using intensity patterns mea-
sured near a focus of the field of interest. In TTDPR, a subaperture portion of the field of interest
is illuminated and the corresponding intensity pattern is measured on an array detector. The
subaperture illumination pattern is then moved to a number of discrete, overlapping locations
and intensities are gathered at each position. These measured intensity patterns are then com-
pared to intensities of computer-propagated fields from an estimate of the optical field of interest.
The estimate of the field is iteratively updated to optimize the agreement between the predicted
intensities and the measured ones until a final prediction of the full complex field, amplitude and
phase, is obtained.

In the context of optical testing, the field of interest is often located in an exit pupil and
modeled by a generalized pupil function10

EQ-TARGET;temp:intralink-;e001;116;453gðxp; ypÞ ¼ jgðxp; ypÞj exp
�
i2π
λ

Wðxp; ypÞ
�
; (1)

where λ is the source wavelength and Wðxp; ypÞ is the unknown wavefront aberration we want
to characterize, expressed in pupil coordinates ðxp; ypÞ. Here, Wðxp; ypÞ has units of length and
is interpreted as the optical path difference between the aberrated wavefront in the exit pupil and
a reference sphere centered on an ideal image point.10 For transmitted wavefront testing of an
optical element,4 the exit pupil may be defined in a plane just past the optic. A physical trans-
lating subaperture structure can be placed directly in the exit pupil plane to transmit a subaperture
portion of the field. For optical surface testing, we define an exit pupil near the surface under test
and instead take measurements in reflection. Because a physical subaperture structure placed at
or near the surface may obscure portions of the reflected beam or possibly damage the surface,
translating subaperture illumination can instead be achieved by projecting an illumination pat-
tern onto the surface under test.8 Figure 1(a) illustrates the particular measurement geometry
under investigation in this work. Figure 1(b) shows the relationships between pupil coordinates,
ðxp; ypÞ, surface coordinates, ðxs; ysÞ, and coordinates before reflection, ðx; yÞ. The coordinates
ðx; yÞ are normal to the nominal optical axis before reflection, and the coordinates ðxp; ypÞ are
normal to the optical axis after reflection. All three coordinate systems share a common origin at
the center of the surface, which we call the surface origin. A freeform surface with nominal
surface height zNðxs; ysÞ, where zNð0;0Þ ¼ 0, is illuminated by a point source positioned at
a distance z2 from the surface origin as measured along the nominal optical axis before reflec-
tion. A clipping mask placed between the source and the surface at a distance z1 from the source
creates the subaperture illumination pattern. The surface is tilted by a nominal angle θ, which
serves two purposes. First, it clears the reflected beam from obstruction by the mask or detector.
Second, the tilt-induced astigmatism may be used to partially null the surface-induced astigma-
tism by a particular freeform. Reflected intensities are then collected by an array detector
positioned at a distance zo from the surface origin along the nominal optical axis after reflection.
We define an exit pupil reference sphere with radius zo, centered on the intersection of the
nominal optical axis with the detector, to define Wðxp; ypÞ. In this work, we explore a specific
configuration where z2 and zo are both approximately equal to the surface radius of curvature.
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In general, both z2 and zo may take different values, which may be advantageous depending on
the best-fit conic to the surface under test or geometrical constraints.

It is important to note that in this candidate test geometry, the concept of an underlying exit
pupil field at the surface is a notional one. At no time is the entire surface illuminated, so at no
time is the entire pupil field realized. However, it is mathematically useful to construct gðxp; ypÞ
so that we can separate effects that are due to the changing illumination pattern from effects due
to the static alignment of the optic. Although it is not investigated in this work, the translating
subaperture may be placed after the surface under test instead of before, as long as that con-
figuration is correctly modeled in the phase retrieval algorithm. In that case, the exit pupil field
would be physically realized.

The unknown wavefront aberration function Wðxp; ypÞ is often parameterized using a
weighted sum of basis polynomials, such as Zernike polynomials,11 to efficiently model the
dominant low-order surface figure errors expected from the optical fabrication process. However,
aspheric and freeform optics are often fabricated using subaperture grinding, polishing, or turn-
ing techniques, which leave behind characteristic midspatial frequency (MSF) surface errors.
Zernike polynomials are limited in their ability to reconstruct MSF features with high accuracy,
possibly requiring tens of thousands of terms.12 To avoid the requirement for very large numbers
of basis polynomials, which could become computationally expensive, we adopt the following
wavefront parametrization:

EQ-TARGET;temp:intralink-;e002;116;309Wðxp; ypÞ ¼
X
j

ajZjðxp; ypÞ þ ½Pðxp; ypÞ � Kðxp; ypÞ�; (2)

where Zjðxp; ypÞ is the j’th Zernike polynomial with weight aj to model low-order wavefront
errors. The function Pðxp; ypÞ is a point-by-point (PBP) varying phase, � denotes convolution,
and Kðxp; ypÞ is a convolution kernel. By changing the width of Kðxp; ypÞ, we can control
the spatial frequency bandwidth of Wðxp; ypÞ, allowing us to model MSF and higher spatial
frequency features. The convolution model is an application of the “method of sieves.”13 This
is a form of bootstrapping, estimating the lower-frequency phases first using a wide kernel, and
progressing to higher-frequency phases using narrower kernels. This is an improvement over
a PBP-only phase, which can be prone to algorithmic stagnation or overfitting to the noise.

