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A method is described for analyzing point source imagery collected with various amounts of defocus to obtain
wavefront slope data at the exit pupil of an imaging system. Integration of this slope data yields the system wave-
front aberration function. The method is based on a geometric optics interpretation of intensity point spread func-
tion measurements in the caustic region near focus. Algorithm performance is examined through Monte Carlo
simulations. Application of the method to segmented-aperture systems is also explored. The proposed method
is used to generate initial wavefront estimates for an iterative phase retrieval algorithm, significantly improving
the capture range over a blind phase retrieval approachwhen segment tilt errors are large. © 2010Optical Society
of America
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1. INTRODUCTION
There are a number of methods of characterizing the aberra-
tions of an imaging system using a point source. Shack–
Hartmann sensors reconstruct the wavefront aberration
function wðx; yÞ of a system based on pupil plane measure-
ments of the slopes ∂wðx; yÞ=∂x and ∂wðx; yÞ=∂y [1–3]. In
practice, this approach often requires additional optics to
form a real image of the pupil, a lenslet array, and a dedicated
focal plane array for making the slope measurements. Curva-
ture sensing [4] involves measuring the optical intensity in two
planes that are far enough from the image plane that the re-
corded intensity patterns look like blurred/distorted versions
of the pupil. Subsequent analysis yields the wavefront curva-
tures ∂2wðx; yÞ=∂x2 and ∂2wðx; yÞ=∂y2 in the pupil plane.
Focus-diverse phase retrieval [5,6] uses two or more intensity
measurements from the region about the image plane and
knowledge of the Fresnel/Fourier transformation relationship
between the generalized pupil function and the field in each
measurement plane to iteratively retrieve a wðx; yÞ that is
consistent with the intensity measurements. The intensity
measurements often can be made with the image plane detec-
tor array while defocusing the system. This approach has
minimal extra hardware requirements and the advantage of
sensing the aberrations of the entire imaging system. Phase
retrieval is based on Fourier or wave optics, while the other
techniques described above are based on geometric or ray
optics.

In this article, I describe a newwavefront sensing technique
that is similar to focus-diverse phase retrieval in that it uses
intensity measurements from the region about the image
plane but differs from phase retrieval in that it is based on
geometric optics and is noniterative. Analysis of the image do-
main intensity measurements yields pupil plane wavefront
slope data like Shack–Hartmann wavefront sensing, but

the method of obtaining the slope data is unique. Section 2
describes the wavefront sensing algorithm in detail. Algorithm
performance is examined through Monte Carlo simulations
in Section 3. An example application of the method for
segmented-aperture systems is considered in Section 4.
Section 5 is a summary.

2. ALGORITHM DEVELOPMENT
Suppose an optical system images an on-axis point source to
the point P, as shown in Fig. 1. The exit pupil of the system is
located in plane z ¼ 0, and P is in the plane z ¼ R. The dashed
curve in the exit pupil represents a reference sphere of radius
R centered on P. The wavefront aberration function wðx; yÞ
represents the departure of the actual optical wavefront from
this reference sphere. Consider ray m with coordinates
ðxm; ymÞ in the exit pupil. The dotted line in Fig. 1 indicates
the trajectory of an ideal ray that passes through ðxm; ymÞ and
P, having paraxial ray heights as a function of z given by

rx;mðzÞ ¼ xm½1 − ðz=RÞ� ry;mðzÞ ¼ ym½1 − ðz=RÞ�: ð1Þ

The thin solid line in Fig. 1 represents the actual trajectory of
ray m, which also passes through ðxm; ymÞ but whose angular
direction differs from that of the ideal ray by sx;m and sy;m. The
ray deviation angles sx;m and sy;m are equal to the slopes of the
wavefront aberration function along the x and y directions,
i.e.,

sx;m ¼ ∂wðxm; ymÞ
∂x

sy;m ¼ ∂wðxm; ymÞ
∂y

: ð2Þ

Also, the differences between the actual and ideal ray heights
as a function of z are given by
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εx;mðzÞ ¼ sx;mz εy;mðzÞ ¼ sy;mz: ð3Þ

