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Abstract: Modal analysis of an optical field via generalized interferometry (GI) i s a  novel 
technique that treats said field as a linear superposition of transverse modes and recovers the 
amplitudes of modal weighting coefficients. We use phase retrieval by nonlinear optimization 
to recover the phase of these modal weighting coefficients. Information diversity increases the 
robustness of the algorithm by better constraining the solution. Additionally, multiple sets of 
random starting phase values assist the algorithm in overcoming local minima. The algorithm 
was able to recover nearly all coefficient phases for simulated fields consisting of up t o 21 
superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot 
noise.
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1. Introduction

Methods which analyze modal coefficients of fields have been studied using a variety of different
techniques. Historically, much of the modal analysis work has been associated with sorting fields
propagated through multimodal fibers for use in optical communication systems [1]. Recently
however, there has been a great deal of focus on analyzing propagated, freespace fields into a
transverse basis set for use in both satellite and terrestrial-based communication systems [2–4].
Experimental recovery of messages encoded in the relative phase between two superpositioned
freespace modes has also been conducted over long propagaton distances through atmospheric
turbulence using machine learning techniques [5].
In this paper, we describe a phase retrieval algorithm for a novel interferometry system

known as a generalized optical interferometer. By itself, this system enables one to analyze a
monochromatic, scalar optical field propagated through free-space. By considering the field
transiting through the interferometer as a weighted superposition of Hermite Gaussian (HG)
modes, the system is able to recover the amplitudes of the generally complex-valued weighting
coefficients [6, 7]. This interferometer uses generalized phase operators (GPOs) which, for
cases of concern here, conducts a fractional Fourier transform (fFT) with respect to one or
both transverse beam dimensions of the input field. The optical elements that conduct the fFTs
are balanced with the beam parameters such that the diameter of the system’s output intensity
distribution never changes, regardless of the GPO encoding [8]. This is accomplished without
physically repositioning any optical elements in the system. The recovery of the amplitudes will
be described briefly in Section 2. An additional approach to amplitude recovery can also be
found in [9]. After the amplitude of each coefficient is recovered, we wish to recover the phase of
these coefficients. Phase retrieval techniques have been used in a variety of applications including
wave-front sensing [10], metrology [11], crystallography [12], microscopy [13], astronomical
speckle imaging [14, 15], x-ray diffraction imaging [16], and decomposition of TEM modes
in multimodal fibers [17]. Section 3 describes our novel nonlinear optimization-based phase
retrieval algorithm. Section 4 describes and gives results for Monte Carlo simulations that were
conducted to characterize the algorithm and provides best practices for its use. Section 5 draws
conclusions and discusses future work motivated by the results in Section 4.
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2. Generalized optical interferometry theory

2.1. Generalized optical interferometry basics

In a generalized optical interferometer (GI) , GPOs are added in one or more arms of an
interferometer (in this case a Mach-Zehnder type). GPOs take the form of a transform kernel
associated with a manipulation of a physical property of the optical field. These properties include
phase, polarization, temporal delay, parity (flipping of the field as in a dove prism), etc. [6]. In
this work, we confine our investigation to a specific type of GPO whose only effect on the field is
to add a known phase to the field. Each term in the linear combination that describes the original
field is a weighted member of a basis set. The members of the basis set when operated on by the
GPO produce a phase-only eigenvalue: given a transverse scalar field,

U(x, y) =
∑
n

cnψn(x, y), (1)

a GPO, Λα, is defined such that,

Λα {U(x, y)} =
∑
m

cme
imπα

2 ψm(x, y), (2)

where α is the transform parameter of the GPO.

