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Accurately calculating diffraction from geometrical shapes such as circular apertures is important in computa-
tional Fourier optics. In this paper, we present an algorithm for exactly generating a discrete representation of a
circular aperture whose pixel values are given by the integral of the true aperture within each pixel. We characterize
the accuracy and runtime of the presented algorithm in comparison to approximate techniques such as binning
high-resolution arrays, relative to the analytical Airy pattern. ©2020Optical Society of America
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1. INTRODUCTION

In physical optics modeling, predicting the diffraction pattern
or point-spread function (PSF) from an optical system with
a circular aperture is a ubiquitous problem. For instance, in
image-based wavefront sensing, where the objective is to obtain
an accurate estimate of the phase in the exit pupil of the opti-
cal system using only measurements of the PSF at a plane at
or near the paraxial focus, the well-known Fourier transform
relationship between the exit pupil and the paraxial focal plane
is used to construct a forward model [1], which is then inverted
to estimate the unknown phase function [2]. In high-precision
applications such as high-contrast imaging of exoplanets, one
is motivated to characterize the performance of an optical
instrument with realistic aberrations and defects as accurately
as possible using numerical physical optics models, in order to
place practical tolerances on the fabrication and alignment of
various internal optical components [3].

In these example scenarios, and many others, the Fourier
transformation forms the foundation for the forward model of
the imaging system. Therefore, when constructing computer
models, one faces the problem of discretizing the system in a way
that is as physically consistent with the true, continuous-
domain physics as possible. The most common strategy,
based on Nyquist–Shannon sampling theory, is to sample
the continuous-domain input function using a regular grid
of Dirac δ functions [1]; for an input that is bandlimited (i.e.,
whose Fourier transform has a finite extent) and with sufficiently
fine sampling, Shannon showed that the discretized output is
equivalent to the continuous input in the sense that the input
can be perfectly reconstructed from its samples [4].

However, many input functions in physical optics mod-
eling, such as fields transmitted by circular apertures, are

not bandlimited. In this case, the discrete Fourier transform
(DFT) of the δ-sampled input becomes aliased, meaning that
sampling-induced periodically shifted copies overlap within the
fundamental period, corrupting the values in the fundamental
period, particularly near the edges of the computational win-
dow. This means that the predicted PSF differs from the true
PSF and causes errors in the forward model and inverse-problem
solution.

Though aliasing is unavoidable for non-bandlimited func-
tions, there are approaches to discretizing the aperture that
can reduce its effects. One approach is to δ-sample the aper-
ture with much finer sample spacing than would otherwise be
needed to capture the spatial frequency information of interest,
and then rather than employ the entirety of the fundamental
period, truncate the PSF array to use only the values near the
center, where the aliased energy is minimal. This comes at the
cost of much greater computing and memory requirements.
If we instead restrict ourselves to sampling the aperture only as
finely as needed, another natural approach is to form a Riemann
sum approximation to the Fourier transform integral; doing so
requires that one calculate the integral of the aperture function
within the rectangular regions representing each of the pixels
of the computational grid. This is equivalent to computing the
convolution between the continuous-domain aperture and
a continuous-domain rectangle function in two dimensions
before δ-sampling; in the Fourier domain, this corresponds to
multiplying the continuous Fourier transform of the aperture
with a sinc window, which reduces the energy in the sidelobes
and consequently reduces aliasing in the DFT after sampling.
This is also analogous to the Lanczos sigma factors in time-
domain signal processing, which form a sinc window on the
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Fourier series coefficients of a continuous-time, periodic signal
[5].

Approximating the pixel integrals for circular apertures and
other shapes can be done straightforwardly by generating a
high-resolution discrete representation using δ-sampling, and
then rebinning with boxcar averaging by an integer factor K
to the desired resolution, which we shall refer to as the “bin-
K ” algorithm. Another simple approximation is obtained by
using a linear ramp between zero and one, with the value of the
ramp given by the distance between the edge of the continuous-
domain aperture and the center of each pixel, as a fraction of
pixel width. We will refer to this algorithm as the “ramp” algo-
rithm, and describe it in greater detail in the following section.
We have utilized the ramp algorithm for many years; however,
an algorithm for exactly evaluating the pixel integrals, which
we will henceforth refer to as “area-weighted sampling” or
“area-weighted antialiasing,” has, as of yet, not been described
in the literature, to our knowledge. In principle, having such
an algorithm enables both improved accuracy in diffraction
models and the ability to characterize the error associated with
the bin-K and ramp algorithms.

