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We study the predicted performance of two apodized pupil Lyot coronagraph designs in the presence of an occulter-
plane field stop. We discuss techniques for capturing diffraction effects when the radius of the stop is larger than
the field of view of an ordinary numerical diffraction model, including mask upsampling and analytical focal-plane
envelope functions. We simulate a closed-loop coronagraphic wavefront control to assess the extent to which such
diffraction effects can be compensated using deformable mirrors. We show that for the designs considered, field
stop diffraction effects are significant at diameters considerably larger than the instrument field of view, suggesting
the need to explicitly include a focal-plane stop in the design process. ©2020Optical Society of America

https://doi.org/10.1364/JOSAA.379609

1. INTRODUCTION

Over the past three decades, direct imaging of extrasolar plan-
ets and circumstellar dust clouds has become an area of great
interest in observational astronomy, and is a primary science
goal of the WFIRST and proposed LUVOIR space observato-
ries [1,2]. A number of techniques for this purpose have been
developed, broadly categorized as Lyot coronagraphy, external
occulting with star-shade masks, phase-induced amplitude
apodization, and nulling interferometry. Within the family
of Lyot-type coronagraphs, there exist numerous varieties
including phase-masking coronagraphs [3,4], vortex corona-
graphs [5–7], hybrid Lyot coronagraphs [8,9], apodized pupil
Lyot coronagraphs (APLCs) [10–12], and shaped pupil Lyot
coronagraphs [13–17].

Lyot-type coronagraphs employ a series of diffractive masks
designed to engineer the on-axis stellar image formed by the
telescope to minimize diffracted starlight in an off-axis region
of interest known as the dark zone, while transmitting the
faint signal from an off-axis orbiting exoplanet so that it can be
detected and characterized. The simplest form of a Lyot-type
coronagraph is a 4-F afocal relay followed by an additional
Fourier transforming stage, shown in Fig. 1. In this configu-
ration, a reimaged telescope pupil at the entrance pupil of the
coronagraph (plane A), possibly coinciding with an apodiz-
ing or beam-shaping mask, is focused onto an occulting mask
(plane B), which blocks the core of an on-axis stellar image while
allowing light from the planet to pass. The beam is then Fourier
transformed to a second pupil plane with a Lyot stop (plane C),
which suppresses the vast majority of the remaining starlight
for spatial frequencies inside the dark zone. A final Fourier

transform forms a real image on an optical detector (plane D).
For APLCs, the occulting mask is generally a small, opaque
circular focal spot, while shaped-pupil Lyot coronagraphs tend
to employ a focal-plane mask transmissive only over part of the
plane, such as an annular or bowtie-shaped mask [18].

The intensity ratio of starlight to planetary light collected
by the telescope is estimated to be at least 1010 for Earth-like
exoplanets orbiting Sun-like stars at visible wavelengths, with
extremely small angular separations on the order of 0.1 arcsec
or less [19]. Due to the extremely tight tolerances required to
realize instruments capable of such high levels of starlight sup-
pression, accurate numerical diffraction modeling is a vital tool
for analyzing the expected performance of proposed corona-
graph designs under ideal and flight-like conditions, and has
been the topic of considerable effort in recent years [20–28].

Early APLC designs, proposed by Aime et al. [10,11,29,30],
were created to operate with simple unobscured, monolithic
entrance pupils, and employed families of continuous-valued
apodizing functions such as the prolate spheroidal wave func-
tions. These functions have the property of maximizing the
energy concentrated in the mainlobe of the far-field diffraction
pattern, enabling high levels of starlight suppression with small
occulting masks [11]. With the rise of complicated pupils with
segments, support struts, and/or spiders, more recent APLC
designs have borrowed pupil-shaping methods developed for
shaped pupil Lyot coronagraphs and employ entrance pupil
masks consisting of a grid of unit cells whose transmission pat-
tern is numerically optimized, for a given Lyot stop and occulter,
to maximize the open area while achieving a fixed desired dark
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A B C D
Fig. 1. Basic unfolded layout of a Lyot-type coronagraph. In an APLC, planes A, B, C, and D correspond to the apodizer, occulter, Lyot stop, and
detector planes, respectively. Blue rays indicate on-axis starlight that is suppressed while dashed red rays indicate off-axis light from the orbiting exo-
planet.

hole contrast ratio over a fixed region of the detector plane
[12,13].

A number of techniques have been proposed and studied
for fabricating binary apodizing masks. One recent procedure
developed by Balasubramaniam et al. [31,32] consists of etching
a set of highly absorbing regions onto a reflective aluminum-
coated silicon substrate. In these fabrication modes, each sample
of the numerical apodizing mask solution is realized as a litho-
graphic resolution element with some finite characteristic
width.

In coronagraph diffraction simulations, including the for-
ward model utilized in mask design algorithms [33], the field
immediately in front of the occulter (which is proportional to
the Fourier transform of the apodizer in the paraxial regime) is
computed by performing a discrete Fourier transform (DFT)
of the field transmitted by the apodizer. In this case, the spa-
tial extent of the computable occulter-plane field is limited by
classical sampling theory to the Nyquist limit imposed by the
sample spacing of the apodizing mask. This implies that it is
not possible with this approach to characterize the effects of
diffraction from focal-plane stops in Plane B of Fig. 1 much
larger than the Nyquist limit. The focal-plane stop may be a
field stop explicitly inserted into the coronagraph to limit the
field of view of the instrument, or may represent the boundaries
of the filter wheel or stage used to support the occulting mask
itself. We demonstrate numerically that field stop diffraction
is potentially significant for current coronagraph designs not
explicitly optimized to include a focal-plane field stop.

Additionally, for masks with relatively coarse sample spac-
ing, we have observed that after upsampling the pupil-plane
masks, the predicted on-axis stellar image departs from the
image computed using the original native-resolution arrays
by a non-negligible amount. We analyze this effect in the con-
text of numerical Fourier optics, and discuss implications for
coronagraph design and numerical modeling.

This article is structured as follows. In Section 2, we review
basic analytical and numerical forward modeling strategies for
Lyot-type coronagraphs. In Section 3, we discuss the properties
of coronagraph mask upsampling, derive an analytical envelope
function that enables the paraxial occulter-plane field to be
computed over an arbitrarily large field of view in the paraxial
regime, and show that this field represents the limit as pupil-
plane mask sampling becomes infinitely fine. In Section 4,
we utilize this framework to present and analyze the results of

numerical models of two APLC designs incorporating a focal-
plane stop of varying radius and under multiple oversampling
conditions, both with and without coronagraphic wavefront
control for active diffraction suppression.