An operator and basis set combination that exhibit the desired functionality are the fractional-
Fourier Transform and Hermite Gaussian (HG) basis set. The fFT is a linear canonical transform
whose effect on the phase-space distribution of a transverse field distribution is a rotation of the
rectangular region whose area is the space-bandwidth product of a single dimension [18, 19] . A
π/2 radian rotation of this rectangular region in phase space corresponds to a Fourier transform
and a −π/2 radian rotation corresponds to an inverse Fourier transform. Rotations that are not
discrete multiples of π/2 radians are "fractions" of a full Fourier transform and are thus referred
to as fractional Fourier transforms. The order of an fFT, α, corresponds to the amount of rotation
in phase space imparted by the transform. An fFT can also be thought of as a propagator similar
to a Fresnel transform in that it can be used to conduct a propagation from the exit pupil of the
system to any other plane [20]. In this paper, if θ is the phase space rotation in radians, the fFT
will be represented as Fα{·}, where α = 2θ/π. So the first Fourier transform plane is at α = 1,
which corresponds to a π/2 rotation in phase space. The fFT is a periodic operator in the sense
that the operation performed at α is the same as the operation performed at α + 4p where p is
any integer. The symbols F{·} and F−1{·}, without an α value, will represent a standard Fourier
transform and inverse Fourier transform, respectively. HG modes are defined at the beam waist in
two dimensions as

HGmn(x, y) = Hm

(√
2x
w0

)
Hn

(√
2y
w0

)
exp

[
−

(
x2 + y2)
w2

0

]
, (3)

where Hm and Hn are physicist’s Hermite polynomials of order m and n, respectively, and w0 is
the radius of the beam waist. They are well known solutions to the paraxial wave equation [21].
Throughout this paper HG mode superpositions will be referred to by order. The `th order of HG
modes is inclusive of all modes such that the indices m and n in a given mode, HGmn, satisfy the
condition m + n ≤ `.

2.2. Generalized Mach-Zehnder Interferometry

In this work, a Mach-Zehnder interferometer (MZI), as shown in Fig. 1, was used. Each arm of the
interferometer holds a GPO as described by Eq. (2). The upper output port of the interferometer
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Fig. 1. Mach-Zehnder generalized interferometer configuration used for phase retrieval
simulations. The array detector placed at the upper port of the figure also functions as a
bucket detector for GOI amplitude recovery by integrating over all pixels

contains an array detector which, when used to recover |cmn | values, will function as a bucket
detector by integrating over all pixels. When used to retrieve φmn values, the pixel information
will be used normally, i.e. the pixel energies will not be integrated [6,9]. This spatial information
is used in the phase retrieval process.
Using Eq. (2), the field exiting the upper output port of the interferometer is

Uout (x, y;α, β) = 1
√

2

[
Λα + Λβ

]
Uin(x, y) =

1
√

2

[
Λα + Λβ

] ∑
m,n

cmnHGmn(x, y)

=
1
√

2

∑
m,n

cmn

[
e

imπα
2 HGmn(x, y) + e

inπβ
2 HGmn(x, y)

]
=

1
√

2

∑
m,n

cmnHGmn(x, y)
(
e

imπα
2 + e

inπβ
2

)
.

(4)

where Λα and Λβ are the GPOs in the upper and lower arms of the interferometer, respectively.

The intensity at the output port of the MZI with the bucket detector is

Iout (x, y;α, β) =
����� 1
√

2

∑
m,n

cmnHGmn(x, y)
(
e

imπα
2 + e

inπβ
2

)�����2
=

1
2

{∑
m,n

|cmn |2HG2
mn(x, y)

[
2 + 2 cos

(
mπα

2
− nπβ

2

)]
+

[ ∑
m,n;m′,n′
m,n,m′,n′

cmnc∗m′,n′HGmn(x, y)HGm′n′(x, y)

×
(
e

imπα
2 + e

inπβ
2

) (
e−

im′πα
2 + e−

in′πβ
2

) ]}
.

(5)

The bucket detector integrates over the transverse spatial dimensions x and y. Using the
orthogonality relation of HG modes,∬ ∞

∞
dxdyHGmn(x, y)HGm′n′(x, y) = S(m, n)δmm′δnn′, (6)
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where δ is the Kroenecker delta function, the signal measured by the bucket detector is:

Pout (α, β) =
∬

dxdyIout (x, y;α, β)

=
∑
m,n

|cmn |2
[
1 + cos

(
mπα

2
− nπβ

2

)]
S(m, n).

(7)

For convenience, we assume HG mode energy is unit normalized, i.e. S(m, n) = 1. The bias term
can be removed from the interferogram. Since Pout (0, 0) = 2

∑
mn |cmn |2, its measurement can

be used in a well calibrated system to remove the bias term as follows:

P′out (α, β) = Pout (α, β) −
∑
mn

|cmn |2

=
∑
mn

|cmn |2 cos
(

mπα
2
− nπβ

2

)
.