In the past, much work was devoted to graphical antialiasing
of circles and filled apertures in the computer graphics commu-
nity with the goal of improving visual quality [6–14]. Recently,
Sheppard [15] studied methods for generating optimal binary
representations of circular apertures, but the Fourier transforms
even of these optimal binary apertures poorly match the analyti-
cal Airy pattern, which is the continuous Fourier transform of
a continuous-domain circular aperture when illuminated by a
plane wave.

In this paper, we describe an algorithm for exactly evaluating
the pixel integrals for a discrete circular aperture, providing
an exact solution to the Riemann sum approximation of the
Fourier transform of a continuous circular aperture. Our
algorithm utilizes simple geometric calculations in a recursive
manner, making it computationally efficient. As a conse-
quence of the exact evaluation of pixel integrals, the DFT of
the resulting aperture achieves the minimum-achievable error
relative to the analytical Airy pattern under the Riemann sum
approximation, which is nonzero due to aliasing.

A discrete circular aperture with zero error relative to the
analytical Airy pattern can be obtained by δ-sampling the Airy
pattern and computing an inverse DFT of the result. However,
the resulting aperture will have ringing artifacts due to the trun-
cation of the original Airy pattern, which cause the aperture
to have nonzero transmittance outside of the nominal radius.
We argue that this does not satisfy the requirement that the
discretization be consistent with the underlying continuous-
domain physics. For a specific example, one can consider
wavefront aberrations described by Zernike polynomials,
which are undefined beyond the nominal radius of the aperture.
Extrapolating the aberrations leads to unphysical wavefront
aberration components being transmitted. A full analysis of this
particular strategy is beyond the scope of this paper.

This paper is structured as follows: in Section 2, we briefly
describe the ramp algorithm. In Section 3, we derive the exact
algorithm for area-weighted sampling. Finally, in Section 4,
we benchmark the performance of the exact algorithm against

binary apertures, as well as apertures generated by the ramp and
bin-K algorithms, in runtime and in Fourier-domain accuracy.

2. RAMP ALGORITHM

The ramp algorithm is a simple method for approximating
the pixel integrals over a discrete circular aperture. In one
dimension, it yields the exact pixel integrals for a rectangular
window, but does not produce exact integrals in two or higher
dimensions. For the [m, n]th pixel, compute the quantity

rmn
1
=

1

2
+

1

1

(
R −

√
(xm − xc )

2
+ (yn − yc )

2

)
, (1)

where R is the radius of the desired aperture, (xm, yn) is the
center of the (m, n)th square pixel, 1 is the pixel width (step
size), and (xc , yc ) is the center of the aperture, which can be at a
fractional-pixel location. Then the value of each pixel is assigned
as

C [m, n] =min {max {rmn, 0} , 1} . (2)

This equation is applied to all pixels in the array. The result is
that all pixels whose centers fall more than1/2 inside or outside
the radius of the aperture are labeled as interior or exterior pixels
with a value of one or zero, respectively. For all other pixels,
whose centers are within 1/2 of the aperture edge, the pixel
integral is approximated as a linear ramp between zero and one.
This is highly accurate for pixels along a cardinal direction from
the center but is less accurate everywhere else.

3. EXACT ALGORITHM

In this section, we describe an algorithm that analytically com-
putes the area of the shape formed by the intersection between
the desired continuous-domain aperture and each pixel in the
discrete computational grid. These intersection areas will be
referred to as pixel integrals in the remainder of this paper. The
approach is as follows: first, the pixels that lie along the edge of
the aperture, henceforth referred to as edge pixels, are identified
by counting the number of intersections between the boundary
of the aperture and the sides of each pixel. Next, we use simple
geometry to derive analytical expressions for the areas of the four
partitions formed when vertical and horizontal chords intersect
within the aperture. This result then is used to recursively find
the pixel integral for each edge pixel.

Consider a circular aperture C(x , y )with radius R , centered
at (x , y )= (xc , yc ), which we would like to discretize using
area-weighted sampling. Also consider a discrete coordinate
grid [m, n], where m and n are integers corresponding to the
locations xm =m1x and yn = n1y , respectively, for step sizes
1x and1y .