Let Inðx; yÞ represent narrowband intensity distributions in
planes z ¼ zn, for n ∈ f1; 2;…; Ng. Note that Inðx; yÞ repre-
sents the incoherent point spread function (PSF) of the optical
system defocused by longitudinal distance zn − R. In Fourier
optics, Inðx; yÞ is related to the wavefront aberration func-
tion by

Inðx; yÞ ¼
����
Z Z

Aðx0; y0Þ exp
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2
; ð4Þ

where Aðx; yÞ is the amplitude of the optical field in the exit
pupil. In geometrical optics, the intensity distribution Inðx; yÞ
is proportional to the local density of rays in the plane z ¼ zn.
When sx;m and sy;m are unknown, one could naively assume
the probability that raym passes through the point ðx; y; znÞ is
simply proportional to Inðx; yÞ, i.e., the local ray density. Note
that wavefront sensing is deterministic, and the association of
probabilities with rays is purely heuristic. Specifically, the
probability that ray m has angular deviation ðsx; syÞ based
on measurement Inðx; yÞ is taken to be

pm;nðsx; syÞ ¼ cnIn½znsx þ rx;mðznÞ; znsy þ ry;mðznÞ�
� Lðsx; syÞ; ð5Þ

where cn is a normalization constant, � indicates a two-
dimensional (2-D) convolution operation, and Lðsx; syÞ is a
low-pass filtering kernel used to reduce diffraction effects
in Inðx; yÞ. In cases where Inðx; yÞ are actually broadband in-

tensity measurements, the visibility of interference features
will be low and one would not necessarily low-pass filter the
data with Lðsx; syÞ. Information from multiple measurements
for n ∈ f1; 2;…; Ng can be combined by assuming the
pm;nðsx; syÞ from different z ¼ zn planes are statistically inde-
pendent, such that the joint probability that raym has angular
deviation ðsx; syÞ is given by

pm;jointðsx; syÞ ¼
YN
n¼1

pm;nðsx; syÞ: ð6Þ

Estimates of the ray deviation angles ðsx;m; sy;mÞ for ray m are
taken as the most probable values of sx and sy, i.e.,

ðsx;m; sy;mÞ ¼ max
ðsx;syÞ

½pm;jointðsx; syÞ�: ð7Þ

When Inðx; yÞ is measured for only N ¼ 1 defocus plane,
Eqs. (5)–(7) will yield wavefront slope estimates ðsx;m; sy;mÞ
consistent with all rays passing through the peak of Inðx; yÞ,
regardless of the actual spatial distribution of Inðx; yÞ. For a
modest number of measurements, however, Eq. (6) combines
information from each defocus plane to yield useful slope es-
timates, as shown in the remainder of this section and in
Section 3.

The wavefront aberration function wðx; yÞ can be recon-
structed from a set of slope estimates ðsx;m; sy;mÞ, for
m ∈ f1; 2;…; Mg, using any one of several slope reconstruc-
tion algorithms [1–3]. The modal reconstruction algorithm of
[7] is used here because it is noniterative. The wavefront aber-
ration function is reconstructed as a polynomial expansion

wðx; yÞ ¼
XK
k¼1

ckψkðx; yÞ; ð8Þ

where ck are expansion coefficients and ψkðx; yÞ are polyno-
mial basis functions. The ψkðx; yÞ obey the following ortho-
normality condition:

XM
m¼1

�
∂ψ jðxm; ymÞ

∂x
∂ψkðxm; ymÞ

∂x
þ ∂ψ jðxm; ymÞ

∂y
∂ψkðxm; ymÞ

∂y

�

¼ δj;k; ð9Þ

where δj;k is the Kronecker delta function, such that the
expansion coefficients ck can be directly computed from a
set of slope data as

ck ¼
XM
m¼1

�
sx;m

∂ψkðxm; ymÞ
∂x

þ sy;m
∂ψkðxm; ymÞ

∂y

�
: ð10Þ

Figure 2 shows simulation data that is intended to provide
additional insight into the method. Figure 2(a) shows an ex-
ample wavefront aberration function wðx; yÞ for a system
with an exit pupil diameter D ¼ 3 mm and a focal length of
f ¼ 75 mm. The corresponding PSFs Inðx; yÞ, computed using
Eq. (4) for zn ¼ f56; 65:5; 75; 84:5; 94g mm, are shown in
Figs. 2(e)–2(i). These zn values are equivalent to
f6; 3; 0;−3;−6g wavelengths peak-to-valley of quadratic de-
focus aberration across the exit pupil at a wavelength of
λ ¼ 632:8 nm. The small square in Fig. 2(a) indicates the

Fig. 1. Plane z ¼ 0 corresponds to the exit pupil of an imaging
system. Point P ¼ ð0; 0; RÞ is the geometric image of an on-axis point
source. The dashed curve in the exit pupil plane represents a
reference sphere of radius R centered on P, while the solid curve re-
presents the aberrated wavefront. The system aberrations are charac-
terized by the wavefront aberration function wðx; yÞ. ym indicates the
height of raym in the pupil plane. The dotted line represents the ideal
ray trajectory that passes through P, with ray height ry;mðzÞ. The solid
line represents the actual ray trajectory, which deviates from the ideal
ray height by εy;mðzÞ. The angular deviation sy;m of the actual ray from
the ideal ray is equal to the slope of the wavefront aberration function
∂wðx; yÞ=∂y.
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location of a particular ray m in the pupil plane, with coordi-
nates ðxm; ymÞ. The small squares in Fig. 2(e)–2(i) indicate the
location of the ideal ray with coordinates ½rx;mðznÞ; ry;mðznÞ� in
each measurement plane. Figures 2(j)–2(n) show probability
distributions pm;nðsx; syÞ computed from each Inðx; yÞ via
Eq. (5). These were computed using a 2-D Gaussian having
a full width at half-maximum equal to 4λ=D for the low-pass
kernel Lðsx; syÞ. This width was chosen since it is approxi-
mately twice the width of a diffraction-limited Airy spot. The
corresponding joint probability distribution pm;jointðsx; syÞ
computed via Eq. (6) as the product of all the pm;nðsx; syÞ
is shown in Fig. 2(b). The location of the peak of this
pm;jointðsx; syÞ is used as an estimate for the wavefront slope
data ðsx;m; sy;mÞ at the location of the square in Fig. 2(a).
The squares in Figs. 2(b) and 2(j)–2(n) are located at
ðsx; syÞ ¼ ð0; 0Þ. To obtain slope information at another
point in the pupil, one traces the corresponding ideal ray
through the measurement planes, computes new distributions
pm;nðsx; syÞ, and locates the maximum of the resulting
pm;jointðsx; syÞ. Figure 2(c) shows a set of slope data at M ¼
235 points across the pupil on a hexagonal lattice with spacing
D=16. Figure 2(d) shows the corresponding estimate of the
wavefront aberration function computed using Eqs. (8)–(10)
for a set of K ¼ 91 polynomial basis functions ψkðx; yÞ similar
in form to the Zernike polynomials [8]. This set of basis func-
tions includes up to twelfth-order polynomial terms. The root-
mean-square (RMS) difference (ignoring piston and tilt terms)
between the actual and estimated wavefront aberration func-
tions for this example was σ ¼ 0:37λ. For comparison, the

magnitude of the actual wavefront error shown in Fig. 2(a)
was 1λ RMS. When the actual wavefront error is projected
onto the first K Zernike polynomials (also including up to
twelfth polynomial terms), the RMS difference is σK ¼ 0:33λ.
Theoretically, the modal reconstructor is capable of recon-
structing accurately up to K ≈ M ¼ 235 Zernike terms (or
up to twentieth-order polynomial terms). The fact that σK ð¼
0:89σÞ for K ¼ 91 is a large fraction of the total error σ implies
that the accuracy of the method is not limited by the modal
reconstructor. Given the speckled appearance of the PSFs
shown in Figs. 2(e)–2(i) and the ad hoc nature of the method,
it is somewhat surprising that the estimated wavefront aber-
ration function matches the actual wðx; yÞ at all.