(8)

For simplicity, assume that we are able to sample Pout (α, β) finely enough in α and β to
approximate a continuous function space. The Fourier transform of P′out (α, β) to a continuous
m′, n′ space is

P̃′out
(
m′, n′

)
= F{P′out (α, β)}{α,β }→{m′,n′ }

=
∑
m,n

|cmn |2F
{
cos

(
mπα

2
− nπβ

2

)}
=

∑
m,n

|cmn |2
[
δ

(
m′ − m

4
, n′ +

n
4

)
+ δ

(
m′ +

m
4
, n′ − n

4

)]
.

(9)

So the recovery of the amplitude coefficients is conceptually just a matter of measuring the
intensities of the δ-function peaks in P′(m′, n′). The δ-function offset as a factor of 1/4 is the
result of the frequency modulation terms απ/2 and βπ/2 in the cosine function. The δ-function
would instead peak at integer values if these terms were instead 2απ and 2βπ. More detailed
explanations of amplitude coefficient recovery which account for sampling in discrete spaces can
be found in [9].

3. Phase retrieval in generalized Mach-Zehnder interferometer

To characterize a monochromatic scalar field described as a linear superposition of HG modes,
both the phase and amplitude of the complex-valued weighting coefficients, cmn = |cmn |eiφmn ,
must be determined. Nominally, the amplitude information of the field, | ®c| = {cmn}, has been
successfully recovered using the GI. Now ®φ must be recovered.

Given the intensity distribution given by Eq. (5) from the lower output port of the interferometer
and previously recovered amplitude coefficients, we seek to solve the inverse problem of retrieving
the phases, ®φ = {φmn}, associated with each amplitude coefficient. This can be cast as a nonlinear
optimization problem where the error metric to be minimized is

E =
∑
x,y

����Iest (x, y;α, β; ®̂φ
)
− Id (x, y;α, β)

����2, (10)

where Id(x, y) is the measured detector intensity in the upper output of the interferometer and

Iest(x, y;α, β; ®̂φ) = 1
2

�����∑
mn

|cmn |HGmn(x, y)eiφ̂mn

(
e

imπα
2 + e

inπβ
2

)�����2 . (11)
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is an estimated intensity distribution computed from ®̂φ, an estimate of ®φ.
Note that, based on the intensity model in Eq. (11), there exist values where certain modes

will be suppressed from the output intensity of the interferometer. Any time that exp (imπα/2) +
exp (inπβ/2) = 0, the mode HGmn will not contribute to the output intensity. For example, in
the case of an inverted image transform, α = β = 2, any modes where m + n is an odd whole
number will result in an intensity plane that contains no contribution from HGmn. Hence, α, β
plane selections where there are suppressed modes cannot retrieve the phases of those suppressed
modes. Fortunately, values of α and β can be chosen that do not suppress modes. Moreover,
multiple intensity planes, each with different values of α and β, can be used to add robustness
and overcome mode suppression, as will be described later.
To retrieve ®φ we employed the LBFGS [22] algorithm from the scipy.optimize.minimize

package from http://scipy.org [23]. The LBFGS was supplied an initial phase estimate
of ®̂φinit drawn from a uniform random distribution and was allowed to iterate until the error
metric value reached a minimum. It is worth noting that the ability to express propagation as
a trivially parallelizable series of scalar multiplications, instead of a traditional DFT(discrete
Fourier transform)-based transform (or FFT), means that it has a very low computational cost
when compared to most other phase retrieval algorithms that rely on DFTs (or FFTs) in both the
optimization’s forward and reverse model [24].
The optimization process described above does not always yield the desired phase values.

There are two common failure modes for this process. The first failure mode occurs when the
derivative information guides the optimizer into a local minimum of the error metric. The second
common failure mode occurs due to what we call a "twin image" problem [25, 26] although that
is a misnomer in this work. It is the result of a degeneracy introduced because Eq. (11) actually
has two global minima, because of the modulus operation. One of these global minimums will
yield the correct relative phases. The other global minimum, generally, will not.