Next, we introduce a complex-valued, translating subaperture illumination function
Akðxp; ypÞ. In some cases, we may assume that Akðxp; ypÞ can be modeled using a simple trans-
lation, i.e.,

EQ-TARGET;temp:intralink-;e003;116;129Akðxp; ypÞ ¼ Aðxp − xk; yp − ykÞ; (3)

where Aðxp; ypÞ is a global subaperture function and ðxk; ykÞ is the subaperture translation.
In other cases, depending on the measurement geometry, the subaperture illumination function
may change size or shape as it is moved across the exit pupil. In this paper, a subaperture model

Fig. 1 (a) Proposed test configuration for freeform surface measurement. The nominal optical axis
is indicated by a solid black line. Dotted black lines indicate positions of source, mask, and surface
origin along the optical axis. (b) Local coordinate systems. Dotted red: Coordinate axes, ðx; yÞ,
normal to optical axis before reflection. Dashed blue: Local surface coordinate axes ðxs; ysÞ. Solid
blue: Surface under test zðxs; ysÞ. Dash-dotted black: Exit pupil coordinate axes ðxp; ypÞ. Solid
black: The exit pupil reference sphere.
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according to Eq. (3) is used in Secs. 3.2–3.4. A more general subaperture model, in which the
shape of Akðxp; ypÞ is recalculated for each position, is used in Secs. 3.5 and 4.

The width of Akðxp; ypÞ should be sized to produce well-sampled intensities, where sampling
is expressed in terms of the sampling ratio14

EQ-TARGET;temp:intralink-;e004;116;686Q ¼ λzo
DΔu

; (4)

where λ is the test wavelength, zo is the propagation distance, Δu is the detector pixel pitch, and
D is the physical width of Ak in the exit pupil. Here, Q ¼ 2 corresponds to Nyquist-sampled
intensities. By scanning the subaperture across the field of interest, we are able to take well-
sampled measurements over a much larger effective diameter than would be possible using
a full-aperture phase retrieval technique, such as focus-diverse phase retrieval.

For each illumination position, the field transmitted through the exit pupil can be modeled as

EQ-TARGET;temp:intralink-;e005;116;570gkðxp; ypÞ ¼ Akðxp; ypÞgðxp; ypÞ: (5)

The field incident on the detector is then calculated using

EQ-TARGET;temp:intralink-;e006;116;526Gkðu; vÞ ¼ P½gkðxp; ypÞ�; (6)

where P is an appropriate propagator. In this work, we assume that the field at the detector plane
is related to the general pupil function through Fraunhofer propagation, which can be written
in discrete form

EQ-TARGET;temp:intralink-;e007;116;458Gk½mr;mc� ∝
XN−1

nr¼0

XN−1

nc¼0

gk½nr; nc� exp
�
−i2π

�
ΔuΔx

λz∘

�
ðncmc þ nrmrÞ

�
; (7)

where Gk is the sizeM ×M discretized detector field with row and column indices ½mr;mc� and
pixel pitch Δu. Here, gk is the size N × N discretized pupil field with row and column indices
½nr; nc� and simulated pixel pitch Δx.

The model for detected intensity is then

EQ-TARGET;temp:intralink-;e008;116;359Ik½mr;mc� ∝ jGk½mr;mc�j2: (8)

Note that in Eq. (7) we dropped a leading quadratic phase term that would be suppressed
by Eq. (8).

Simulated intensities were then compared to measured intensities, Dk, using a normalized
mean-squared error metric

EQ-TARGET;temp:intralink-;e009;116;279E ¼
P

k

P
mr;mc

wk½mr;mc�fDk½mr;mc� − ðγkIk½mr;mc� þ βkÞg2P
k

P
mr;mc

wk½mr;mc�Dk½mr;mc�2
; (9)

where wk is a weighting function that can be used to suppress information from bad pixels, γk is
a gain parameter, and βk is a bias parameter. Here, γk and βk were calculated using Eq. (C3)
in Ref. 7 so that the gradient of E with respect to both γk and βk is 0, thus making E insensitive
to detector gain and bias.

We are tasked with minimizing the value of E with respect to experimental parameters. For
this work, nonlinear optimization was performed using an L-BFGS optimizer15 in Python.
Gradients with respect to various test parameters were calculated using algorithmic differentia-
tion techniques.7,16

2.2 Surface Error Calculation from Reconstructed Wavefront Aberration

After reconstructingWðxp; ypÞ using TTDPR, we must next calculate the sag error of the surface
under test
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EQ-TARGET;temp:intralink-;e010;116;735δzðxs; ysÞ ¼ zðxs; ysÞ − zNðxs; ysÞ; (10)

where zðxs; ysÞ is the true surface height and δzðxs; ysÞ is the unknown sag error from nominal,
represented in surface coordinates ðxs; ysÞ. We first calculate the measured change in the wave-
front aberration from nominal as

EQ-TARGET;temp:intralink-;e011;116;677δWðxp; ypÞ ¼ Wðxp; ypÞ −WNðxp; ypÞ: (11)

The values of WNðxp; ypÞ, the nominal wavefront aberration, are obtained using a ray trace
model of an idealized measurement configuration, where the surface under test is the nominal
surface. A set of rays, termed “nominal rays,” are traced to the exit pupil reference sphere, and
each value ofWNðxp; ypÞ is the difference between the optical path length of the nominal ray that
intersects the reference sphere at ðxp; ypÞ and the optical path length of the nominal ray that
intersects the reference sphere at (0, 0). Each nominal ray will also intersect the nominal surface,
and assuming both the surface and the reference sphere are far from a region of nominal ray
caustics, there is a one-to-one mapping between nominal ray surface intersections and nominal
ray reference sphere intersections, given as

EQ-TARGET;temp:intralink-;e012;116;535ðxr;s; yr;sÞ ¼ fðxp; ypÞ; (12)

where ðxr;s; yr;sÞ are the surface intersection coordinates of the nominal ray that intersects the
reference sphere at ðxp; ypÞ and f is the mapping function. In our work, the values of fðxp; ypÞ
are found numerically using nominal ray traces.