A. Notation

In the discussion that follows, continuous functions are repre-
sented using parenthetical arguments, such as g (x , y ). Discrete
functions are denoted using integer index variables inside square
brackets, for example, a function h[m, n] indexed by the integer
values m and n.

The continuous coordinate pairs (x , y ) and (θx , θy ) are used
to represent transverse pupil-plane coordinates and paraxial
focal-plane angles, respectively, while their discrete counterparts
are the index pairs [m, n] and [p, q ].

In order to be consistent with the notation used elsewhere,
in this article, we have adopted the convention that the indices
[m, n] correspond directly with the continuous variables (x , y ),
so that xm and yn denote the mth x location and nth y location,
respectively. This is distinct from the notation used by many
programming languages such as MATLAB and Python, in
which [m, n] indexes an array in [row, column] format.

The sampled representation of a continuous function is
represented explicitly by appending an index variable after
the continuous coordinate arguments, such as g (x , y )[m, n],
which denotes a two-dimensional discrete function, indexed
by the sequences [m, n], which is obtained by sampling the
continuous function g (x , y ). However, in many cases, for
the sake of notational brevity, sampled functions are denoted
directly using integer indices, i.e. g [m, n]. In these cases, the
notation g (x , y ) and g [m, n] are implicitly understood as the
continuous function g and its discrete, sampled representation,
respectively.

2. BASIC FORWARD MODELING

APLCs consist of three sequential diffractive masks, as illus-
trated in Fig. 1: an apodizing mask A(x , y ) placed at a reimaged
telescope pupil P (x , y ) (plane A), a small on-axis focal-plane
spot called the occulter (plane B) represented by the transmit-
tance 1−M(θx , θy ), and a Lyot stop L(x , y )placed in a second
reimaged pupil plane (plane C), which suppresses stellar side-
lobe energy in the dark zone not directly affected by the occulter.
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The field in the Lyot stop plane is then Fourier transformed onto
a detector, where the final image is formed.

LetψA, ψ̃B ,ψC , and ψ̃D denote the fields in the plane of the
apodizer, occulter, Lyot stop, and detector, respectively, and let
ψ(x , y ) denote the field illuminating the coronagraph entrance
pupil. The tildes in this notation are employed to remind us that
these symbols represent optical fields in image (focal) planes.
Assuming that the coronagraph optics are positioned so that
the pupil and focal-planes are related by simple Fourier trans-
forms, the simplest continuous-domain forward model used to
calculate an on-axis stellar image is

ψA(x , y )= P (x , y )A(x , y )ψ(x , y ), (1)

ψ̃B (θx , θy )=
[
1−M(θx , θy )

]
F {ψA(x , y )} (θx , θy ), (2)

ψC (x , y )= L(x , y )F
{
ψ̃B (θx , θy )

}
(x , y ), (3)

ψ̃D(θx , θy )=F {ψC (x , y )} (θx , θy ), (4)

where each of the fields is given after interacting with the mask in
the plane in which they are defined, where the Fourier transform
F{·} is defined as

F{g (x , y )}( fx , f y )=

∫∫
∞

−∞

g (x , y )

× exp
{
−i2π(x fx + y f y )

}
dxdy , (5)

and recalling that the spatial frequency variables ( fx , f y ) are
proportional to the paraxial angles (θx , θy ) via

( fx , f y )=

(
θx

λ0
,
θy

λ0

)
, (6)

where λ0 is the center wavelength of interest, assuming
narrowband light for any given propagation. In APLCs,
it is usually the case that the support of the apodizing
mask is a subset of the support of the pupil, and thus
A(x , y )P (x , y )= A(x , y ). Additionally, when determin-
ing the as-designed (aberration-free) stellar image, we generally
let ψ(x , y )= 1 (a unit-amplitude on-axis plane wave), so that
ψA(x , y )= A(x , y ). Note, however, that this assumption is
not valid for coronagraph designs that utilize deformable mir-
rors to shape the input field prior to entering the coronagraph
instrument.

To derive a discrete model suitable for numerical diffraction
calculations, we sample the input and output variables with NA

and NB datapoints, respectively, along each dimension, defining

the discrete coordinates xm
1
=m1x , yn

1
= n1x , fx ,p

1
= p1 fx ,

f y ,q
1
= q1 fx , with 0≤m, n < NA and 0≤ p, q < NB , and

assuming for simplicity that the sample spacing is identical
along both directions. Approximating Eq. (5) as a Riemann
sum, we obtain the discrete Fourier transformation

DFT {g [m, n]} [p, q ] = (1x )2
NA−1∑
m=0

NA−1∑
n=0

g [m, n]

× exp {−i2π1x1 fx (mp + nq)} .
(7)

The Nyquist limit, which determines the highest-frequency
spatial sinusoid representable without frequency aliasing, is
given by

fN =
1

21x
, (8)

which, from Eq. (6), implies that, for a given pupil-plane sam-
ple spacing, the sub-Nyquist region of the focal-plane has a
half-width (half-bandwidth) of

θmax =
λ0

21x
. (9)

For a pupil of diameter D sampled on an NA × NA input
array with no zero-padding, we have1x = D/NA, and, hence,

θmax =
λ0 NA

2D
=

NA

2

λ0

D
. (10)

If we fix the number of datapoints so that NB = QNA
1
= N,

where Q is an integer describing the embedding of the NA × NA

pupil-domain array in a larger QNA × QNA array of zeros, and
additionally constrain the input and output sample spacings to
satisfy1x1 fx = 1/N, then Eq. (7) reduces to

(1x )2
N−1∑
m=0

N−1∑
n=0

g [m, n] exp {−i2π(mp + nq)/N} , (11)

which is implemented with high efficiency by the family of fast
Fourier transform (FFT) algorithms. In this article, we draw
an explicit distinction between the general discrete Fourier
transformation as defined in Eq. (7), and the FFT implemen-
tation based on Eq. (11). Alternative implementations of the
DFT, such as the matrix triple product (MTP), also called the
matrix Fourier transform (MFT) [34,35], enable the DFT to
be computed with more flexibility, such as arbitrary output
sample spacing and field of view, than with the rigid sampling
parameters imposed by the FFT, possibly at the cost of reduced
speed and increased memory requirements.