The twin image failure case is eliminated by adding information diversity to the optimization
in the form of measurements of one or more additional planes of intensities, each with different
α, β values. As the GI is designed to sweep through values of α and β in order to build P′out (α, β),
more than one plane of spatially resolved intensities, Id(x, y;α, β) can be measured by the detector
array. This is akin to information-diverse phase retrieval techniques such as defocus-diverse phase
retrieval [10] and transverse-translation-diverse phase retrieval [16]. The aggregate objective
function is then

Eagg =
∑
{α,β }

E({α, β}) =
∑
{α,β }

∑
x,y

���Iest (x, y;α, β; ®̂φ
)
− Id(x, y;α, β)

���2 . (12)

So inmultiple-plane cases, the "twin-image" is eliminated because the degenerate global minimum
of the error metric with respect to ®φ at one α, β intensity plane will not be a global minimum for
intensity planes with different α, β values. Furthermore, adding a greater diversity of information
to a nonlinear optimization-based phase retrieval algorithm has been shown to increase the
rate of successful retrieval in terms of convergence to the global minimum and resistance to
measurement noise.

4. Simulations

Simulation experiments were conducted to test the performance of the approach. Simulations
were always conducted over many different fields (i.e. the fields were generated using different
random | ®c| and ®φ values) to ensure that success or failure is agnostic of the particular field being
retrieved. Intensities were generated as superpositions of unit-normalized HG modes, centered at
the beam waist (HG modes are real valued at the beam waist). Modes were well oversampled in
256 × 256 pixel arrays with pixel spacings δx, δy = w0/32, where w0 is the radius of the beam
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at the waist. Coefficient amplitudes were assumed to be known in advance of initiating the phase
retrieval process, since they would be available from the analysis of P̃′out (m′, n′) data. Unless
otherwise stated explicitly, all simulations were conducted for superpositions of 2nd order (3
modes) through 6th order (21 modes) HG modes. The metric for success in all cases was an error
of retrieved relative phase values with respect to the true phase values of < 0.07 waves RMS. As
in wave-front sensing phase retrieval, only the relative phases can be recovered. So, the recovered
phase values likely will differ from the actual phase values by a global piston phase.

4.1. Single-plane phase retrieval

The first test of the phase retrieval algorithm was to see if it was possible to retrieve phase from
only a single spatially distributed intensity in the α = β = 0 plane. This plane is representative
of the intensity of the field in the interferometer without any operation being executed on the
field. Twenty random fields were generated for each order `. Fifty retrieval attempts were made
for each of those twenty fields (a total of one thousand retrieval attempts at each order). All 50
retrieval attempts for a single field used a different random starting guess, ®̂φinit . Note that the
random starting points were seeded and each one of the twenty fields used the same 50 random
starting points. As seen in Table 1, a greater number of modes corresponded to a smaller fraction
of successes, as one would expect. The algorithm converged to “twin-image" solutions about as
often as it converged to the true solution. All non-“twin-image" failures resulted from optimizer
stagnation at a local minima.

Table 1. Success of single α = β = 0 plane GI phase retrieval
HG order # Modes % Success % Twin Image HG order # Modes % Success % Twin Image
` = 2 3 46.7 44.6 ` = 7 28 18.1 19.1
` = 3 6 37.1 34.5 ` = 8 36 14.3 14.5
` = 4 10 31.4 27.4 ` = 9 45 10.9 10.4
` = 5 15 23.1 22.8 ` = 10 55 10.6 10.0
` = 6 21 22.6 24.4 ` = 11 66 9.8 10.0

Next, retrievals were conducted with varying α and β values applied to the input field of the
interferometer. α and β were sampled in twenty-five equally spaced increments from 0 to 2. Ten
random fields were generated for each order ` and α, β combination. Retrieval of each field was
attempted with five random ®̂φinit starting guesses. With the exception of planes where retrieval
failed due to mode suppression (see Section 3), no trend is seen that indicates a certain range
of α, β values will yield a significantly greater number of successes than any other. Success
rates for single-plane phase retrieval where α and β are varied do not change demonstrably from
success rates where α = β = 0. Single-plane success rates are shown in the bottom curve of Fig.
2, which treats the results of each ®̂φinit separately. Given the twin image problem, around 50%
is generally the highest success rate possible for the single-plane phase retrieval with a single
®̂φinit . If however we allow up to five different ®̂φinit guesses for a single-plane phase retrieval, the
success rates increased to 94% for 2nd order, 83% for 3rd order, 78% for 4th order, and 77% for
5th and 6th orders.