If δz is small, which is a reasonable assumption in our metrology application, we can use a
perturbation approximation to relate surface sag error to the change in wavefront aberration.17,18

To first order, this relationship is given as

EQ-TARGET;temp:intralink-;e013;116;430δWðxp; ypÞ ¼ −2δz⊥ðxr;s; yr;sÞ cos½θiðxr;s; yr;sÞ�; (13)

where δWðxp; ypÞ is the induced change in wavefront aberration, θiðxr;s; yr;sÞ is the angle of
incidence of the nominal ray that intersects the surface at ðxr;s; yr;sÞ, and δz⊥ is the projection
of δz onto the nominal surface normal vector,

EQ-TARGET;temp:intralink-;e014;116;361δz⊥ðxs; ysÞ ¼ δzðxs; ysÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
∂zNðxs; ysÞ

∂x

�
2

−
�
∂zNðxs; ysÞ

∂y

�
2

s
: (14)

An advantageous property of Eq. (13) is that all quantities except δW depend on the nominal
rays or the nominal surface and can be numerically calculated using a ray trace. Furthermore,
Eq. (13) accounts for the coordinate mapping between the exit pupil, whereWðxp; ypÞ is defined,
and the optical surface, where sag error is defined. It is important to understand this mapping,
especially if measured surface data are used for closed-loop feedback into fabrication processes.
Otherwise, surface error incorrectly attributed to one region of the part may be left uncorrected or
even exacerbated by attempts to fix it through deterministic polishing. A similar type of mapping
problem exists in other off-axis test methods, such as interferometric null testing, where the plane
of the interferogram may be tilted relative to the local coordinates of the surface under test.

3 Computer Simulations

A series of computer simulations were performed to investigate the performance of TTDPR in
realistic testing scenarios for freeform optics. These simulations were motivated by the selection
of a candidate freeform test mirror: the secondary mirror from a three-mirror, freeform, thermal
imaging system.1,19,20 The mirror is a base sphere plus an approximate 120-μm peak-to-valley
(P–V) freeform sag, as shown in Fig. 2. The nominal surface, including the base sphere, has a
maximum sag from flat of ∼1.9 mm.

Sections 3.1–3.4 contain simulations that probe the wavefront-sensing accuracy of TTDPR,
corresponding to the methods in Sec. 2.1. Section 3.5 contains end-to-end simulations to validate
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the entire metrology method, including both wavefront reconstructions from Sec. 2.1 and surface
error calculations from Sec. 2.2.

3.1 Wavefront-Sensing Accuracy with Noisy Data

First, simulations were performed to explore the effect of simulated detector noise on TTDPR
wavefront-sensing accuracy. A series of wavefront aberrations were simulated based on a CODE
V ray-trace model of the tilted freeform mirror with a tilt angle of θ ¼ 7 deg, made to avoid
obscuration of the reflected intensities. A total of 36 nominal Zernike wavefront coefficients
were generated using CODE V, and these coefficients were exported to a TTDPR algorithm
and used as the aj in Eq. (2) for simulating the wavefront from the ideal (nominal) surface under
test. No additional PBP phase was simulated. This nominal wavefront aberration was defined
over a circular clear aperture and had a P–V of 305.4λ and a root-mean-square (rms) of 60.9λ,
with piston, tip, and tilt (PTT) removed, at the simulated test wavelength of 632.8 nm. To the
nominal wavefront aberration, a 4.0λ rms perturbation was added using a random superposition
of 20 Zernike polynomials (through the fifth radial order). This perturbation represented
unknown errors caused by fabrication defects.

For these simulations, subaperture illumination was modeled using Eq. (3). The global
subaperture function Aðxp; ypÞ was modeled using a hard-edged circular subaperture with a
diameter equal to 20% of the underlying pupil diameter. This simplified illumination model was
sufficient to explore the algorithmic performance of TTDPR. Later, for laboratory measurements
of a freeform surface in Sec. 4, a more physically realistic model for Ak was used that included
diffraction effects. To achieve good coverage over the entire simulated wavefront function,
77 illumination translations, ðxk; ykÞ, were simulated and arranged in a concentric ring pattern
as shown in Fig. 3. Subaperture translations were intentionally selected so that some Ak would
overlap the clipping edge of the pupil. To accommodate the noninteger pixel values of xk and yk,
bilinear interpolation was used in this work.7

Fig. 3 Superposition of subaperture positions. Color bar value indicates the number of times
an area of the pupil was sampled.

Fig. 2 Freeform mirror nominal sag departure from a base sphere, shown over a 74-mm-diameter
circular region.
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Nyquist-sampled intensities were modeled and detector noise was generated using a com-
bined Gaussian and Poisson noise model, using 16 electrons rms Gaussian read noise and vary-
ing peak pixel photons. Ten simulations, each having different noise realizations and wavefront
perturbations, were performed for each peak photoelectron level. Owing to the large underlying
aberrations, the centroid of each intensity pattern wandered significantly over the simulated
detector region. To avoid simulating intensity patterns with large regions of noise, simulated
fields gk were multiplied by a linear phase term in the forward model that shifted the intensity
pattern to the center of a simulated 512 × 512 pixel detector region. Information about the posi-
tion of each intensity pattern on the detector was preserved according to the Fourier shift theo-
rem. This process is analogous to measuring the intensities on a large array detector in the lab and
cropping each intensity to a given size about a new center pixel. From the distance between
the new center pixel and the detector origin, one can calculate a corresponding linear phase
to multiply each gk. Example intensities are shown in Fig. 4.

In our nonlinear optimization, 35 Zernike polynomial coefficients were optimized using the
nominal wavefront as the starting guess (piston ignored). After optimization, δWðxp; ypÞ was
calculated according to Eq. (11). Let δW½nr; nc� be the discrete array representation of
δWðxp; ypÞ and let m½nr; nc� be a binary array corresponding to the nonzero area of jgðxp; ypÞj.
Root-mean-square wavefront-sensing error (rms WFSE) was then calculated using

EQ-TARGET;temp:intralink-;e015;116;518rmsWFSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

nr;ncδW½nr; nc�2m½nr; nc�P
nr;nc

m½nr; nc�

vuuut : (15)

Figure 5 shows rms WFSE versus peak pixel photons for the simulated cases. For cases with
10,000 peak photons or greater, the algorithm could reliably converge with rms error on the order

Fig. 4 Example simulated nominal intensities from θ ¼ 7 deg wavefront. Intensities are shown
raised to a power of 1/2 with no simulated detector noise and are shown shifted to the center
of the array. Axes are labeled by pixel index.

