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The spectrum of light, in general, changes when the light interacts with a dispersive medium or when it is diffracted. It may also 
change on propagation, even in free space, because of the coherence properties of the source. The difference and some similarities 
between these processes of spectral modification are analyzed. 

It has been demonstrated in the last few years, both 
theoretically [ 1-5 ] and experimentally [ 6-10 ] that, 
in general, the spectrum of  light generated by a par- 
tially coherent source changes on propagation, even 
in free space. Spectral changes also arise when a po- 
lychromatic light passes through a dispersive optical 
element, such as a prism or a diffraction grating or 
is diffracted at an aperture. The distinction between 
these two effects has been rather obscure until now. 
The present note is concerned with clarifying this 
situation. 

Let us consider the propagation of light through a 
linear, deterministic, time-invariant system. We as- 
sume that the light is statistically stationary, at least 
in the wide sense, and we confine our attention to 
the optical field in an input plane Z=Zo  and an out- 
put plane z = z t  (see fig. 1 ). According to the co- 
herence theory in the space-frequency domain [ 11 ], 
we may represent the fields in the two planes by en- 
sembles { Uo (p', to) } and {Um (p, to) } of frequency- 
dependent realizations. Here p'  and p are position 
vectors of  typical points Po and Pt in the input and 
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Fig. 1. Illustration of the notation relating to eq. ( 1 ). 

the output plane respectively. Corresponding reali- 
zations will be related by a formula of  the form 

Ul(p,  t o ) =  J Uo(P' , to)  K ( p , p ' , t o )  d2p ' , (1)  

where K ( p ,  p ' ,  to )  is the impulse response function 
of  the system. We stress that the system need not be 
an imaging system. It could be, for example, a prism 
or a diffraction grating or even free space. 

The cross-spectral densities at frequency to of  the 
fields in the two planes may be expressed in the form 
[111 

Wo ( p'~ , p'E , to ) = ( U ~ ( p "~ , to ) Uo ( P '2 , to ) ) , (2a) 
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Wl(pl,p2, to)=(U'~(pl,t.o) UI(P2, to) )  , (2b) 

where the asterisk denotes the complex conjugate and 
the angular brackets denote the ensemble average. 

On substituting from eq. (1) into eq. (2b) and 
making use of eq. (2a) we obtain the fo l lowing 
expression for the cross-spectral density of the field 
in the output plane in terms of the cross-spectral 
density in the input plane: 

W,(p,,p2, to)= ~ ~ Wo(p'~,p'2, to) 

×K*(pl,P'1, to) K(pE,P'2, 09) dEp'l dZp[. (3) 

If we set Pl =P2 =P, the expression on the left reduces 
to the spectral density S~(p, to) of the field in the 
output plane: 

SI(p' to)= I ~  W°(P'~'P'2'to) 

×K*(p,p'~, o9) K(p,p'2, to) d2p~ dZp[. (4) 

The physical significance of this formula becomes 
clearer if we express the cross-spectral density 
Wo(P'l,P'2, to) in terms of the spectrum S0(to) (as- 
sumed for simplicity to be the same at every point 
in the input plane) and the degree of spatial coher- 
ence [ 1 2 ] 

~(p'~, p~, to) = Wo (p'l, p~, to) ~So(to) (5) 

of the input field. On substituting for Wo from this 
formula in eq. (4) we obtain the following expres- 
sion for the spectrum $1 (p, to): 

s,(p, to)=So(to) to) 

×K*(p, P't, to) K(p, P'2, to) d2p~ d2p2 • (6) 

The expression (6) shows that the spectrum in the 
output plane will, in general, differ from the spec- 
trum in the input plane for two different reasons: 

(i) because of the spatial coherence properties of 
the input field, characterized by its degree of spatial 
coherence/~o(P'l, P[, to); and 

(ii) because of the transmission properties of  the 
system, characterized by the impulse response func- 
tion K (p, p' , to). 

Let us consider two extreme cases. Suppose first 
that light from a partially coherent planar secondary 
source occupying a finite region tr of  the input plane 

Z=Zo propagates in free space to the far zone. The 
impulse response function is then given by [ 1 3 ] 

ik 0 exp (ikr) 
K(p,p', to) = - 2-~n c°s r exp( - i k s .p '  ) , 

(kr--,~) , (7) 

where r=  [ (z~ -Zo)2+p  2 ] ~/2 is the distance from the 
origin Oo in the input plane to a field Point P~ (z~, p) 
in the far zone, s is the unit Vector pointing from O 
to P1 and 0 is the angle which the line OPI makes 
with the positive z-axis (fig. 2). On substituting from 
eq. (7) in to eq. (6) we obtain the following expres- 
sion for the spectrum of the light at the point P in 
the far zone: 