For simplicity, let 1x =1y
1
=1 and assume that the

grid size N with −N/2≤m ≤ N/2− 1 and −N/2≤ n ≤
N/2− 1 (for even N) is chosen so that C is contained entirely
inside the region bounded by the discrete coordinate grid. If this
is not the case, the aperture can be sampled using an expanded
grid and cropped to the desired size.

Let C [m, n] denote the discrete representation of C(x , y ).
We interpret each sample C [m, n] as corresponding to a finite,
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1×1 square region of space centered at (x , y )= (xm, yn),
which we denote Sm,n(x , y ). The objective is to calculate the
fractional area of the aperture C [m, n] within each square
Sm,n(x , y ) for all [m, n].

A. Identifying Edge Pixels

To simplify the problem, we restrict the problem to all edge
pixels, i.e., squares that contain the edge E (x , y ) of C , because
any square strictly inside or outside C will be assigned a value of
one or zero, respectively. Mathematically, the set of edge pixels is
all Sm,n(x , y ) that intersect E (x , y ) at two or more locations; if
only one intersection point exists, then the corresponding side
is tangent to E and the square is entirely outside the aperture. If
the edge of the aperture passes directly through the corner of a
square, it will be identified as an edge pixel because two separate
intersection points will be counted, one with the vertical side
and one with the horizontal side that form the corner.

First, we construct an N × N array I [m, n] to store the
number of intersections between the edge of the aperture and
the boundary of each square, initialized with I [m, n] = 0 every-
where. As illustrated in Fig. 1(a), for each column m, consider
the vertical line x ′m = xm −1/2, which contains the left edge of
Sm,n and the right edge of Sm−1,n . The point(s) where E (x , y )
intersects this line are

y± = yc ±

√
R2 − (x ′m − xc )

2. (3)

We then identify the rows n± that contain the intersection
point(s) by finding n± ≤ y±/1< n± + 1. This yields one
or two pairs of squares Sm,n+ and Sm−1,n+, and Sm,n− and
Sm−1,n−, whose shared vertical edges contain the intersec-
tion point(s). Increment by one the corresponding values of
I [m − 1, n+], I [m, n+], I [m − 1, n−], and I [m, n−].

Similarly, as illustrated in Fig. 1(b), for each row n, consider
the horizontal line y ′n = yn −1/2, which contains the bottom
edge of Sm,n and the top edge of Sm,n−1. The x locations where
E (x , y ) intersects this line are given by

x± = xc ±

√
R2 −

(
y ′n − yc

)2
. (4)

We then find the two rows m± that contain the intersec-
tion points using m± ≤ x±/1<m± + 1, and increment
I [m+, n − 1], I [m+, n], I [m−, n − 1], and I [m−, n].

After iterating over the set of horizontal and vertical pixel
edges, arriving at the intersections shown in Fig. 1(c), I [m, n]
will contain the number of intersections, shown in Fig. 1(d),
between the four sides of each square Sm,n(x , y ) and the aper-
ture edge E (x , y ). As described above, any square with zero or
one intersection points is either fully inside or outside the aper-
ture, or tangent to it, so the edge setE is identified by selecting all
[m, n] such that I [m, n] ≥ 2:

Fig. 1. Edge-finding algorithm described in Section 3.A. (a) For each column of pixels, the point(s) (blue triangles) where the edge of the aperture
intersects the line along the left edge of column m are calculated using Eqs. (3) and (4). The four pixels whose edges contain these points are indicated
in red, with row coordinates n+ and n−. (b) The procedure in (a) is repeated to find the points of intersection (orange diamonds), with column coordi-
nates m+ and m−, between the edge of the aperture and the bottom edge of row n. (c) Intersection points after iterating over all horizontal and vertical
gridlines. (d) Array I [m, n] containing the number of intersection points between the edges of each pixel and the edge of the aperture. All pixels with
two or more intersection points are identified as edge pixels.
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E 1
= {[m, n] : I [m, n] ≥ 2} . (5)

B. Areas Formed by Intersecting Chords

In this section, we derive analytical expressions for the areas
of four partition regions formed when a horizontal chord and
vertical chord intersect within the aperture. When these chords
are chosen to coincide with the edges of a row and column of
pixels, respectively, each partition area can be identified as the
sum of pixel integrals for a collection of pixels. As described
in further detail in Section 3.C below, by making sequential
partition-area calculations with circular and horizontal chords
placed along the edges of each edge pixel, one can obtain the
individual contributions of each pixel to the total pixel integral,
yielding the desired discrete aperture.