Using the above results, we can formulate a basic approach to
numerically computing the on-axis stellar image resulting from
an APLC as follows:

ψA[m, n] = P [m, n]A[m, n]ψ[m, n], (12)

ψ̃B [p, q ] = (1−M[p, q ])DFT {ψA[m, n]} [p, q ], (13)

ψC [m, n] = L[m, n]DFT
{
ψ̃B [p, q ]

}
[m, n], (14)

ψ̃D[p, q ] =DFT {ψC [m, n]} [p, q ]. (15)

The semianalytical algorithm developed by Soummer et al.
[35] provides a highly efficient implementation of this forward
model in APLCs by utilizing Babinet’s principle. Expanding
Eq. (14) using the definition of ψ̃B in Eq. (13), and temporarily
ignoring array indices for brevity, we have

ψC = LDFT {DFT {ψA} −MDFT {ψA}} . (16)
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Defining the quantity ψ ′B
1
=MDFT{ψA} as the field

impinging on the opaque part of the occulter, and recognizing
that DFT{DFT{A[m, n]}} = A[−m,−n], we obtain

ψC [m, n] = L(ψA[−m,−n] −DFT{ψ ′B }). (17)

Hence, the field immediately before the Lyot stop may be
computed by transforming the occulter-plane field evaluated
within the support of the occulter only, and subtracting the
result from the coordinate-reversed apodizing mask. Because
the occulter is generally small (<5λ0/D) in comparison to
θmax, this insight, coupled with the flexibility of the MTP algo-
rithm, enables a dramatic reduction in required computational
resources.

Up to this point, we have considered only the simplest four-
plane coronagraph model. The Gaussian pilot beam algorithm
utilized in the PROPER and POPPY optical modeling packages
[36,37] for full end-to-end Fresnel propagation is outside the
scope of this article; however, the results derived in the following
sections remain valid.

A. Including a Focal-Plane Field Stop

If a field stop with transmittance F (θx , θy ) with radius RF is
inserted into the occulter-plane, then Eq. (2) becomes

ψ̃B (θx , θy )= [F (θx , θy )−M(θx , θy )]F {ψA(x , y )} (θx , θy ),

(18)
and its discrete counterpart in Eq. (13) becomes

ψ̃B [p, q ] = (F [p, q ] −M[p, q ])DFT {ψA[m, n]} [p, q ].
(19)

Here, we are presented with a problem: if the radius of the
focal-plane stop is larger than

√
2θmax, the length from the

center to the corner of the computational array, then effectively
F [p, q ] = 1, and diffraction from its edges is not included
in the model. If θmax ≤ RF ≤

√
2θmax, then the field will be

partially clipped by the edge of F [p, q ], and the effects of
the field stop will only be partially (and incorrectly) modeled.
Fortunately, the unique geometry of the pupil-plane APLC
masks enables us to increase the focal-plane angular bandwidth
simply and efficiently to overcome this problem, as we will show
in the next section.

The expression for the Lyot-plane field in Eq. (17)
no longer holds in the presence of a field stop because
DFT{F DFT{A}} 6= A[−m,−n], and so the semianalyti-
cal algorithm in most basic form is unable to model the field
stop, regardless of radius. To circumvent this, one can calculate
the direct field DFT{F DFT{A}} with much coarser sample
spacing in the focal-plane than the occulter field ψ ′B , which
is slower than the basic semianalytical algorithm but retains a
computational advantage over the “direct” model described in
Eqs. (12)–(15).

3. SAMPLING AND DIFFRACTION
CALCULATIONS WITH BINARY PUPIL MASKS

Consider a pupil-plane apodizing mask A(x , y ) that can be
described as a superposition of a regular grid of non-overlapping
unit cell functions E (x , y ), such that

A(x , y )=
∑

m

∑
n

A[m, n]E
(

x −m1x
1x

,
y − n1x
1x

)
.

(20)
Here, the integer pair [m, n] with 0≤m ≤ NC − 1 and

0≤ n ≤ NC − 1 is used to index the discrete set of unit
cells, weighted by the coefficients A[m, n], which are sim-
ply the samples of the numerical apodizing mask solution.
For the masks considered here, which are fabricated using
a photo-lithographic manufacturing process, we choose
E (x , y )= rect(x/1x )rect(y/1y ).

A. Mask Upsampling

The simplest approach to increase the computed focal-plane
area is to upsample the apodizer so that each unit cell is sampled
by multiple array elements. Denoting the apodizer upsampling
operation by integer factor K by S{A[m, n]; K }[m′, n′], where
m′ and n′ represent the indices of the upsampled pupil-plane
coordinates with step size 1x/K , the propagation approach
becomes

ψA[m′, n′] = S {A[m, n]; K } [m′, n′], (21)

ψ̃B [p, q ] = (1−M[p, q ])DFT
{
ψA[m′, n′]

}
[p, q ],

(22)

ψC [m′, n′] = S {L[m, n]; K } [m′, n′]DFT

×

{
ψ̃B [p, q ]

}
[m′, n′], (23)

ψ̃D[p, q ] =DFT
{
ψC [m′, n′]

}
. (24)

Decreasing sample spacing by K in a pupil plane causes the
Nyquist frequency fN in Eq. (8), and hence the angular band-
width θmax in Eq. (10), to increase commensurately by K . Note
in Eq. (23) that the Lyot stop is upsampled in addition to the
apodizer; this is necessary in order for the components at the
edge of the enlarged occulter-plane to be adequately sampled in
the Lyot plane.

For upsampling general unit cell geometries, an appropriate
numerical algorithm for approximating the desired shape on a
discrete grid must be employed, which may involve computa-
tions of nontrivial complexity. However, for square unit cells,
upsampling can be performed efficiently and exactly using a tile-
upsampling operation ST{A[m, n]; K }, in which each element
of A[m, n] is replaced by a K × K square of identical samples to
produce a new array K times larger along each dimension.