In summary, the basic steps of the method are

1. Choose a set of pupil plane coordinates ðxm; ymÞ
for m ∈ f1; 2;…; Mg;

2. Set m ¼ 1;
3. Compute ideal ray coordinates ½rx;mðznÞ; ry;mðznÞ� via

Eq. (1) for each measurement plane n ∈ f1; 2;…; Ng;
4. Transform each PSF measurement Inðx; yÞ into a corre-

sponding probability distribution pm;nðsx; syÞ using Eq. (5);
5. Compute the joint probability distribution pm;jointðsx; syÞ

through Eq. (6);
6. Locate the maximum of pm;jointðsx; syÞ to obtain wave-

front slope data ðsx;m; sy;mÞ at point ðxm; ymÞ in the pupil plane;
7. Repeat steps 3–6 for m ∈ f2; 3;…; Mg;
8. Integrate the wavefront slope data to obtain the wave-

front aberration function wðx; yÞ.

Fig. 2. (Color online) Simulation example: (a) wavefront aberration function wðx; yÞ in units of wavelength, where the small white square in-
dicates the pupil plane coordinates ðxm; ymÞ of a particular raym; (b) the corresponding joint probability distribution pm;jointðsx; syÞ for the angular
deviation of ray m computed using Eqs. (5) and (6); (c) wavefront slope data ðsx;m; sy;mÞ at M ¼ 235 points obtained through Eq. (7); (d) corre-
sponding wavefront aberration function reconstructed using Eqs. (8)–(10) with K ¼ 91 basis functions; (e)–(i) through-focus intensity measure-
ments Inðx; yÞ of the system PSF, where the small white squares indicate the ideal image domain coordinates ½rx;mðznÞ; ry;mðznÞ� for raym shown in
(a); and (j)–(n) the corresponding probability distributions pm;nðsx; syÞ computed by low-pass filtering each Inðx; yÞ, shifting by the ideal ray co-
ordinates ½rx;mðznÞ; ry;mðznÞ�, and scaling to angular coordinates [see Eq. (5)]. The joint probability distribution pm;jointðsx; syÞ shown in (b) is the
product of the individual distributions pm;nðsx; syÞ shown in (j)–(n) [see Eq. (6)].
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For results presented here, bilinear interpolation was used
for step 4, the maxima in step 6 were determined by simply
locating the largest sample value in each computed
pm;jointðsx; syÞ array, and the modal wavefront reconstructor
described by Eqs. (8)–(10) was used for step 8. In some cases,
a centroiding algorithm was used to locate the optic axis for
each PSF measurement prior to performing the steps listed
above. These details of the method, however, could vary in
practice.

3. SIMULATION RESULTS
Monte Carlo simulations were used to explore the per-
formance of the proposed method in various scenarios.
Figure 3 shows results for the case when the actual wavefront
aberrations wðx; yÞ were generated by (i) synthesizing a ran-
dom atmospheric phase screen [9], (ii) removing piston, tip,
and tilt terms, and (iii) scaling this result to have a particular
RMS value (plotted on the horizontal axis of Fig. 3). For each
wðx; yÞ, five PSF measurements Inðx; yÞ were simulated via
Eq. (4) and processed to yield an estimate of the wavefront
aberration function. The RMS differences σK between the es-
timated and actual wavefront aberration functions are plotted
on the vertical axis of Fig. 3. The plot indicates that the pro-
posed wavefront sensing technique works reliably well
(σK ≤ 0:1λ) when the actual wavefront aberration is ≤0:4λ
RMS. For larger wavefront errors, the results are variable
and only moderately accurate at best.