Consider two orthogonal chords displaced from the aper-
ture center by the signed distances dh and dv , respectively,

with the intersection point I 1
= (xc + dv, yc + dh) inside C

so that the aperture is partitioned into four regions, indexed
by k ∈ {1, 2, 3, 4}, starting from the upper-left region and
increasing clockwise, as shown in Fig. 2. These chords intersect
E (x , y ) at points L and R (horizontal chord) and T and B
(vertical chord).

The lengthsLR andT B are computed using dh and dv as

LR= 2
√

R2 − d2
h , (6)

T B= 2
√

R2 − d2
v . (7)

These are simply the differences of the intersection coordi-
nates x± and y± found using Eqs. (3) and (4). The coordinates
of points L, R, T , and B, along with the coordinate of the
intersection pointI, are

L=
(

xc −
1

2
LR, yc + dh

)
, (8)

R=
(

xc +
1

2
LR, yc + dh

)
, (9)

T =
(

xc + dv, yc +
1

2
T B

)
, (10)

B=
(

xc + dv, yc −
1

2
T B

)
, (11)

I = (xc + dv, yc + dh) , (12)

and the lengths of the line segments IL, IT , IR, and
IB are

IL= dv +
1

2
LR, (13)

IR=
1

2
LR− dv, (14)

IT =
1

2
T B− dh , (15)

IB= dh +
1

2
T B. (16)

Each of the four regions is composed of a right triangle and
a circular segment between the edge of the aperture and the
hypotenuse of the triangle, with areas AT,k and AC ,k , respec-
tively, as shown in Fig. 2. Both of these areas have simple
geometric formulas that can be evaluated using the quantities
given above.

The triangle areas AT,k are

AT,1 =
1

2

(
IL
) (

IT
)
, (17)

AT,2 =
1

2

(
IR

) (
IT

)
, (18)

(a) (b)

Fig. 2. (a) Regions A1, A2, A3, and A4 formed when orthogonal chords intersect inside an aperture with radius R . (b) The area of the upper-left
region A1 (shaded) is the sum of the areas of a circular segment AC ,1 (blue) and a right triangle AT,1 (green) whose hypotenuse isLT . The quantities
dh and dv denote the signed displacement of the horizontal and vertical chords, respectively, away from the aperture center (xc , y c ). The quantities `1

and θ1 denote, respectively, the length of, and central angle subtended by, the hypotenuseLT .
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AT,3 =
1

2

(
IR

) (
IB
)
, (19)

AT,4 =
1

2

(
IL
) (

IB
)

. (20)

The areas of the circular segments are given by [16]

AC ,k =
1

2
R2 (θk − sin θk) , (21)

where θk is the central angle subtended by the chord of segment
k, given by [16]

θk = 2 sin−1

(
`k

2R

)
, (22)

where `k is the length of the hypotenuse of the correspond-
ing right triangle. Finally, the total area Ak of each region is
Ak = AT,k + AC ,k .

C. Computing Edge Pixel Integrals

We now apply this result iteratively to obtain the values C [m, n]
of the edge pixels of the sampled aperture. We break the problem
into separate subproblems for each of the four quadrants of the
aperture, relative to the aperture center. In each subproblem, we
work from the outside in to compute the pixel integral between
each square Sm,n(x , y ) and C(x , y ). As we will see shortly, this
allows each area to be found using only the simple geometric cal-
culations described in the previous section.

To illustrate the basic principle, we first consider the case for
the upper-left quadrant of the aperture, shown in Fig. 3 below.
We begin at the leftmost pixel in the topmost row of edge set E ,
i.e.,

[m0, n0] =min
m

{
max

n
E
}
, (23)

whose center is at coordinate (x , y )= (m01, n01). By con-
struction, there are no edge pixels above or to the left of this
pixel.