For any finite value of K , upsampling the apodizer produces
an occulter-plane field that is an approximation to the true
(continuous variable) field, and due to the introduction of
larger arrays, the computational complexity of the propagation
increases. However, upsampling is simple to incorporate into
propagation models, and as the upsampling factor K tends to
infinity, the result of Eq. (21) converges to the true field in the
occulter-plane to within the paraxial approximation, because
DFT{E [m′, n′]}, which is a Riemann sum approximation to
F{E (x , y )}, converges asymptotically to F{E (x , y )}[m′, n′]
as the pupil-plane sample spacing decreases.
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B. Limiting Behavior: The Analytical Envelope

We can alternatively adopt a more efficient analytical approach.
Taking the continuous Fourier transform of A(x , y ) given in
Eq. (20) and using the linearity property, the Fourier similarity
(scaling) theorem, and the Fourier shift theorem, we obtain

F {A(x , y )}

=

∑
m

∑
n

A[m, n]F
{

E
(

x −m1x
1x

,
y − n1x
1x

)}

= (1x )2 Ẽ (1x fx , 1x f y )
∑

m

∑
n

A[m, n]

× exp
{
−i2π(xm fx + yn f y )

}
, (25)

where the envelope function Ẽ ( fx , f y ) is the continuous
Fourier transform of the unit cell function E (x , y ), and we

have defined xm
1
=m1x and yn

1
= n1x as discrete spatial

coordinates.
The summation in Eq. (25) is a two-dimensional analogue of

the discrete-time Fourier transform (DTFT) [38] with discrete
spatial coordinates and continuous spatial frequency coor-
dinates. Sampling this “discrete-space” Fourier transform in

spatial frequency by defining fx ,p
1
= p1 fx and f y ,q

1
= q1 f y ,

we obtain a discrete, frequency-domain function indexed by the
integer pair [p, q ],

F {A(x , y )} [p, q ]

= (1x )2 Ẽ (1x fx , 1x f y )[p, q ]

×

∑
m

∑
n

A[m, n] exp
{
−i2π(xm fx ,q + yn f y ,p)

}
, (26)

which is exactly equal to

F {A(x , y )} [p, q ] = Ẽ (1x fx , 1x f y )[p, q ]

×DFT {A[m, n]} [p, q ]. (27)

In other words, in the paraxial regime, the exact field
diffracted by the apodizing mask may be obtained numeri-
cally by computing the DFT of the numerical apodizer solution
(with no upsampling), and multiplying the result by a discretely
sampled envelope function, which has an analytical expression
for certain choices of unit cell geometry. For instance, for the
square unit cell case considered here, the paraxial focal-plane
field is given by

F{A(x , y )}[p, q ] = sinc(1x fx )sinc(1x f y )[p, q ]

×DFT {A[m, n]} [p, q ]. (28)

Note that we have made no assumptions about the values of
the weights A[m, n]. Thus, the above formulation is true for any
array A[m, n], and is not limited to binary masks.

As a simple demonstration of this principle, consider a
one-dimensional rectangle function g (x ) composed of L
subrectangles with unit cell width1x , i.e.,

g (x )= rect
( x

L1x

)
=

L−1∑
k=0

rect

(
x − k1x
1x

)
. (29)

Also consider the discrete representation g [n] of g (x )
comprised of L nonzero samples,

g [n] = rect

(
n1x
L1x

)
= rect

( n
L

)
. (30)

The length-N DFT of g [n] from x to frequency variable f ,
indexed by p , is the Dirichlet kernel with period N,

DFT {g [n]} [p] =
sin (πLp/N)
sin (π p/N)

. (31)

The unit cell considered here has the form rect(x/1x ), and
its continuous Fourier transform is

F
{

rect
( x
1x

)}
=1x

sin(π1x f )
π1x f

=1x sinc (1x f ) . (32)

Sampling using f [p] = p1 f with 1 f1x = 1/N, and
multiplying by the DFT of g [n],

F
{

rect
( x
1x

)}
DFT {g [n]} [p]

=1x
sin(π1x1 f p)
π1x1 f p

sin (πLp/N)
sin (π p/N)

=1x
sin(π1x1 f p)
π1x1 f p

sin (πL1x1 f p)
sin (π1x1 f p)

= L1x
sin (πL1x1 f p)
πL1x1 f p

= (L1x )sinc((L1x )(p1 f )), (33)

which is the continuous Fourier transform of g (x ), sampled
onto a frequency axis with f [p] = p1 f .

This example is illustrated in Fig. 2. We observe that the
analytical envelope function has a value of zero precisely at the
center locations of all DFT periods except for the fundamental
period, which is a consequence of the fact that for functions of
the form in Eq. (20), the sample spacing of the array is equal to
the width of the unit cells. After multiplication by the envelope
function, the resulting field is identical to the analytical Fourier
transform everywhere, even beyond the fundamental period of
the DFT.

Similarly, by adopting a purely discrete model in the pupil
plane, it is possible to obtain a discrete analog to the continuous-
domain envelope derived above. For square unit cells, this
envelope is given by the Dirichlet kernel (see Appendix A),
which is the discrete-space Fourier transform of a rectangle
function with K nonzero samples along each direction,

Ẽ D( fx , f y )=
1

K 2

sin (πK fx )

sin (π fx )

sin
(
πK f y

)
sin
(
π f y

) . (34)

Denoting the DFT of the tile-upsampled apodizer by

Ã′[p, q ]
1
=DFT

{
ST {A[m, n]; K } [m′, n′]

}
[p, q ], (35)
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(b)(a)

Fig. 2. A demonstration of the principle of exact Fourier transform recovery using the discrete Fourier transform and analytical envelope multipli-
cation. (a) A 10-sample binary rectangle function, representing samples of a continuous-domain rectangle function. (b) (blue line) The magnitude of
the DFT of the binary rectangle, extended to multiple periods (the shaded area denoting the fundamental period), along with the unit-amplitude cor-
rection term (orange dashed line), and their product (black), which is identical to the continuous Fourier transform of the original, continuous rectan-
gle function (red solid line, behind which the black line is hidden).

we find that

Ã′[p, q ] = Ẽ D(1x ′ fx , 1x ′ f y )[p, q ]DFT {A[m, n]} [p, q ],

(36)

where 1x ′ =1x/K is the pupil-plane sample spacing after
upsampling, and the product is performed elementwise. In
other words, multiplying the DFT of the native-resolution
apodizer by the Dirichlet envelope yields exactly the DFT of
the tile-upsampled apodizer. As the upsampling factor K tends
toward infinity and the pupil-plane sample spacing1x ′ tends to
zero, we have (in one dimension)

lim
K→∞

Ẽ D(1x ′ fx )= lim
K→∞

sin
(
πK1x ′ fx

)
K sin (π1x ′ fx )

= lim
K→∞

sin (π1x fx )

K sin (π(1x/K ) fx )

=
sin (π1x fx )

π1x fx

= Ẽ (1x fx ). (37)

As shown above, since the continuous-domain sinc envelope
Ẽ (1x fx ) provides the exact paraxial field when multiplied by
the DFT of the apodizer, this provides a more rigorous argument
that the numerical approximation of the paraxial focal-plane
field approaches the true field as the pupil-plane upsampling
factor increases.