Figure 4 shows Monte Carlo results for a similar scenario,
except the atmospheric phase screens were projected onto
the first K ¼ 91 Zernike polynomials when generating wðx; yÞ
for the simulation. This projection operation eliminates high
spatial-frequency aberrations, generally resulting in PSFs
Inðx; yÞ that have a smaller speckle halo than those shown
in Figs. 2(e)–2(i). Figure 4 indicates that the algorithm per-
forms substantially better in this case. The error in the esti-
mated wavefront is generally in the range of σK ¼ 0:1–0:3λ
for large amounts of actual wavefront error (∼2λ RMS),
and there is much less variability in performance compared
to Fig. 3.

Additional Monte Carlo simulations were conducted to ex-
plore practical issues in implementing the proposed method.
First, the impact of not knowing the location of the optic axis
was considered. Figure 5 shows Monte Carlo results for the

same scenario represented in Fig. 4, except a centroiding al-
gorithmwas used to determine the optic axis location for each
PSF measurement prior to using the wavefront sensing algo-
rithm. Comparing Figs. 4 and 5, the loss in performance due to
lack of knowledge about the optic axis location is small and
barely noticeable. When the actual wavefront error is ∼0:5λ
RMS, the error in the estimated wavefront was typically in
the range of σK ¼ 0:03–0:09λ. Next, the impact of having fewer
PSF measurements was considered. Figure 6 shows Monte
Carlo results for the same scenario as Fig. 5, except only three
PSF measurements were used instead of five. While the loss
in performance with fewer measurements is noticeable, the
algorithm still performed fairly well. For actual wavefront
errors ∼0:5λ RMS, the error in the estimated wavefront is
in the range σK ¼ 0:07–0:2λ RMS.

4. APPLICATION
Examples of segmented-aperture telescopes include the
W. M. Keck Observatory [10], the Hobby–Eberly Telescope
[11], the South African Large Telescope [12], and the James
Webb Space Telescope (JWST) [13]. In each of these systems,
hexagonal mirror segments are tiled together to form the pri-
mary of each telescope instead of using large monolithic mir-
rors. To achieve diffraction-limited performance, the mirror
segments need to be accurately aligned to within a small frac-
tion of a wavelength of light. Alignment of the Keck telescopes

Fig. 3. Monte Carlo simulation results: plot of the RMS error in the
estimated wavefront σK versus the RMS strength of the actual wave-
front aberrations wðx; yÞ. These results correspond to the case where
each wðx; yÞ was an atmospheric phase screen with Kolmogorov sta-
tistics, and five PSF measurements were available.

Fig. 4. Same as Fig. 3, but for the case where each wðx; yÞ was an
atmospheric phase screen with Kolmogorov statistics projected onto
the first K ¼ 91 Zernike polynomials, and five PSF measurements
were available.

Fig. 5. Same as Fig. 3, but for the case where each wðx; yÞ was an
atmospheric phase screen with Kolmogorov statistics projected onto
the first K ¼ 91 Zernike polynomials, five PSF measurements were
available, and a centroiding algorithmwas used to determine the optic
axis for each PSF measurement.
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is achieved using a modified Shack–Hartmann wavefront
sensor with subapertures that span edges between adjacent
mirror segments [14]. Coarse alignment is achieved using nar-
rowband light (Δλ=λ ¼ 1%), in which case the sensor has a
wide capture range (�67λ) but coarse accuracy (∼1:7λ) [15].
As segments are brought into alignment, the optical band-
width is increased to Δλ=λ ¼ 30%, improving accuracy
(∼0:07λ) and reducing the capture range (�2:9λ). Dispersed
fringe sensing (DFS) [16] is planned for coarse alignment
of JWST [17], while focus-diverse phase retrieval [18] will
be used for fine alignment. DFS has a wide capture range
(�37λ) with good sensitivity (0:21–0:33λ RMS) but does not
work well for small discontinuities (<1λ) between mirror seg-
ments [16]. Phase retrieval is more accurate, but has a limited
capture range. In this section, I supplement phase retrieval
with the method of obtaining wavefront slope information
described in Section 2 to demonstrate a wavefront sensing ap-
proach that has the accuracy of phase retrieval with a signifi-
cantly wider capture range. Specifically, the capture range
was evaluated by numerical simulations for cases in which
the surface figure of individual mirror segments is reasonably
good, but there are varying amounts of segment piston and tilt
misalignment.