Fig. 5 Residual rms WFSE versus peak pixel photons with 16-electron rms read noise.
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of λ∕1000. rms error < λ∕100 was achievable with as few as 400 peak photons. These signal
powers are easily obtainable in the lab, thus we expect detector noise alone to affect the accuracy
of TTDPR very little in a laboratory testing environment. Additional simulations were performed
with fully noise-free intensities, which would allow for model-matched solutions, and rms errors
were obtained on the order of λ∕5000. Furthermore, for all simulated cases, the algorithm always
converged to a solution and did not stagnate, indicating a large capture range compared to other
phase retrieval methods such as focus-diverse phase retrieval.21

3.2 Transverse Translation-Diverse Phase Retrieval with Known Defocus

Next, TTDPR wavefront-sensing accuracy was tested in the presence of varying amounts of
known defocus, because it has been shown that phase retrieval for wavefront sensing can
sometimes benefit from the addition of defocus to the nominal wavefront.22–25 For testing well-
corrected optical systems, additional defocus spreads the otherwise narrow intensity distribution
over a larger region on the detector, leading to a greater number of high-signal-to-noise ratio
(SNR) pixels that contribute to E. However, in freeform optical testing, the measured intensity
distributions are, in general, many times larger than the diffraction limit due to the underlying
surface shape of the optic and lack of a simple null configuration.

To test the performance of TTDPR with respect to known defocus, simulations were per-
formed using the forward model parameters described in Sec. 3.1. For each simulation, a known
amount of Zernike defocus was added to the nominal wavefront. Defocus magnitudes ranged
from 0 to 64λ P–V. Such values could be attained in the lab by translating the detector along the
optical axis or by inserting a weakly powered optical element into the beam path. Defocused
intensities were simulated with 16-electron rms Gaussian read noise and 40,000 peak pixel
photons.

Figure 6 shows WFSE versus defocus for the simulations performed. rms WFSE < λ∕1000
was observed over the entire range of simulations with no strong functional dependence ob-
served. This is most likely caused by the large aberration contribution of the nominal wavefront.
Even with no additional defocus, the simulated intensities have energy spread over many pixels,
contributing strongly to reducing the error metric.

3.3 Transverse Translation-Diverse Phase Retrieval with Subaperture
Positioning Error

Next, the accuracy of TTDPR was explored with respect to errors in the position of the sub-
aperture illumination. Errors in subaperture position may occur in the lab as a result of calibra-
tion errors or systematic errors from the stages used to translate the moving mask. Joint retrieval
of subaperture position along with wavefront error has been previously demonstrated using
TTDPR for mildly aberrated systems.4,6,7,26,27 We are interested in how uncertainties in sub-
aperture position will affect the freeform case, where aberrations are, in general, much larger.
We performed simulations using two nominal wavefronts, corresponding to two different tilt

Fig. 6 Residual rms WFSE versus known defocus. For a large range of known defocus values,
phase was retrieved with sub-λ∕1000 rms residual error.
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angles of the freeform mirror under test. In addition to the θ ¼ 7 deg nominal wavefront
aberration, simulations were performed using θ ¼ 13.91 deg. Here θ ¼ 13.91 deg is the angle
at which tilt-induced astigmatism nulls nominal surface-induced third-order astigmatism,
according to the Coddington trace equations. 28,29 The resulting wavefront aberration has a
P–V of 67.7λ and an rms of 15.9λ over the simulated area of interest with PTT removed.

For these simulations, wavefronts and data were again simulated according to the process
described in Sec. 3.1 with 40,000 simulated peak pixel photons. However, for these simulations,
the initial guess for each subaperture translation was perturbed by a random offset. The random
offset errors were drawn from a uniform distribution over a disk with a specified radius. The
radius of this distribution varied from 0% to 25% of the subaperture width. In optimization,
35 Zernike coefficients were first optimized with fixed (yet incorrect) translations. Next, all sub-
aperture translations were optimized jointly with the wavefront coefficients. All other parameters
except translations and Zernike coefficients were assumed known.

Figure 7 shows WFSE versus subaperture offset error for both nominal wavefronts.
Compared to Figs. 5 and 6, Fig. 7(a) shows a larger mean and variance of WFSE, with the
singular worst case resulting in ≈0.12λ rms WFSE, [the uppermost point in Fig. 7(a)], which
was found to be dominated by a linear phase error. Once the linear phase component had been
removed from that result, the residual WFSE was reduced to ≈ λ∕50. However, the ensemble
performed well overall, with 54/60 cases resulting in <λ∕100 rms WFSE. Fig. 7(b) shows lower
overall error, with 59/60 cases resulting in <λ∕100 rms WFSE and the majority resulting in
<λ∕1000 rms for translation errors up to 10% the subaperture diameter. Although uncertainty
in subaperture translation will cause additional uncertainty in the final wavefront reconstruc-
tions, these results show that successful retrievals are still possible with random offset errors
up to 25% the subaperture diameter. In a well-controlled laboratory environment, expected offset
errors should be much less than 25%. In a testing environment, calibration should be performed
to minimize offset errors, but there are additional paths toward developing a more robust test in
the presence of unknown offset errors. One may be developing a better optimization strategy in
which we more strictly control when and how the subaperture translations vary in optimization.7

It may also be advantageous to introduce known amplitude structures in the optical aperture that
would serve as position references for the translating illumination, since we can reconstruct both
the amplitude and phase of the optical field.