The continuous-domain analytical envelope allows the
occulter-plane field to be computed over an arbitrarily large
area, in the paraxial regime, without the requirement of addi-
tional pupil-plane upsampling. However, because this envelope
has theoretically infinite extent and is nonperiodic, calculating
the corresponding exact field in the Lyot stop requires large
values of K and extremely fine sample spacing to avoid Gibbs

ringing artifacts in the Lyot stop field that corrupt the final stel-
lar image. However, as we have shown, the Dirichlet envelope
converges to the analytical case as K becomes large, and does not
introduce Gibbs ringing in the Lyot stop plane, which makes the
Dirichlet envelope a good choice in practice.

1. Halftoning

In general, when numerically optimizing apodizing masks for
coronagraphs with complex pupil structure, mask solutions
are mostly zero-one valued, but contain a small number of
gray-level (partially transmissive) pixels. These gray-level solu-
tions are typically used in first-order evaluations of inner and
outer working angle (OWA) and dark-zone contrast. In our
simulations, we have consequently assumed that the samples
of the gray-level solution correspond one-to-one with the finite
lithographic fabrication elements of a physically realized mask
(see Section 1).

In reality, current fabrication processes can only represent
binary (zero-one) reflectivity values at each pixel of a mask
solution. Therefore, prior to fabrication, solutions are
tile-upsampled and halftoned, commonly using the Floyd–
Steinberg error diffusion algorithm [39], with the goal of
producing a binary mask with similar diffraction properties
to the gray-level solution within some acceptable degree of
accuracy [13].

Because the halftoned masks also comprise regular arrays
of square unit cells, the results derived in this work are equally
applicable to this case. Furthermore, as mentioned in Section 1,
the number of gray-level pixels is generally a small proportion
of the total, and consequently the difference in the treatment
and behavior of gray-level and halftoned masks is expected to be
small.

The relationship between gray-level and halftoned masks,
along with the behavior of halftoned masks when unit cell extent
is accounted for, will be examined more closely in future work.
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4. RESULTS

A. Effect of Field Stop on Coronagraph Contrast

We introduced a circular focal-plane field stop with the radius
varying from 32λ0/D to 1024λ0/D into numerical models of
two separate APLC designs for the LUVOIR telescope archi-
tecture “A” [1,40], denoted as LUVOIR-A 20170828 and
LUVOIR-A 20180119. The 20180119 design has 512× 512
sample pupil-plane masks and an annular dark zone from
3.5 to 12λ0/D, while the 20170828 design has 256× 256
sample pupil-plane masks and an annular dark zone from 4 to
10λ0/D. Table 1 summarizes these parameters, while Fig. 3
shows the pupil-plane masks for each design. Figure 4 shows
aberration-free stellar images without a field stop or pupil-
plane upsampling. Shown is the contrast I (θx , θy )/I00, where
I (θx , θy ) is the intensity of the stellar image at each location
in the detector plane and I00 is the on-axis intensity of the
unocculted stellar image.

For each focal-plane field stop radius RF , the average dark-
zone contrast for each design was computed as the average
contrast within an annulus with an inner working angle (IWA)
and OWA specified by each design, shown in Table 1. To probe
the approximation error inherent in finite sample spacing, the
mean contrast as a function of RF was reevaluated for multi-
ple values of the oversampling parameter K . All analysis was
performed in the monochromatic, aberration-free regime with
0.25λ0/D sample spacing in the final image plane.

Stellar images for each coronagraph were computed using the
direct four-plane diffraction model outlined in Eqs. (12)–(15).
Because of the large number of datapoints resulting in each
plane when pupil-plane masks are upsampled, several speed
optimizations were implemented to reduce computational
overhead. First, the DFT was implemented using the MTP
algorithm described in Section 2, which, unlike the FFT, does
not require pupil-plane arrays to be zero-padded. Second, the
flexible output field of view of the MTP algorithm was used to
evaluate the occulter-plane field, up to the smaller of θmax or RF

along each axis, in order to reduce the number of datapoints in
the occulter-plane for field stop radii smaller than the available
focal-plane angular bandwidth. Similarly, the detector-plane
field was evaluated only up to the OWA for each coronagraph
design, which is typically much smaller than θmax. Finally, the
Dirichlet envelope, Eq. (34), was utilized to evaluate the DFT

Table 1. Number of Samples Across Pupil-Plane
Masks NA, Occulter Radius RM, Inner Working Angle
(IWA), Outer Working Angle (OWA), and Contrast Target
for the Two Coronagraph Designs Analyzed in This
Paper

a

NA RM [λ0/D]

IWA
[λ0/D]

OWA
[λ0/D]

Contrast
Target

LUVOIR-A
20170828

256 4 4 10 10−10

LUVOIR-A
20180119

512 3.5 3.5 12 10−10

aFocal-plane quantities are given in diffraction widths λ0/D, where λ0 is
the central propagation wavelength and D is the diameter of the coronagraph
entrance pupil.

of the tile-upsampled apodizer Ã′[p, q ] using the DFT of the
native-resolution apodizer given in Eqs. (35)-(36), further
reducing the number of datapoints in each propagation.