[kcos 0\  2 " 
Sl(rs, m ) = S o ( m ) ~ , ~ )  j f lto(P'~,p'2, to) 

G t~ 

×exp[  -iks_t • (p[ -p'~ ) ] dEp'~ dEp[ (8) 

(rs-z~, p), s .  being the projection, considered as a 
two-dimensional vector, of the unit vector s on the 
source plane. In particular if the source is quasi-ho- 
mogeneous [ 14 ], its degree of spatial coherence de- 
pends on its two spatial arguments only through the 
difference p~-p'~ and we will then write / to(p~-  
p'~, 09) in place of ~(p'~, p[ ,  to). In this case the for- 
mula (8) gives, to a good approximation 

2 

Sl(rs, to)=(toc°sO'l A/~o(ksj_, to) So(to) , (9) 
\ cr ] 

where to=kc (c being the speed of light in vacuo) 
and/~o Or, to) is the two-dimensional spatial Fourier 
transform of the degree of spatial coherence of the 
light in the source plane z=  Zo viz., 

/zo(f, to) = (2~)2 /Zo(p', o9) e x p ( - i f . p ' )  d2p ' , 
a 

(10) 

A being the source area. 
The expression (9) for the far zone spectrum is in 

agreement with a formula derived previously ( [ 14 ], 
eq. (4.8)) in a different manner. It shows how the 
spectrum of the light is changed on free-space prop- 
agation from the source to the far zone due to the 
coherence properties of the source, characterized by 
the correlation coefficient ~ .  
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Fig. 2. Illustration of the notation relating to the formulas (8) and (9). The point PI, located in the far zone, is specified by the position 
vector r =- r s - ~  (Z l ,  p ) .  

As another extreme case consider the situation 
when the input is a plane polychromatic wave which 
propagates through a linear system in the positive z- 
direction. The degree o f  spatial coherence IZo(p'~, 
p[ ,  to) will then necessarily have the value unity for 
all value o f  its arguments ~ p~, p [  and to and the 
expression (6)  then reduces to 

S t ( p , o ) ) = S o ( o g )  f K ( p , p ' , c o ) d 2 p  '2  . (11) 

This formula shows that the difference between the 
spectra in the output plane and the input plane is now 
entirely caused by the response properties o f  the 
transmitting system, as might have been expected. 

Eq. (11 ) applies to situations where the spectral 
changes are produced by dispersion and diffraction 
o f  a spatially completely coherent polychromatic 
plane wave propagating in the z-direction by a sys- 
tem which includes, for example, lenses, prisms, dif- 
fraction gratings and diffracting apertures. Such sys- 
tems will, o f  course, also produce changes in the 
spectrum of  an incident non-planar polychromatic 
wave of  any state o f  coherence. However  the differ- 

#1 This result follows from eq. (5) and the fact that the cross- 
spectral density of such a wave has the form W0(r~, r[, to) = 
So(to)exp[i(to/c) (z'2 -z'l  ) ], where z~ and z[ are the z-com- 
ponents of the vector r~ and r[ respectively and c is the speed 
of light in vacuo. In particular, when r~ =p~, r[ =p[ then 
z~ =z~ =zo and the above expression gives Wo(p[, p[, to) = 
So(tO). Eq. (5) then implies that /zo(p~,p[,to)---l, as 
asserted. 

ent causes of  the spectral modification cannot always 
be clearly separated. In some situations it may even 
be possible to regard the effect as arising either from 
the coherence properties o f  the source or  from dis- 
persion and diffraction. An example o f  such a situ- 
ation is one of  the experiments described in ref. [ 6 ] 
and illustrated in fig. 2 (b)  of  that reference. The sys- 
tem employed in that experiment consisted of  three 
planes, namely the input plane (I) ,  a plane o f  a sec- 
ondary source ( I I )  and output plane ( I I I ) ,  with a 
lens located between the planes (I)  and ( I I ) .  The 
change in the spectrum of  the light transmitted from 
the input plane to the output  plane was attributed to 
the coherence properties of  the secondary source. It 
is, however, also possible to regard the change as 
being due to dispersion and diffraction of  the light 
as it passes from the input to the output plane, with- 
out explicitly invoking the coherence properties o f  
the light in the intermediate plane II. On the other 
hand, because o f  the basic difference in the mathe- 
matical properties of  the degree o f  spatial coherence 
o f  sources and of  the response function o f  linear sys- 
tems it is likely that some spectral modification which 
might be produced by source correlations may not be 
realizable by dispersion and diffraction and vice 
versa. 
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