3.4 Transverse Translation-Diverse Phase Retrieval with Errors in
the Sampling Parameter

As shown in Eq. (7), simulated fields were propagated using a discrete Fraunhofer propagation,
which is accomplished with a discrete Fourier transform (DFT). TTDPR performance was tested
in the presence of errors in the DFT sampling parameter, α, given as

Fig. 7 Residual rmsWFSE versus size of initial offset error distribution, corresponding to mirror tilt
angles of (a) θ ¼ 7 deg and (b) θ ¼ 13.91 deg. Initial offset errors were drawn from a uniform
random distribution over a disk, whose radius was specified as a fraction of the total subaperture
width.
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EQ-TARGET;temp:intralink-;e016;116;735α ¼ ΔuΔx

λzo
: (16)

Here, αmust be selected for the experiment to ensure that simulated intensities are not aliased by
the wraparound nature of the DFT. α relates to Q, as defined in Eq. (4), as

EQ-TARGET;temp:intralink-;e017;116;677α ¼ Δx

QD
: (17)

From a practical perspective, uncertainties in α are directly linked to uncertainties in the
physical experimental parameters in Eq. (16). Therefore, an exploration of TTDPR performance
in the presence of errors in α may help inform an error budget on those physical terms. Previous
work regarding reconstructing α demonstrated high accuracy but dealt with 0.1λ rms wavefronts
using focus-diverse phase retrieval.30 We are interested in the performance of TTDPR with
highly aberrated wavefronts that we would expect from freeform testing. In this work, both the
matrix-product DFT31 and chirp Z-transform30 were used instead of a fast Fourier transform
(FFT). This allows α to take on any value, rather than the value 1∕N, where N is the number
of pixels in the input array, the FFT constraint.

For these simulations, wavefronts and data were again simulated according to the process in
Sec. 3.1 with 40,000 peak photons. However, in these simulations, α was allowed to vary during
optimization along with the 35 Zernike coefficients. All other parameters were assumed known.
Data were simulated using the true sampling parameter, αtrue, but the starting guess, αinit,
was perturbed by a prescribed amount relative to the truth. In these simulations, both α and
coefficients aj were jointly optimized from the start. After optimization, estimates of both the
wavefront coefficients and the sampling parameter, αrec, were obtained, and rms WFSE was
calculated.

Figures 8(a) and 8(b) show rms WFSE versus fractional error in the initial value of the sam-
pling parameter jðαinit − αtrueÞ∕αtruej. As shown in Fig. 8(a), the more highly aberrated wavefront
was more sensitive to errors in α, with 48/60 simulations resulting in rms WFSE <λ∕100. For
the less aberrated case, where θ ¼ 13.91 deg, 60/60 simulations resulted in rms WFSE <λ∕100

Fig. 8 rmsWFSE versus error in the initial sampling parameter ðαinit − αtrueÞ∕αtrue for (a) θ ¼ 7 deg
and (b) θ ¼ 13.91 deg. rms WFSE versus error in the reconstructed sampling parameter
jðαrec − αtrueÞ∕αtruej for (c) θ ¼ 7 deg and (d) θ ¼ 13.91 deg.
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and 59/60 simulations resulted in rms WFSE <λ∕1000. In both cases, TTDPR performance did
not appear to depend strongly on the specific value of αinit. To better understand these results,
residual rms WFSE was compared to the fractional error in the reconstructed sampling parameter
jðαrec − αtrueÞ∕αtruej, shown in Figs. 8(c) and 8(d). The following regression was calculated using
the data in Fig. 8(c)

EQ-TARGET;temp:intralink-;e018;116;675rms WFSEðwavesÞ ≈ 64.84

���� αrec − αtrue
αtrue

����þ 0.0005; (18)

with R2 ¼ 0.987. Neglecting the small constant term, Eq. (18) illustrates that rms WFSE is pro-
portional to fractional error in αrec for θ ¼ 7 deg. Furthermore, the factor of proportionality is
approximately equal to the nominal wavefront rms in waves. We can gain an intuition for this
proportionality if we consider the phase retrieval system in terms of geometrical optics.
According to geometrical optics, geometrical spot size is proportional to the magnitude of the
wavefront aberration function. In the presence of large aberrations, e.g., θ ¼ 7 deg, the shapes of
the measured intensities are dominated by geometrical effects. Because α acts as a DFT scaling
parameter, an error in α may appear as if bright intensity regions have been geometrically mag-
nified. This, in turn, may lead to local minima in optimization where the error in α is “corrected”
by a proportional change in the magnitude of the wavefront aberration. However, the intensities
will also possess high-spatial frequency features whose periodicity is dependent only on α,
which appear only when diffraction is modeled. In the presence of large aberrations, those fea-
tures can be orders of magnitude dimmer than the brightest intensity regions, so they may con-
tribute relatively little to the nonlinear optimizer as it searches for a global minimum. However,
the data in Fig. 8(d), corresponding to a less aberrated nominal wavefront, do not agree with a
simple linear regression, suggesting that diffraction effects still contribute strongly to the shapes
of those intensities. The magnitude of WFSEs in Fig. 8(d) are comparable to results from detec-
tor noise alone.

If TTDPR is being used to test a highly aberrated wavefront, and error in α is a concern,
the capture range of α retrieval may be improved by probing the system in ways that allow
diffraction effects to be a more dominant contributor to the recorded intensities. One approach
may be to measure additional intensities with longer exposure times, where the brightest region
is oversaturated, but the dimmer diffraction lobes have high SNR. A data mask,wk in Eq. (9), can
be applied in optimization to ignore the overexposed regions while fitting the dimmer ones.
Alternatively, a second subaperture may be employed, such as a double pinhole, which would
create a modified double-slit arrangement. The resulting intensities should contain a fringe
pattern with a spatial frequency that depends on α.4

3.5 Validation of Model and Surface Error Calculation

Finally, end-to-end simulations were performed to validate the entire measurement process dis-
cussed in Sec. 2. Unlike the simulations described in Secs. 3.1–3.4, simulated intensity data were
not generated by the TTDPR model used for wavefront reconstruction. Instead, for each sub-
aperture position, noiseless intensities were first simulated using beamlet propagation in a CODE
V model of a measurement configuration with θ ¼ 13.91 deg. For some simulations, detector
noise was then simulated using Poisson noise with 40,000 peak photoelectrons and 16-photo-
electron rms Gaussian read noise. The simulated data were supplied to the TTDPR algorithm
to reconstruct first the wavefront aberration function and from it surface topography error. The
translating subaperture illumination function and the underlying pupil amplitude were calculated
according to Appendices A and B and used as priors in the TTDPR algorithm.