As a point of reference, the most computationally expen-
sive optical propagation in the study was the case for K = 16
oversampling of the LUVOIR-A 20180119 pupil-plane masks.
In this case, the pupil-plane arrays were 8192× 8192 samples
in size, and the occulter-plane array was 8200× 8200 sam-
ples in size, representing a half-width of 1025λ0/D sampled
at 0.25λ0/D per pixel, which ensured that the 1024λ0/D
field stop radius was entirely included in the array. The final
image-plane array was 104× 104 samples in size, representing
a half-width of 13λ0/D at 0.25λ0/D per pixel. Performing
the same analysis using the FFT algorithm, which would
require the pupil-plane arrays to be zero-padded by a factor
of four to achieve the equivalent image-plane sample spacing,
would have resulted in arrays of size 32,678× 32,678 samples
at every plane, representing a dramatic increase in required
computational resources.

Figure 5 shows the results of this analysis. In general, as one
would expect, the effects of field stop diffraction diminish as
the radius of the field stop increases. However, because of the
reasons outlined in Section 2.A, as the field stop becomes larger
than the available bandwidth for any particular value of K , its
effects are underestimated, or lost entirely, because the edge of
the field stop is no longer explicitly represented, either wholly or
in part, in the computational array. We can see this by observing
that for a fixed field stop radius (horizontal axis), upsampling
the pupil-plane masks to include the edge of the field stop in the
occulter-plane results in a degradation of the predicted corona-
graph contrast, in some cases by multiple orders of magnitude.
This pattern was true for every field stop radius considered in
this study.

Notice in Fig. 5 that at the largest field stop radius considered,
1024λ0/D, the contrast target of 10−10 is missed by approxi-
mately an order of magnitude in both designs. At this radius, the
field stop edge only falls entirely within the available focal-plane
angular bandwidth for K ≥ 8 for the LUVOIR-A 20170828
design, which has NA = 256 samples across the entrance pupil,
or for K ≥ 4 for the LUVOIR-A 20180119 design, which has
NA = 512, and therefore these datasets are the only reliable
indicators of coronagraph performance with this particular field
stop size.

B. Mitigation Using Closed-Loop Wavefront Control

In many scenarios where aberrations and imperfections in the
optical train degrade coronagraph contrast, closed-loop wave-
front control is able to recover the as-designed contrast target. To
understand the extent to which closed-loop wavefront control
is able to compensate for the diffraction from the focal-plane
field stop, we introduced a pair of deformable mirrors as shown
in Fig. 6, one in the entrance pupil of the coronagraph and one
located at Fresnel number NF = D2

DM/(4λ0z)= 1562.5 away
from the entrance pupil, where DDM is the beam diameter at
the pupil-plane deformable mirror, λ0 is the center wavelength,
and z is the inter-DM distance along the optical axis. Using
two deformable mirrors in this fashion is a standard approach
to coronagraphic wavefront control [41]. For an assumed
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Fig. 3. Pupil-plane masks for the LUVOIR-A 20170828 (top) and 20180119 (bottom) APLC designs.

Fig. 4. On-axis, aberration-free stellar image with no pupil-plane upsampling, from the LUVOIR-A 20170828 (top) and 20180119 (bottom)
APLC designs, whose pupil-plane masks are shown in Fig. 3. Azimuthal averages of each image are shown on the right.
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Fig. 5. Average dark-zone contrast as a function of field stop radius, for two different APLC designs and for multiple values of upsampling factor
K . The contrast target for each design is marked by a red dashed line.

A B C DDMs
Fig. 6. Lyot coronagraph layout with deformable mirrors (DMs) for active wavefront control. The first deformable mirror is coincident with the
entrance pupil of the coronagraph, and is conjugate to the apodizer plane (plane A). The second deformable mirror is in an intermediate plane at a
distance corresponding to Fresnel number NF = 1562.5. The two deformable mirrors together enable simultaneous compensation of amplitude and
phase aberrations over a 360◦ dark zone. As in Figure 1, solid blue rays and dashed red rays represent stellar and planetary light, respectively.

deformable mirror diameter of 50 mm and a 500 nm center
wavelength, this Fresnel number corresponds to a distance
of 800 mm, which is consistent with the optical design of the
LUVOIR-A coronagraph [42]. The deformable mirrors were
each modeled as having a 48× 48 grid of actuators over the
coronagraph entrance pupil, and utilized the influence function
model used by the PROPER optical modeling library [36].

We simulated monochromatic wavefront control loops at
λ0 = 500 nm for both coronagraph designs shown in Fig. 3
with field stops of varying radius. Moreover, we simulated each
choice of field stop radius both with no pupil-plane upsampling
(K = 1), and with K = 16, the largest value considered in
the forward-modeling simulations described in the previous
section. The control loop utilized the stroke minimization algo-
rithm [41,43] to iteratively compute the optimal deformable
mirror commands, and assumed perfect knowledge of the elec-
tric field in the coronagraph dark zone. No noise was introduced
into the model. For each combination of coronagraph, field
stop radius, and upsampling factor, we simulated 80 control
iterations, which we chose so as to enable all simulated loops
to converge to the minimum-achievable contrast. The control
matrix (Jacobian matrix) used by the control algorithm was gen-
erated by a model with no field stop or pupil-plane upsampling,
so that the results represent the achievable contrast without a
priori knowledge of either effect. In each control iteration, a
multiplicative decrease in total integrated dark-zone intensity

of 0.8 over the previous iteration was requested. Because the
Dirichlet envelope given in Eq. (34) and utilized in the forward
model in Section 4.A is not strictly valid in the presence of non-
plane wave illumination, we tile-upsampled the pupil-plane
masks for the K = 16 case.

Figures 7 and 8 show the results of this analysis. Figure 7
shows a plot of mean dark-zone contrast versus field stop radius
for both designs, with upsampling factors K = 1 and K = 16.
For the LUVOIR-A 20170828 design, the smallest field stop
radius for which the average dark-zone contrast after wavefront
control is 10−10 or smaller is 350λ0/D, approximately 90 times
the radius of the focal-plane mask. The corresponding value
for the LUVOIR-A 20180119 design is 300λ0/D, approxi-
mately 85 times the radius of the focal-plane mask. As a point
of reference, the as-designed field of view of the LUVOIR-A
coronagraph is 64λ0/D [42], so assuming that a field stop with a
radius similar to this would be inserted into the coronagraph for
stray light control is not unreasonable.