Place a vertical chord at x = xm0 +1/2, and a horizontal
chord at y = yn0 −1/2, which are, respectively, the right and
bottom edges of the square Sm0,n0(x , y ). For shorthand, let
A1

m,n denote the area A1 of the upper-left region, computed
when the horizontal and vertical chords are placed at the right
and bottom edges, respectively, of square Sm,n(x , y ). Using the
procedure in Section 3.B, the pixel integral C [m0, n0] is given
directly as the upper-left region area A1

m,n .
Moving rightwards one pixel to location [m0 + 1, n0], shown

in Fig. 3(b), we move the vertical chord one pixel width to the
right, and compute the area A1

m0+1,n0
. We can see in Fig. 3(b)

that A1
m0+1,n0

is simply the sum of the known area C [m0, n0]

and the unknown area C [m0 + 1, n0], so by subtraction, we
have

C [m0 + 1, n0] = A1
m0+1,n0

−C [m0, n0]. (24)

We continue moving to the right toward the center of the aper-
ture, in each step computing A1

m,n0
, and subtracting the areas of

all pixels to the left, which have already been evaluated. Once we

have reached the center of the aperture, we move to the leftmost
edge pixel of the next (lower) row and repeat. As seen in Fig. 3(c),
in this case, the partition area Am0,n0−1 contains the pixel inte-
gral for the current square as well as the pixel immediately above
it, and so

C [m0, n0 − 1] = A1
m0,n0−1 −C [m0, n0]. (25)

In general, in the upper-left quadrant, the area A1
m,n for any

given [m, n] contains the sum of the pixel integrals of square
Sm,n and all squares above or to the left of Sm,n . Defining

E1
1
= {[ j , k] ∈ E : j ≤m, k ≥ n} as the set of edge pixels above

and to the left of pixel [m, n], the pixel integral C [m, n] can be
written mathematically as

C [m, n] = A1
m,n −

∑
[ j ,k]∈E1

C [ j , k]. (26)

By iterating from left to right and top to bottom in the upper-left
quadrant of the aperture, the sum in the right-hand side of
(26) always contains known quantities, allowing the next pixel
integral to be computed analytically by computing the area A1

m,n
followed by subtraction of the known pixel integrals for all pixels
above and to the left.

We proceed similarly for the other three quadrants, in each
case adjusting the order of iteration so that the pixel integrals
for each edge pixel are computed from the outside in. For the
upper-right quadrant, we begin at the rightmost pixel of the top
row of edge pixels and iterate to the left and downwards, in each
iteration computing the area A2

m,n , defined as the area of the
upper-right region when the horizontal and vertical chords are
placed at the bottom and left edges of Sm,n(x , y ), respectively.

For the lower-right quadrant, we begin at the rightmost
pixel of the bottom row of edge pixels and iterate to the left and
upwards, in each iteration computing the area A3

m,n , defined
as the area of the lower-right region when the horizontal and
vertical chords are placed at the top and left edges of Sm,n(x , y ),
respectively.

Finally, for the lower-left quadrant, we begin at the leftmost
pixel of the bottom row of edge pixels and iterate to the right and
upwards, in each iteration computing the area A4

m,n , defined as
the area of the lower-left region when the horizontal and verti-
cal chords are placed at the top and right edges of Sm,n(x , y ),
respectively.

In a small number of cases, it is possible for E (x , y ) to tra-
verse a pixel without enclosing any corner of the pixel, forming
a region enclosed by a line segment along the inner edge of the
pixel and the edge of the aperture, as shown in Fig. 4. This pixel
integral cannot be computed by the recursive algorithm in this
section because it is composed of only a circular segment, rather
than a circular segment and a triangle. This case can be detected
easily during the edge-finding stage by checking if the two inter-
section points x± or y± occur inside the same pixel. The pixel
integral for this case is then given by Eqs. (21) and (22), where `k

in Eq. (22) is given by x+ − x− or y+ − y−, depending on the
orientation of the overlap.
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(a) (b) (c)

Fig. 3. Calculation of pixel integrals for edge pixels in the upper-left quadrant of the aperture. (a) Beginning at the upper-leftmost square Sm0n0 , the
pixel integral C [m0, n0] is found using area A1 (see Section 3.B). (b) Moving right one pixel, the pixel integral C [m0 + 1, n0] is given by A1 (green)
minus the known C [m0, n0] (crosshatched). (c) Moving down one row, the pixel integral C [m0, n0 − 1] is given by A1 (green) minus C [m0, n0]

(crosshatched).

Fig. 4. Illustration of special case described in Section 3, in which
the edge of the aperture intersects a single edge of a given pixel twice.
In this case, the pixel integral is determined directly using Eqs. (21) and
(22), with the chord length `= y+ − y−, where y+ and y− are given by
Eq. (3).