First, simulations were performed using intensity data generated from the nominal surface
height. The nominal surface was reconstructed with a 0.7-nm RMS, 4.0-nm P–Verror with PTT
removed, both in simulations with and without simulated detector noise. The surface reconstruc-
tion error is most likely from a combination of systematic error in the TTDPR forward model and
model mismatch between the TTDPR forward model and CODE V. However, it is small, on the
order of λ∕1000 rms at λ ¼ 632.8 nm. Furthermore, in the simulation from noise-free intensities,
TTDPR-predicted intensities differed from CODE V-simulated data by only 0.3% rms,
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indicating that the TTDPR forward model is suitably accurate for this application. Next, a
4.139-μm P–V, 0.866-μm rms surface perturbation, modeled using a superposition of 45 Zernike
polynomials, as shown in Fig. 9(a), was added to the nominal mirror model in CODE V to
simulate the presence of unknown manufacturing errors. Intensities were again generated in the
ray-trace software and supplied to a TTDPR algorithm. The surface sag error was reconstructed
and then differenced with the known simulated surface height, yielding a residual 1.1-nm rms,
11.0-nm P–V surface reconstruction error with PTT removed, as shown in Fig. 9(b). This error,
although larger compared to the simulation from the nominal mirror model, is still small, ≈λ∕500
rms, and demonstrates a successful end-to-end simulation of the proposed metrology method.

4 Laboratory Experiment

4.1 Secondary Mirror Measurement

After completing the simulations, the freeform mirror was measured experimentally using
TTDPR in a tilted reflective geometry, as shown in Fig. 10. A red HeNe laser, λ ¼ 632.8 nm,
focused through a microscope objective/pinhole combination served as an effective point source.
A circular transmission mask, mounted to two computer-controlled linear translation stages, was
used to project a circular illumination pattern on the mirror. The mask was nominally positioned
at a distance of 161.3 mm from the source and 221.4 mm from the surface origin. The circular
mask had a nominal diameter of 6.35 mm and created a projected pattern on the part with an
approximate diameter of 15.1 mm. The mirror was mounted to a custom kinematic base plate
pair in a Kelvin clamp configuration.29 This kinematic stage was used in a previous measurement
of the freeform mirror using a custom optical null configuration consisting of two additional

Fig. 9 (a) Simulated surface perturbation composed of 45 Zernike polynomials. This perturbation
was added to the nominal surface prescription and intensities were simulated using beamlet
propagation in ray-trace software. (b) Difference between the known perturbation and TTDPR-
reconstructed surface with PTT removed. Note change in color bar scale from μm to nm.

Fig. 10 Laboratory measurement configuration.
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optical subsystems.1 The bottom plate contains three milled conical seats spaced 120 deg apart,
each holding a steel ball bearing. The top plate has three sets of three vee grooves, spaced 120 deg
apart, designed to allow repeatable alignment to rotation angles of 0, θ ¼ 13.91 deg, and 2θ.
The as-machined clocking angles corresponding to the θ and 2θ stage positions were measured
to be 13.97 deg�0.01 deg and 27.95 deg�0.01 deg, respectively, using an autocollimator. To
make these measurements, the top plate was removed and replaced nine times first at the nominal
position, next at the θ position, next at the 2θ position, and last at the nominal position again to
evaluate drift. For each set of nine angle measurements, rms positional repeatability was
observed on the scale of 0.002 deg. The final reported measurement uncertainty of the stage
angle was determined using the observed drift between the mean initial and final angle mea-
surements of the stage at its nominal position.

TTDPR measurements were performed using data from two subaperture scan patterns gath-
ered back to back: a concentric ring pattern similar to Fig. 3 and a Cartesian grid pattern, where
the illumination was stepped linearly by distances of approximately 3.1 mm in each direction.
For each translated position, the reflected intensity pattern was acquired with a QImaging Retiga-
2000R CCD camera with a 7.4-μm pixel pitch, positioned a nominal distance zo ¼ 382.6 mm

from the surface origin. Exposure was automatically adjusted between frames to use most of the
camera’s dynamic range, with typical exposure times on the order of tens of milliseconds.
Figure 11 shows two sample data intensities. These data were then supplied to a TTDPR algo-
rithm to reconstruct the wavefront aberration function according to the methods in Sec. 2.1.
In the TTDPR forward model, translating subaperture illumination and pupil amplitude were
modeled according to Appendices A and B.

Optimization was performed in multiple steps to avoid stagnation. First, optimization was
performed while varying only tilt, power, and astigmatism terms in the wavefront. Next, 45
Zernike polynomial coefficients, the DFT sampling parameter, and illumination translations
were jointly varied along with 45 Zernike coefficients. Next, low-order pupil amplitude poly-
nomial coefficients were also varied, along with a PBP phase map used to model MSF features
according to Eq. (2). A normalized raised-cosine wavefront convolution kernel was used

EQ-TARGET;temp:intralink-;e019;116;400Kðxp; ypÞ ¼
8<
:

π
L2ðπ2−4Þ

�
1þ cos

�
π
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ y2p

q ��
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ y2p

q
≤ L

0; else:
(19)

Here, L is the full width at half maximum, which ranged from approximately 1∕5 to 1∕64 the
subaperture illumination width, or approximately 3 to 0.24 mm.