The generalized pupil function Pðx; yÞ [19] of a segmented-
aperture system can be expressed as

Pðx; yÞ ¼
XJ
j¼1

Ajðx; yÞ exp
�
i2π

XK
k¼1

ckϕkðx; yÞ þ cj;kϕj;kðx; yÞ
�
;

ð11Þ
where subscript j ∈ f1; 2;…; Jg indexes the various seg-
ments, Ajðx; yÞ represents the amplitude transmittance of
each segment, subscript k ∈ f1; 2;…; Kg indexes various
wavefront error basis function terms ϕkðx; yÞ and ϕj;kðx; yÞ,
and coefficients ck and cj;k are wavefront error expansion
coefficients. ϕkðx; yÞ and ϕj;kðx; yÞ are based on Zernike poly-
nomials [8] using the fringe ordering [20]. Table 1 indicates the
aberrations represented by the first K ¼ 11 basis functions.
The ϕkðx; yÞ represent global aberrations across the entire pu-
pil and are generated from the polynomial terms listed in
Table 1 using Gram–Schmidt orthonormalization over the glo-
bal pupil, i.e., the sum of all the Ajðx; yÞ’s. The ϕj;kðx; yÞ repre-
sent aberrations across the jth mirror segment and are

orthonormalized over individual Ajðx; yÞ’s. Incoherent PSFs
Inðx; yÞ of a segmented-aperture system can be computed
with Eq. (4) by replacing Aðx0; y0Þ exp½i2πwðx0; y0Þ=λ� with
Pðx0; y0Þ.

A detailed process was used to generate wavefront realiza-
tions for the capture range study. Random global wavefront
coefficients ck for k ∈ f4; 5;…; 11gwere generated and scaled
to yield a combined RMS wavefront error of approximately
0:16λ across the global pupil. Segment figure errors were gen-
erated by selecting cj;k for k ∈ f4; 5;…; 11g values from a zero-
mean uniform random distribution and scaled according to
the maximum values listed in the fourth column of Table 1.
For example, the maximum value of the segment power coef-
ficients cj;4 was 0:063λ. Thus, coefficients cj;4 were drawn from
the interval [−0:063λ, 0:063λ]. This process results in approxi-
mately 0:08λ RMS wavefront error associated with the seg-
ment figure. Segment piston and tilt coefficients were
specified in terms of a wavefront error scaling parameter κ
to simulate different levels of misalignment. The net effect
of this process is to generate wavefront error realizations that
correspond to a system with modest amounts of global
(∼0:16λ) and segment (∼0:08λ) wavefront errors and scalable
(depending on the value of κ) amounts of segment piston and
tilt errors due to misalignment. For κ > 1, segment misalign-
ment dominates the total wavefront error.

Figure 7(a) shows a particular wavefront error realization
(in units of waves) for κ ¼ 5 for a JWST-like system having
J ¼ 18 segments. For this example, the wavefront error asso-
ciated with global coefficients ck (for k ¼ 4–11) is 0:13λ RMS,
with segment coefficients cj;k (for k ¼ 4–11) is 0:08λ RMS, with
segment piston coefficients cj;1 is 0:23λ RMS, and with seg-
ment tilt coefficients cj;2 and cj;3 is 1:1λ RMS. Adding these
terms in quadrature results in a net wavefront error of
1:13λ RMS. This is a slightly pessimistic calculation of the ac-
tual RMS wavefront error, since the segment piston and tilt
errors result in a small amount of global piston and tilt, which
can be removed to obtain a net wavefront error of 0:94λ RMS.
From here on, all RMS wavefront error values are reported
after removing the global piston and tilt terms. Additionally,
any segment piston errors outside of the interval [−0:5λ,
0:5λ] are adjusted by an integer number of wavelengths to fall
within this interval before calculating the RMS wavefront
error. This was done because the simulations were performed

Fig. 6. Same as Fig. 3, but for the case where each wðx; yÞ was an
atmospheric phase screen with Kolmogorov statistics projected onto
the first K ¼ 91 Zernike polynomials, only three PSF measurements
were available, and a centroiding algorithmwas used to determine the
optic axis for each PSF measurement.