Figure 8 shows the root mean square (RMS) and peak-to-
valley (PTV) deformable mirror actuator stroke corresponding
to each case. Though the RMS actuator stroke is relatively small
for all cases, on the order of single nanometers, the PTV stroke
is considerably larger, due to the actuator stroke being strongly
concentrated around a small number of actuators. The solutions
for the LUVOIR-A 20170828 design with RF = 350λ0/D
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Fig. 7. Average dark-zone contrast as a function of field stop radius, for two different APLC designs and for two values of upsampling factor K ,
after closed-loop wavefront control. The contrast target for each design is marked by a red dashed line. The results for both coronagraphs are shown
on the same vertical scale. For the most accurate model considered (K = 16), the smallest field stop for which 10−10 contrast can be recovered without
a priori knowledge in the wavefront control forward model is approximately 350λ0/D for the 20170828 design and 300λ0/D for the 20180119
design. The less accurate model without pupil-plane upsampling (K = 1) fails to predict the full contrast degradation associated with finite field
stop radius, with the discrepancy most significant near the nominal Nyquist limit, which is 128λ/D for the 20170828 design and 256λ/D for the
20180119 design.

Fig. 8. Deformable mirror actuator stroke required to compensate for field stop diffraction effects, as a function of coronagraph, field stop radius,
and pupil-plane upsampling factor. All commands are approximately zero mean. Though the root mean square (RMS) actuator stroke is on the order
of nanometers, the commands display pronounced concentrated peaks, and the peak-to-valley (PTV) stroke is on the order of tens to hundreds of
nanometers.

and K = 16, and for the LUVOIR-A 20180119 design with
RF = 300λ0/D and K = 16, are shown in Fig. 9. Because of the
presence of pairs of adjacent actuators with strong commands
of opposite sign, these solutions may be difficult to represent
accurately on a continuous face-sheet deformable mirror in
an experimental setting. The deformable mirror model used
in this study approximates the total surface deformation as a
linear combination of the individual influence functions of
each actuator, and does not account for effects such as inter-
actuator coupling and nonlinear deformation. Additionally,
the concentration of actuator stroke near the edge of the pupil
mask may make the solutions sensitive to misalignments
between the deformable mirrors and the coronagraph entrance
pupil. Therefore, the smallest-correctable radii reported above
should be taken as a theoretical lower bound rather than a tight
constraint.

C. Diffraction Effects from Tile-Upsampled
Coronagraph Masks

Referring again to Fig. 5, we observe that for the LUVOIR-A
20170828 design, when the APLC masks are upsampled with
K > 1, the mean dark-zone contrast does not return below
10−10 even when the field stop radius far exceeds the focal-plane
bandwidth (256λ0/D for K = 2, or 512λ0/D for K = 4). This
indicates that some effect apart from field stop diffraction is
introducing additional diffracted energy into the dark zone not
captured by the nominal (K = 1) model. To study this more
closely, we removed the field stop from the coronagraph model,
tile-upsampled the apodizing mask and Lyot stop by K = 8,
and computed the resultant stellar image, which is shown in
Fig. 10(b). In the upsampled case, the stellar image contains
additional high-energy rings within the dark zone, resulting in
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Fig. 9. Deformable mirror actuator commands for the LUVOIR-A 20170828 design with RF = 350λ0/D and K = 16 (top) and the LUVOIR-A
20180119 design with RF = 300λ0/D field stop and K = 16 (bottom). In both cases, the out-of-pupil deformable mirror command is highly con-
centrated along the outer edge of the pupil and contains strong commands with opposite sign on adjacent actuators.

(a) (b) (c)
Fig. 10. Nominal stellar image from the LUVOIR-A 20170828 design (a) without and (b) with tile-upsampling of the pupil-plane masks by a fac-
tor of K = 8, and with no field stop. (c) Azimuthal averages of both images. Extra diffraction rings in the dark zone of the K = 8 image result in the
coronagraph failing to achieve the desired 10−10 contrast target, indicated by a red dashed line.

the coronagraph failing to achieve the desired contrast target in
several locations.

Recalling from Section 1 that the unit cells of the true, fabri-
cated mask are well-modeled as squares, representing each cell
as a K × K square of samples is more accurate in the spatial
domain, and, indeed, we showed in Section 3.B that doing so
causes the numerically calculated focal-plane field to become
commensurately more accurate.

Another way to view this phenomenon is as follows. When
each unit cell is represented with only a single sample, as in the
K = 1 case, the contribution of each unit cell to the focal-plane
field is a linear phase function only, because

DFT {δ[n − k]} = exp {−i2π(k1x )(n1 f )} , (38)

where δ[n] is the Kronecker delta function. However, represent-
ing each unit cell by a K × K square of samples causes this
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unit-magnitude contribution to become modulated by
the Dirichlet envelope in Eq. (34) and, hence, modifies the
numerically calculated field in successive propagation steps.

As the number of samples across the pupil increases and the
unit cells consequently become smaller, the extra dark-zone
energy introduced by tile-upsampling the pupil-plane masks
becomes negligible. From Fig. 5, we see that this is indeed the
case for the LUVOIR-A 20180119 design, whose pupil-plane
masks are 512× 512 arrays (compared to the 256× 256 masks
for the 20170828 design), and for which the mean dark-zone
contrast is identical for K = 1, K = 2, and K = 4 after the
field stop radius exceeds the Nyquist bandwidth and vanishes
from the propagation. Therefore, this effect functionally serves
to impose a lower limit on the number of samples with which
apodizing masks can be optimized and while still approximating
the continuous-domain within an acceptable degree of accuracy.
This lower limit will be probed more finely in future work.

D. Impact on Other Lyot Coronagraph Architectures

The diffraction effects we have described here are not limited
to the APLC. In principle, any coronagraph architecture that
makes the implicit assumption of a focal-plane with infinite
extent will be susceptible to unintended field stop diffraction;
this includes coronagraphs with focal-plane phase masks such
as the vortex coronagraph [5–7], hybrid Lyot coronagraph
[8,9], phase-masking coronagraphs [3,4], and the classical Lyot
coronagraph. These architectures will be considered in future
work. Shaped pupil Lyot coronagraph designs with spatially
restricted focal-plane masks such as bowtie masks [33] would be
unaffected, because the diffraction from the outer edge of the
focal-plane is already incorporated in the design. However, at
coarse mask resolutions, the effects of finite unit cell size may
become non-negligible.