After reconstructing the wavefront aberration, piston, tip-tilt, and power (PTTP) were
removed using a least-squares fit over the area of the nonzero pupil amplitude. The filtered wave-
front aberration was scaled and remapped to surface topography error using the methods
described in Sec. 2.2. After remapping, PTTP were again removed from the reconstructed
surface over a 74-mm-diameter circular region of interest.

Fig. 11 Sample measured intensities, shown over a 256 × 256 region and raised to the 0.33
power. Axes are labeled by pixel index.
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Figures 12(b) and 12(c) show, respectively, the mean of and difference between surface error
reconstructions from two different subaperture scan patterns, with PTTP removed. The mean
reconstructed surface error with PTTP removed had a P–V of 666 nm and an rms of 108 nm.
The two surface reconstructions had a difference of 74 nm P–V, and 13 nm, or λ∕50, rms. The
surface topography error was also calculated with 36 Zernike polynomials removed to reveal
MSF features. The mean MSF structure, shown in Fig. 12(d) had a P–Vof 35 nm and an rms of
2.7 nm. We do not believe these MSF features are due to the subaperture translation pattern,
because they were reconstructed from datasets that used both rotationally symmetric and non-
rotationally symmetric subaperture scan patterns. Instead, these concentric MSF structures were
likely caused by the diamond-turning process used to fabricate the test mirror. The difference in
reconstructed MSF, shown in Fig. 12(e), was 25.7 nm P-V and 2.0 nm rms. These differences
were largely due to reconstruction artifacts appearing near the edges of the modeled subaperture
illumination patterns.

4.2 Sources of Measurement Uncertainty

In these measurements, system alignment is a dominant contributor to uncertainty in low-order
polynomial terms. As previously discussed, PTTP were attributed to alignment and removed
from the reconstructed wavefront aberration function. TTDPR is not sensitive to global piston,
because a constant phase term will not affect the measured intensities. Wavefront tip-tilt will

Fig. 12 (a) Mean reconstructed wavefront aberration function over the nonzero pupil amplitude.
(b) Mean Δzs with PTTP removed. (c) Difference in Δzs from two datasets using different sub-
aperture scan patterns. (d) MeanΔzs with 36 Zernike polynomials removed to showMSF features.
(e) Difference in MSF between two datasets using different subaperture scan patterns.
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simply shift the modeled intensity pattern relative to the detector origin due to the propagator
used [Eq. (7)]. Power is sensitive to misalignments in the test configuration, specifically source-
optic and optic-detector separation. Furthermore, PTTP surface terms are often included in other
optical part specifications, such as center thickness (piston), wedge (tip-tilt), and radius (power).

In addition, although the nominal wavefront aberration is corrected for third-order astigma-
tism, astigmatism is very sensitive in this test configuration and varies as a function of mirror tilt
angle θ. For example, a tilt error of 0.01 deg, or 36 arc sec, leads to a λ∕10 rms wavefront error
and resulting 32-nm rms surface sag error. With astigmatism removed, that induced surface error
drops to 0.2 nm rms. Uncertainty in astigmatism may be reduced by measuring or calibrating the
mirror tilt using more accurate equipment, such as a laser tracker. In addition, it may be possible
to fabricate optical fiducials on the test mirror, outside the clear aperture, to assist in alignment.
Finally, astigmatism sensitivity may be reduced by measuring the mirror in a nominally on-axis
configuration, with the optical axis normal to the mirror at the surface origin. Although the over-
all wavefront aberration function may be larger, there should be less sensitivity to tilt errors
because third-order astigmatism varies quadratically with field angle. However, an on-axis
configuration would require an optical beamsplitter to avoid obscuration, which may introduce
additional sources of uncertainty.

5 Conclusion

We have described the development of a surface metrology technique suitable for concave, free-
form optics using TTDPR. In this measurement test configuration, optical surface measurements
are possible with decreased hardware requirements, reduced sensitivity to vibration, and lack of
retrace errors compared to interferometry. TTDPR wavefront-sensing performance was tested
through simulation with respect to detector SNR, measurement defocus, errors in subaperture
offset position, and errors in the Fourier sampling parameter, with < λ∕100 rms WFSE demon-
strated in most cases. Next, simulations were performed to model a full end-to-end surface mea-
surement based on a ray-trace model of a freeform mirror under test, and surface reconstruction
errors on the scale of 1 nm rms were achieved. Finally, a physical freeform mirror was measured
in a tilted measurement configuration using datasets from two different subaperture scan pat-
terns. Both form and MSF surface features were reconstructed, and surface reconstructions from
two disjoint datasets were found to agree to within 13 nm rms.

Future work will focus on characterization and mitigation of error sources in this type of
measurement configuration, particularly with respect to low-order terms, which are sensitive
to overall system alignment. Paths for mitigating alignment-induced errors include developing
compatible fiducial strategies and exploring alternative test geometries.

6 Appendix A: Translating Subaperture Illumination Model

As described previously, translating illumination was achieved by placing a circular transmission
mask downstream from a point source, which projects an illumination pattern onto the surface
under test. Although the transmission mask is a hard-edged stop, the projected illumination pat-
tern will have soft edges due to diffraction effects. In addition, due to the tilted geometry, the size
and shape of Akðxp; ypÞ will change as the illumination is scanned over the surface. To model
Akðxp; ypÞ, we first consider the mask transmittance function, μðu; vÞ, positioned at a distance z1
from the point source. Let ψT;kðu; v; z ¼ z1Þ be the field transmitted by the mask transmission
function for each translated position, ðuk; vkÞ, at the ðu; v; z ¼ z1Þ plane

EQ-TARGET;temp:intralink-;e020;116;155ψT;kðu; v; z ¼ z1Þ ¼
1

z1
exp

�
iπ
λz1

ðu2 þ v2Þ
�
μðu − uk; v − vkÞ; (20)

where the paraxial approximation has been applied. Next, we consider the parallel ðx; yÞ plane,
positioned at a distance z2 from the point source, as shown in Fig. 1(b). Using the Fresnel inte-
gral, we propagate ψT;k to the ðx; y; z ¼ z2Þ plane
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ψ2;kðx; y; z ¼ z2Þ ∝ exp