4. RESULTS

The exact algorithm was benchmarked on a desktop work-
station with a 3.4 GHz, 8-core processor and 32 GB of RAM
against a simple binary aperture generated using δ-sampling,
the ramp algorithm, and bin-K algorithms for K ∈ {2, 8, 16},
as a function of array width N. The exact algorithm was imple-
mented using Cython, a superset of the Python programming
language with support for integration with C. This implemen-
tation is publicly available in a GitHub repository located at
https://github.com/sdwill/circleshade. All other algorithms
were implemented in a vectorized fashion using the NumPy and
SciPy Python libraries.

In each trial, the x and y axes were normalized to have a
unity total width and sampled over the range [−0.5, 0.5)
with N points (i.e., with step size 1= 1/N). Apertures were
randomly generated with radius R chosen randomly from a
uniform distribution over the interval [0, 0.5). The center
location (xc , yc ) was also randomly chosen, with each coor-
dinate drawn from a uniform distribution over the interval
[−(0.5− R), (0.5− R)]. These two measures admit a robust
variety of test cases, while ensuring that in each case the aperture
is contained entirely within the computational window to avoid
truncation artifacts when performing a DFT.

For each aperture, the Fourier-domain error of
DFT{C [m, n]} was computed relative to the analytical Fourier
transform of the circular aperture, given by

F {C(x , y )} = R
J1(2π Rρ)

ρ
exp

{
−i2π(xc fx + yc f y )

}
,

(27)

where J1(·) is the first-order Bessel function of the first kind, and

ρ =
√

f 2
x + f 2

y is the radial Fourier-domain coordinate, using

the normalized sum-of-squared differences (NSSD) error met-
ric. The NSSD metric is defined for complex-valued functions
g [m, n] and h[m, n], normalized to h[m, n], as∑

m

∑
n
|g [m, n] − h[m, n]|2∑
m

∑
n
|h[m, n]|2

. (28)

The DFT was computed using the matrix Fourier transform
(MFT) algorithm [17], expressed by

DFT {C [m, n]}

= (1x )2 exp
{
−i2π fx xT}C [m, n] exp

{
−i2πyfT

y

}
,

(29)

where exponentiation is performed elementwise, and the
products are understood as matrix multiplications. This trans-
formation is carried out in two dimensions from length-N
discrete coordinate axes x and y to the spatial frequency axes fx

and fy , which may be sampled with arbitrary sample spacing and
range. If the fast Fourier transform (FFT) is used instead, one
must take care to ensure that the chosen implementation of the
bin-K algorithm correctly places the location (x , y )= (0, 0) in
accordance with the conventions of the FFT algorithm (many
do not). Incorrect coordinate centering will manifest itself as
an extra linear phase in FFT{C [m, n]} not accounted for by
the analytical description in Eq. (27) derived from continuous-
domain Fourier mathematics, and will distort comparisons
between the bin-K algorithm and others.

In the figures and discussion that follow, we will restrict our
attention to one particular randomly generated test case with
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Fig. 5. Circular apertures sampled on 16× 16 pixel grids for R = 0.416 and (xc , y c )= (0.025,−0.026), generated by, from left to right,
δ-sampling, the ramp algorithm, bin-K for K = 16, and the exact algorithm. The edge of the true aperture is shown in each figure in red.

Fig. 6. Discrete Fourier transform amplitudes of each of the apertures in Fig. 5, along with an analytical Airy pattern given by Eq. (27). The DFT
of the binary aperture suffers from aliasing artifacts within a small number of Airy rings, while the antialiased sampling methods well approximate the
analytical Airy pattern (right) over a much greater extent of the Fourier domain.

radius R = 0.416, center location (xc , yc )= (0.025,−0.026),
and array width N = 16. The spatial frequency axes fx

and fy were sampled at twice the Nyquist frequency, i.e.,
1 fx =1 f y = 1/4, and contained the full fundamental period
of the DFT, with total width W fx =W f y = 4. We stress that
although the results presented here are specific to this geometry,
the broad patterns and conclusions were identical for all random
test cases analyzed. The apertures generated by δ-sampling and
the ramp, bin-16, and exact algorithms are shown in Fig. 5,
while their DFT amplitudes are shown alongside the analytical
Fourier transform of the continuous-domain aperture in Fig. 6.

In the spatial domain, where a closed-form reference does
not exist, the NSSD error of the apertures from the δ-sampling,
ramp, and bin-K algorithms was computed relative to the

aperture from the exact algorithm. Average runtime was esti-
mated using 50 executions of each algorithm to enable better
estimation for small array sizes.