Table 1. Ordering and Form of Wavefront Basis

Functions ϕj ;k ðx ; yÞ and Statistics of Segment

Wavefront Error Coefficients cj ;k Used

for the Capture Range Study

Index k Aberration Form a Coefficient Max Coefficient RMS

1 Piston 1 0:079κλ 0:046κλ
2 x Tilt ρ cos θ 0:18κλ 0:10κλ
3 y Tilt ρ sin θ 0:18κλ 0:10κλ
4 Power ρ2 0:063λ 0:036λ
5 Astigmatism ρ2 cos 2θ 0:063λ 0:036λ
6 45° Astigmatism ρ2 sin 2θ 0:063λ 0:036λ
7 x Coma ρ3 cos θ 0:047λ 0:027λ
8 y Coma ρ3 sin θ 0:047λ 0:027λ
9 Spherical ρ4 0:047λ 0:027λ
10 Trefoil ρ3 cos 3θ 0:047λ 0:027λ
11 Trefoil ρ3 sin 3θ 0:047λ 0:027λ

aThe polynomial forms are given in polar coordinates ðρ; θÞ instead of
Cartesian coordinates ðx; yÞ.
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for monochromatic light, and, as such, there is an integer
wavelength ambiguity in the estimated segment piston
coefficients cj;1.

For each wavefront realization, a set of five through-focus
PSF measurements Inðx; yÞ were simulated with defocus
amounts zn equivalent to f8; 6; 0;−6;−8g wavelengths peak-
to-valley of quadratic defocus across the global pupil. The
method of obtaining wavefront slope data described in
Section 2 can be directly applied to segmented-aperture sys-
tems. The resulting slopes, however, cannot be integrated to
yieldwðx; yÞ because of discontinuities between segments. In-
stead, initial estimates of the segment tilt errors were formed
by (i) estimating wavefront slopes ðsx;j ; sy;jÞ for a set of j ∈
f1; 2;…; Jg rays that pass through the centers of each mirror
segment and (ii) converting slope values ðsx;j ; sy;jÞ to segment
tilt coefficients c2;j and c3;j . The simulations assumed that ac-
curate knowledge of the optic axis location was not available,
and each PSF was recentered about its centroid prior to using
the wavefront slope estimation method. Figure 7(b) shows the
initial wavefront estimate corresponding to the example
wavefront of Fig. 7(a). The difference between these wave-
fronts is shown in Fig. 7(c). Note that the segment tilt values
for the initial estimate are reasonably accurate, but the re-
maining aberration terms have yet to be estimated.

Starting with an initial wavefront estimate, an iterative
phase retrieval algorithm was used to obtain a final wavefront
estimate, including all coefficients cj and cj;k. For this, a non-
linear optimization routine numerically searched for coeffi-
cients that produce model PSFs that best agree with the
measured PSFs Inðx; yÞ in a mean square error sense. Speci-
fically, the algorithm seeks the minimum of an objective func-
tion Φ given by Eq. (9) of Ref. [21]. Because of the nonlinear
relationship between the wavefront coefficients and the PSF
intensities, Φ is nonconvex, and the optimization routine can