5. CONCLUSION

In this article, we have examined the predicted behavior of two
APLC designs in the presence of a limiting field stop in the plane
of the occulting mask, which may be explicitly included in the
instrument optical design, or may functionally be imposed by
the boundary of the filter used to support the occulting mask
itself. We have described, analyzed, and implemented several
computational methods that utilize the unique geometrical
structure of binary pupil-shaping masks to extend the available
angular bandwidth in the coronagraph focal-plane, including
upsampling and focal-plane envelope functions. We utilized
these techniques to capture diffraction effects from large field
stops whose radii exceed the angular bandwidth imposed by
the Nyquist limit in classical sampling theory. For masks with
rectangular lithographic unit cells, the proposed focal-plane
envelope functions can be used to recover the exact Fourier
transform of the apodizing mask in the paraxial regime.

Next, we simulated closed-loop coronagraphic wavefront
control to assess whether deformable mirrors may be used
to compensate. Our analysis indicates that without a priori
knowledge of the focal-plane field stop in the wavefront control
forward model, 10−10 contrast may be recovered for field stops
with radii as small as approximately 300−350λ/D. Future

work will analyze the impact of focal-plane field stops for other
varieties of the Lyot coronagraph.

Finally, we numerically demonstrated and analyzed artifacts
in computed stellar images that arise when pupil-plane corona-
graph masks are upsampled, and become non-negligible for
low-resolution coronagraph designs, suggesting a lower limit on
the number of datapoints that may be used in the design algo-
rithm. The precise nature of these artifacts, as well as a refined
estimate of the lower limit on design resolution, will be explored
in future work.

APPENDIX A: DERIVATION OF DIRICHLET
FOCAL-PLANE ENVELOPE

In this appendix, we derive a discrete analogue of the
continuous-domain analytical envelope function described
in Section 3.B. We begin with the discrete-time Fourier trans-
formation (DTFT), an operation that maps discrete functions
to a continuous, periodic frequency domain. For a thorough
analysis of the DTFT and its properties, see Oppenheim and
Schafer [38].

The DTFT of a discrete function g [n] is defined as

DTFT {g [n]}
1
=

∞∑
n=−∞

g [n] exp {−iωn} . (A1)

The output function is periodic in the continuous angu-
lar frequency variable ω with period 2π ; for this reason, we
generally restrictω to the range [−π, π).

Writing in terms of a unitless linear frequency variable
f̄ =ω/2π , we have

DTFT {g [n]} =
∞∑

n=−∞

g [n] exp
{
−i2π f̄ n

}
, (A2)

with f̄ ∈
[
−

1
2 ,

1
2

)
. For temporal signals, the Nyquist fre-

quency is fN = 1/(21t), where1t is the time-domain sample
spacing. Because it represents the largest frequency that any
signal sampled with1t can contain, we can draw a direct corre-
spondence between the Nyquist frequency and the normalized
frequency f̄ = 1

2 . Using this, we may relate linear frequency
f , in units of s −1, to f̄ via f1t = f̄ , and thus write down the
DTFT in terms of f as

DTFT {g [n]} =
∞∑

n=−∞

g [n] exp {−i2πn1t f }

=

∞∑
n=−∞

g [n] exp {−i2π tn f } , (A3)

with f ∈ [− fN, fN), and where tn
1
= n1t is the nth sampling

time interval.
Now we consider the DTFT of a signal represented as a

superposition of non-overlapping, length-K discrete rectangle
functions rectD(·), weighted by g [n],
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rectD

(
n′

K

)
1
=

{
1 0≤ n′ ≤ K − 1
0 otherwise,

g ′[n′] =
∑

n

g [n]rectD

(
n′ − nK

K

)
,

DTFT
{
g ′[n′]

}
n′→ f
=

∑
n

g [n]DTFT

{
rectD

(
n′ − nK

K

)}
n′→ f

.

(A4)

As the notation above suggests, g ′[n′] and g [n] correspond
directly to the two-dimensional tile-upsampled and native-
resolution masks, respectively, described in Section 3.A. The
samples of g ′[n′] are spaced apart by interval1t/K in time, so
the Nyquist frequency for g ′ is

f ′N =
1

21t/K
= K fN . (A5)

Using the shift theorem of the DTFT,

DTFT
{
g ′[n′ − n]

}
n′→ f = exp

{
−i2πn

1t
K

f
}

×DTFT
{
g ′[n′]

}
n′→ f , (A6)

this yields∑
n

g [n]DTFT

{
rectD

(
n′ − nK

K

)}
n′→ f

=

∑
n

g [n] exp

{
−i2πn

1t
K

K f
}

DTFT

{
rectD

(
n′

K

)}
n′→ f

=DTFT

{
rectD

(
n′

K

)}
n′→ f

∑
n

g [n] exp {−i2πn1t f } .

(A7)

Using Eq. (A3),

DTFT
{
g ′[n′]

}
n′→ f =DTFT

{
rectD

(
n′

K

)}
n′→ f

×DTFT{g [n]}n→ f . (A8)

Finally, sampling all terms onto a common frequency axis
f with step size1 f reduces the DTFT to the familiar discrete
Fourier transform,

DFT
{
g ′[n′]

}
=DFT

{
rectD

(
n′

K

)}
DFT{g [n]}. (A9)

Extending Eq. (A3) to two dimensions, we define the discrete-
space Fourier transform (DSFT) as

DSFT {g [m, n]} =
∑

m

∑
n

g [m, n] exp
{
−i2π(xm fx + yn f y )

}
.

(A10)
As before, in the above example, xm and yn describe a dis-

crete set of spatial locations corresponding to the samples of
the function g [m, n], and fx and f y are continuous spatial

frequency variables. Sampling fx and f y similarly yields the
desired expression in terms of the two-dimensional DFT,

DFT
{
g ′[m′, n′]

}
=DFT

{
rectD

(
m′

K

)
rectD

(
n′

K

)}
×DFT{g [m, n]}.

(A11)

As in the continuous-domain example derived in Section 3.B,
the expression DFT{rectD(

m′

K )rectD(
n′

K )} can be evaluated
analytically, since it has a closed-form expression given in terms
of continuous frequency by

DSFT

{
rectD

(
m′

K

)
rectD

(
n′

K

)}

=
1

K 2

sin (π1x fx )

sin (π1x fx/K )

sin
(
π1x f y

)
sin
(
π1x f y/K

) . (A12)
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