4.2. Two-plane phase retrieval

In the next round of simulations, additional planes of intensity information were added in order
to further constrain the nonlinear optimization, which includes the ability to overcome the
twin image problem. These Monte Carlo studies were conducted to determine if any specific
combinations of α, β intensity planes yielded significantly improved success rates for retrieval.
For simplicity, we held α = β, thereby reducing computational requirements for the Monte Carlo
study.
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Fig. 2. Chart compares percent of successful retrievals for single-plane, two-plane, two-plane
targeted, three-plane, and three-plane targeted phase retrieval techniques using only a single
set of ®̂φinit starting values.

2

0

0 2𝜶,𝜷 =

𝜶,
𝜷
=

72%

66%

60%

54%

48%

42%

36%

30%

24%

0.2 0.4 0.6 0.8 1.4 1.6 1.8 2.01.21.00.0

Fig. 3. Heatmap of successful retrieval rates as a function of α, β values for two-plane GI
phase retrieval with 10 modes (4th order).

Runs were conducted for HG superpositions consisting of modes for orders from ` = 2 through
` = 6. Forty evenly-spaced α, β planes, with α, β values between [0, 2] were used. Optimizations
were performed for twenty different fields at every combination of these forty different α, β
values. Retrieval of each of these twenty fields was conducted using fifty different ®̂φinit starting
guesses. A heat map of the success rates for order ` = 4 (10 superpositioned modes) is shown
in Fig. 3. A preference is seen for plane combinations where the α, β values for one plane are
between 0.2 and 0.4 and the other plane has α, β between 1.4 and 1.6. Similar preferred plane
combinations were seen for all HG orders tested. We suspect this preference might be due to
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planes in these regions having the greatest amount of unique information to constrain the problem
and containing the fewest suppressed modes.
Having located preferential α, β ranges, we conducted tests to determine the performance of

the algorithm for these preferred values. Monte Carlo simulations were run for α, β planes in the
targeted regions for 50 additional randomly generated fields. In each optimization, α, β values
were chosen randomly from the ranges in column 4 of Table 2. Using a single random ®̂φinit ,
the percentage of phases retrieved successfully are included percent of optimizations retrieved
successfully are shown in column 3 of Table 2. With two well-chosen planes, a similar fraction
of successful retrievals were obtained up to 21 modes (6th order).

Table 2. Success rates of two α, β plane GI phase retrieval
HG order # Modes % Success (α, β) Range
` = 2 3 81 (0.1, 0.3), (1.4, 1.6)
` = 3 6 80 (0.1, 0.3), (1.2, 1.4)
` = 4 10 70 (0.1, 0.3), (1.2, 1.4)
` = 5 15 72 (0.1, 0.3), (1.4, 1.6)
` = 6 21 65 (0.1, 0.3), (1.2, 1.4)

4.3. Three-plane phase retrieval
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Fig. 4. Heatmaps detail success of three-plane phase retrieval of a 6th order superposition
with 22 equally-spaced values of α in the third plane.

With the increased success of the two-plane phase retrievals, a third plane was added in an
attempt to further improve rate of successful retrieval with a single ®̂φinit starting guess. To
simulate this, the range of the fFT orders was limited to [0.2 − 0.4] for the first plane and
[1.4 − 1.6] for the second plane, each in range sampled in 4 equally-spaced increments. The third
plane was allowed to vary from order α = β = 0 to α = β = 2, in 22 equally spaced intervals.
The percentage of successful retrievals with respect to the α-value of three intensity planes used
is shown in Fig. 4. The best success rates are seen for a third fFT plane whose α, β in the range
[0.72, 1.04]. This range is roughly equidistant from the regions of the first two planes. This would
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be in line with our earlier speculation that the preferred planes will occur in the regions that
provide the optimizer with the most unique information. The rate of successful retrievals with
intensity plane combinations in this range are consistently greater than 90% for a single ®̂φinit . No
obvious trend was observed, with respect to amplitude and phase values, that would imply that
certain values of coefficient phases and amplitudes, or combinations thereof, caused more failures
or successes than any others. In Fig. 2 there are a few cases where a greater number of modes
experienced a greater percentage of overall successes. This is most likely due to the randomness
of the fields generated and the start points used in retrieval attempts. Given a large enough sample
of randomly generated fields and random starting points, we expect the percentage of success will
be monotonically decreasing as the number of modes present in the superposition increases. It is
worth noting that the process for choosing the α, β range for the three plane superposition may not
be ideal. The best way to determine the most ideal three plane combination would be to conduct
a Monte Carlo simulation allowing the α, β values for all three planes to vary simultaneously. We
chose not to use this process because of the time and resources needed to conduct a Monte Carlo
simulation in this way and because the method we did use to determine preferential α, β values
was more than sufficient to create a robust algorithm.