converge to a local minimum instead of the desired true
solution. The likelihood of encountering a local minimum gen-
erally increases the further one starts from the true solution.
This trend gives rise to the finite capture range of phase re-
trieval. In other words, the phase retrieval algorithm needs
to start sufficiently close to the true solution in order to con-
verge properly. Starting with the initial wavefront estimate
shown in Fig. 7(b), phase retrieval was used to obtain a final
wavefront estimate that agreed with the actual wavefront er-
ror shown in Fig. 7(a) to a level of 0:007λ RMS. For compar-
ison, the result of a blind phase retrieval approach (starting
with an initial estimate of zero wavefront error) is shown
in Fig. 7(d). Note that this result bears little resemblance to
the actual wavefront error because this example fell outside
the capture range of blind phase retrieval. In simulations such
as this, where the true wavefront error and noise statistics are
known, the final value of Φ can be compared to its expected
value for the true solution (based on noise statistics) to deter-
mine whether the phase retrieval algorithm converged to the
true solution or not. For this example, the final value ofΦwas
within the expected range for the proposed (slope/tilt estima-
tion plus phase retrieval) approach, but was larger than
expected for the blind phase retrieval approach.

A series of simulations were performed using different val-
ues of the wavefront error scaling parameter κ to explore the
capture range of both approaches. Figure 8 is a plot of the RMS
error of estimated wavefronts versus the actual RMS
wavefront errors for the proposed approach. For a number
of trials (indicated by crosses), the algorithm failed to converge
to a reasonable solution, as determined by the final val-
ue of Φ in comparison to the expected value. For a majority
of the trials (indicated by circles), however, the algorithm did
converge to a good wavefront estimate, with accuracies ran-
ging from 0:0002λ to 0:02λ RMS.Many of the unconverged trials
were examined to determine the cause of failure. In each case,
there was a large error in one or more of the segment
tilt coefficients cj;2 or cj;3 for the initial wavefront estimate.
In these cases, the segment tilt estimation technique of Ref.
[22] could be used to identify and possibly correct the one
or two culprit segment tilts. With just one exception, the blind
phase retrieval approach only achieved good results for κ ≤ 1,
corresponding to actual wavefront errors <0:3λ RMS. Figure 9
shows the fraction of trials that converged at each value of κ for

Fig. 7. (Color online) Segmented-aperture simulation example: (a)
actual wavefront aberration function for a system with J ¼ 18 seg-
ments (segment tilt errors dominate the wavefront error), (b) corre-
sponding initial wavefront estimate of segment tilt errors obtained
using the proposed wavefront slope estimation technique, (c) wave-
front difference between (a) and (b), and (d) corresponding wave-
front estimate obtained using the blind phase retrieval approach.
All wavefronts are displayed in units of wavelength.

Fig. 8. Results of the capture range study using the proposed meth-
od: RMS error of estimated wavefronts versus the actual RMS wave-
front errors, where the circles and crosses represent converged and
unconverged trials, respectively.

6 J. Opt. Soc. Am. A / Vol. 28, No. 1 / January 2011 Samuel T. Thurman



both the proposed and the blind phase retrieval approaches.
The proposed method clearly has a wider capture range.

5. SUMMARY
A method was presented for obtaining pupil plane wavefront
slope data from through-focus PSF measurements. This slope
data can them be used to reconstruct the wavefront aberra-
tion function of the imaging system. The proposed technique
differs from phase retrieval in that it is based on geometric
optics instead of Fourier optics and differs from Shack–
Hartmann and curvature wavefront sensing in that it uses
measurements in the caustic region near focus instead of re-
lying on data collected far from focus. Simulations suggest
that the method works best for smooth wavefront aberrations.
For smooth aberrations of the order of 1λ RMS, the error in the
reconstructed wavefront in simulation was typically <0:1λ
RMS when using five PSF measurements. The loss in perfor-
mance associated with not knowing the location of the optic
axis was minimal. A small but noticeable loss in performance
was observed when using just three PSF measurements in-
stead of five. Other issues that may affect performance have
yet to be investigated.

Image-based wavefront sensing is one method of phasing
segmented-aperture systems. Phase retrieval alone, however,
has a limited capture range. The proposed method here uses a
wavefront slope estimation technique to generate an initial
wavefront estimate for phase retrieval. Numerical simulations
examined the case in which there was only a modest amount
of wavefront error across individual segments but increas-
ingly large segment tilt errors due to misalignment. In this
scenario, the proposed algorithm was shown to have a much
larger capture range than just starting the phase retrieval
algorithm with a wavefront estimate of zero.
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