�
iπðx2 þ y2Þ
λðz2 − z1Þ

� ZZ
exp

�
iπ
λ

�
1

z1
þ 1

z2 − z1

�
ðu2 þ v2Þ

�

× μðu − uk; v − vkÞ exp
�
−i2πðuxþ vyÞ

λðz2 − z1Þ
�
du dv: (21)

Instead of calculating Eq. (21) directly, we use a coordinate transformation similar to one pro-
posed by Sziklas and Siegman.32,33 First, let us define a quantity

EQ-TARGET;temp:intralink-;e022;116;646ze ¼
�
1

z1
þ 1

z2 − z1

�
−1

¼ z1
z2

ðz2 − z1Þ (22)

and introduce a change of coordinates

EQ-TARGET;temp:intralink-;e023;116;589ðx 0; y 0Þ ¼
�

ze
z2 − z1

x;
ze

z2 − z1
y

�
¼

�
z1
z2

x;
z1
z2

y

�
: (23)

Equation (21) can then be simplified as

EQ-TARGET;temp:intralink-;e024;116;533ψ2;k

�
z2
z1

x 0;
z2
z1

y 0; z ¼ z2

�
∝ exp

�
iπðx 02 þ y 02Þ

λ

�
z2
z21

��
ψ 0
2;k

�
z2
z1

x 0;
z2
z1

y 0; z ¼ z2

�
; (24)

where

EQ-TARGET;temp:intralink-;e025;116;475

ψ 0
2;k

�
z2
z1

x 0;
z2
z1

y 0; z ¼ z2

�
∝ exp

�
i2πðx 02 þ y 02Þ

λze

� ZZ
exp

�
iπðu2 þ v2Þ

λze

�

× μðu − uk; v − vkÞ exp
�
−i2πðux 0 þ vy 0Þ

λze

�
du dv: (25)

The first term in ψ2;k is a large leading quadratic phase, i.e., the paraxial approximation of a
spherical wavefront emerging from the point source, propagated a total distance z2, appropriately
scaled to the new coordinate system

EQ-TARGET;temp:intralink-;e026;116;364 exp

�
iπðx 02 þ y 02Þ

λ

�
z2
z21

��
¼ exp

�
iπðx2 þ y2Þ

λz2

�
: (26)

The second term, ψ 0
2;k, has the form of a collimated Fresnel propagation of the mask trans-

mittance function over an effective distance ze with scaled output coordinates. The coordinate
scaling between ðx; yÞ and ðx 0; y 0Þ accounts for the geometrical effect of the expanding point
source. Using our definition of ze, we can then construct an effective Fresnel number10 for the
propagation:

EQ-TARGET;temp:intralink-;e027;116;256NF ¼ ρ2

λze
¼ ρ2

λðz2 − z1Þ
�
z2
z1

�
; (27)

where ρ is the physical radius of the transmission mask. Then NF can be used to select appro-
priate numerical parameters for a discrete propagation, as well as provide physical intuition into
the shape of ψ 0

2;k.
To calculate the subaperture illumination field in the exit pupil, we use a perturbation

approximation similar to that used in Sec. 2.2. We recognize the large leading quadratic com-
ponent given in Eq. (26) as the accumulated phase of a nominal ray prior to interacting with the
optical surface. We interpret the Fresnel propagated subaperture field, ψ 0

2;k, as an amplitude and
small phase perturbation on each of the nominal rays. As in Sec. 2.2, let us define a mapping
function

EQ-TARGET;temp:intralink-;e028;116;100ðxr; yrÞ ¼ hðxp; ypÞ; (28)
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where ðxr; yrÞ are the xy-plane intersection coordinates of the nominal ray that intersects the
reference sphere at ðxp; ypÞ and h is the mapping function. The Ak is then given as

EQ-TARGET;temp:intralink-;e029;116;711Akðxp; ypÞ ¼ ψ 0
2;kðxr; yrÞ: (29)

Equation (29) is an approximation of a full tilted-plane propagation. However, all propagation
distances are small and the most dominant effect of the tilted propagation is a coordinate dis-
tortion, which is well modeled by the nominal ray intersections. In our work, after numerically
calculating Eq. (25) using discrete Fresnel propagation, Eq. (29) was calculated using numerical
interpolation. The values of hðxp; ypÞ, i.e., ðxr; yrÞ, were found numerically using a ray-trace
model of the nominal test configuration.

7 Appendix B: Underlying Amplitude Model

As shown in Eq. (1), we choose to mathematically separate the exit pupil function into an ampli-
tude component, jgðxp; ypÞj, times a unit-amplitude phasor. The amplitude component of the
pupil function includes the combined effects of the clipping edge of the mirror aperture and
a smoothly decaying distribution caused by the spatial filter assembly. We used a pupil amplitude
model, which is given as

EQ-TARGET;temp:intralink-;e030;116;502jgðxp; ypÞj ¼ Tpðxp; ypÞTLOðxp; ypÞ; (30)

where Tpðxp; ypÞ is the transmittance due to the hard edge of the test mirror, and TLOðxp; ypÞ is a
superposition of low-order Zernike polynomials to model the low-frequency variations in the
illumination, constrained to take purely positive values.7 Starting from the known mirror aperture
in surface coordinates, TMðxs; ysÞ, the amplitude component Tpðxp; ypÞ is given as

EQ-TARGET;temp:intralink-;e031;116;420Tpðxp; ypÞ ¼ TMðxr;s; yr;sÞ; (31)

where ðxr;s; yr;sÞ are defined by Eq. (12). The ðxr;s; yr;sÞ were found numerically using a ray-
trace model and Eq. (31) was calculated using numerical interpolation.
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