Spatial-domain error, Fourier-domain error, and runtime
as a function of array width N for all algorithms are shown in
Fig. 7. As N increased and each aperture became more finely
sampled, the Fourier-domain error decreased for all algo-
rithms; as discussed in Section 1, this error cannot be nonzero
for a Riemann sum approximation to the Fourier transform
of a non-bandlimited function such as a circular aperture.
The Fourier-domain error of the exact algorithm was tracked
remarkably closely by the ramp algorithm and the bin-K algo-
rithm for K > 8. However, at N = 1024, the exact method
executes in approximately 0.2 s, twice as fast as the bin-8 and an
order of magnitude faster than the bin-16 algorithm.

Fig. 7. Spatial-domain error, Fourier-domain error, and runtime for five approximate aperture-generating algorithms (see Section 4) and the
exact algorithm as a function of array width N. The Fourier-domain error shown here is the NSSD, Eq. (28), of the DFT of each aperture relative to
F{C(x , y )}. The spatial-domain error is the NSSD error for each aperture relative to the exact aperture.
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Fig. 8. Spatial-domain error between bin-K apertures and exact aperture, and Fourier-domain error between bin-K apertures and analytical
Fourier transform in Eq. (27), as a function of K and for fixed array size N = 16. Both are measured by the NSSD, Eq. (28). The Fourier-domain
error of the exact aperture provides a lower bound to the Fourier error of the bin-K algorithm, and is shown by the red dashed line in (b). As K
increases, the bin-K aperture converges to the exact aperture in both the spatial and Fourier domains, providing strong evidence of the correctness of
the exact algorithm.

To demonstrate the correctness of the proposed algorithm,
we chose to take a numerical approach. The pixel integrals
approximated by the bin-K algorithm converge to the true pixel
integrals as K tends toward infinity. We generated a collection
of bin-K apertures with an array width fixed at N = 16, and
varied K between two and 2048. For large K , generating a full,
high-resolution binary aperture with MK ×MK samples
required impractically large amounts of memory, and so for this
validation stage only, we utilized a slower, yet more memory
efficient, implementation of the bin-K algorithm in which
each K × K block of the high-resolution binary aperture was
evaluated sequentially. For each aperture, we then computed
spatial-domain and Fourier-domain errors as before.

Figure 8 shows the result of this analysis. The bin-K aperture
does indeed converge monotonically to the exact aperture in
the spatial domain as K increases. In the Fourier domain, con-
vergence is also rapid: for K > 8, the NSSD error of the bin-K
algorithm is within 5× 10−6 of the error of the exact algorithm.
Though not a formal proof, this offers strong evidence that
the algorithm presented here behaves as a limiting case of the
bin-K algorithm, and consequently that it produces exact pixel
integrals down to the floating-point noise floor.

5. CONCLUSION

In this paper, we have presented a novel algorithm for discretiz-
ing a circular aperture by exactly computing the integrals over
each pixel in a discrete grid. We have shown that the apertures
generated by the algorithm behave as the limiting case of the
bin-K algorithm as K tends toward infinity. The presented
algorithm is more computationally efficient than generating a
highly binned aperture, and because it computes pixel integrals
exactly, it achieves the minimum error with respect to an ana-
lytical Airy pattern possible when approximating the Fourier
transform integral as a Riemann sum. The ramp algorithm

described in Section 2 is a simple and efficient alternative whose
Fourier-domain error is, surprisingly, only very slightly worse
than that of the proposed algorithm; we believe that this is
because the Fourier error of the ramp algorithm is dominated
by the inherent aliasing due to sampling, which is much greater
than the error due to its approximation to the Riemann sum.

Because there is no closed-form expression for the diffraction
pattern from a circular aperture illuminated by any field other
than a plane wave, we have limited our analysis to on-axis plane
wave illumination. Evaluating the pixel integrals for a circular
aperture under general illumination is a considerably more
challenging problem. To circumvent this, one can separately
discretize the aperture function and the illuminating field,
and multiply the two to form the illuminated aperture. This is
not strictly identical to discretizing the illuminated aperture;
however, we believe that for smoothly varying aberrations, the
error from this approximation is small. A more rigorous analysis
of sampling effects in circular apertures with general wavefront
aberrations will be explored in future work.

The proposed approach may additionally be extended to
include sampling of ellipses with arbitrary eccentricity and angle
of rotation by replacing the calculation of the area of a circular
segment with that of an elliptical segment.
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