4.4. Final algorithm performance

1st Start	Point 2nd Start	Point 3rd Start	Point

4th Start	Point 5th Start	Point

2nd
Order	

3rd
Order	

4th
Order	

5th
Order	

6th
Order	

83% 12%
4% 1%

86% 8%
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1%

85% 11% 1%

94% 5%
1%

90% 6%
2% 1%
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100%	- Success

100%	- Success

100%	- Success

100%	- Success

99%	- Success

Fig. 5. Percent successful retrievals when three targeted α planes and 5 random starting sets
of phase values are permitted (noiseless).

With success rates consistently greater than 85% achieved in the three-plane retrievals for
a single ®̂φinit , the algorithm was deemed effective and final performance runs with targeted
plane selections were conducted. For each set of simulated data, the algorithm was permitted
a maximum of 5 attempts, with different ®̂φinit , to retrieve the correct phase. Phase retrieval
was attempted for 100 random fields for each order. The results of this final algorithm, with a
breakdown of success by starting-guess number, are shown in Fig. 5. It shows that if the algorithm
fails with the first random starting guess, the second starting guess was successful the majority of
the time. Almost 100% of cases succeeded using up to 5 starting points. For real world application
where one cannot check the algorithm against the known phase values, the error metric is more
than sufficient to identify successes and failures for the fields we retrieved. The smallest average
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Fig. 6. Variability in percentage success with final algorithm when in the presence of limited
photon budget and Poisson noise.

error metric separation between failed retrievals and successful retrievals occurred in the 4th
order superpositions where the average error metric of a failed retrieval was greater than 10−5

while average error metric value for successful retrievals was less than 10−20 for this noise-free
case.

Additionally, runs were conducted where reference intensities subjected to Poisson noise, each
with a different total number of photons, in order to test the robustness of the algorithm and
SNR requirements for good performance. Again, up to 5 ®̂φinit were allowed for each attempted
retrieval for three targeted intensity planes in the preferential α-value regions established in
earlier simulations. The average number of total photons per intensity over the 256 × 256 pixel
array varied from 102 to 107. The exponent determining the average number of total photons
varied in 21 equally spaced values from 2 to 7. Fig. 6 shows the results: Nearly all phases were
correctly retrieved at 107 average total photons per intensity plane and greater than 90% of all
phases were retrieved at 106 average total photons per intensity, for up to 6th order superpositions.
Superpositions composed of fewer modes are generally more successful, especially for low SNRs.
For example, at 103 average total photons per intensity plane, 90% of 2nd order superposition
phases were recovered successfully whereas no 6th order superposition phases were recovered
successfully. When the average total photons increased to 104, 25% of phases were recovered at
6th order and 96% all 2nd order superposition phases were recovered successfully.

5. Conclusion

It has been shown in this work that coefficient phases of a linear comination of scalar monochro-
matic Hermite Gaussian modes operated on by a generalized interferometer can be recovered
using nonlinear optimization-based phase retrieval. This phase retrieval requires information
diversity in the form of a small number of spatially resolved intensity plane measurements (1-3
array detector planes) to sufficiently constrain the problem. A clear preference for combining
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certain orders of fFT intensity planes has been shown. A modest number of random starting
guesses for phase values are used to aid in overcoming local minima. Phase has been successfully
recovered from field simulations consisting of up to 66 superposed HG modes. Additionally, this
phase retrieval technique has been shown to be robust to Poisson noise.
Follow-up work will consist of retrieving phase from actual laboratory data derived from a

GI. Also, phase retrieval without spatial detector information will be pursued in order to enable
the resulting system to function using only a bucket detector with a goal of greatly increasing
the speed of detection and usefulness in the low-photon regime, thereby increasing the overall
versatility of the GI system.
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