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Image-based wavefront sensing is a powerful technique for measuring the aberrations of optical systems and
surfaces. It often fails for segmented systems with large piston errors per segment. We propose a method for
finding these errors using broadband light and a specialized grid search as part of a more global search. We show
that this method has a high rate of success for a case where nonlinear optimization gets stuck in local minima.

We also explore points of failure.
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1. INTRODUCTION

Image-based wavefront sensing methods often use nonlinear
optimization to attempt to match measured point-spread func-
tion (PSF) data with a physical model of the PSF computed
from wavefront estimates. These algorithms are advantageous for
space-based systems as they require no additional wavefront-
sensing hardware, and are currently used during the test and
commissioning of the James Webb Space Telescope (JWST)
[1,2]. Gradient-based search methods such as the ones outlined
in Ref. [3] are used to perform phase retrieval, and by using
modular gradient methods with algorithmic differentiation
they can be implemented rapidly without the need to derive
a full analytic gradient [4].

Gradient-based, as well as other phase-retrieval methods,
often encounter a “capture range” problem. These methods
use gradient information to establish a search path through
the given high-dimensional parameter space of an error metric.
When an error metric has multiple points where the gradient is
zero, performing optimization can get stuck in a local minima
that is not the true solution. At these local minima, the error
metric value is larger than that at the global minimum, which
is the true solution. Getting stuck in a local minimum com-
monly happens if the starting point (the initial estimate of
the unknown phase parameters) for optimization is “too far”
in parameter space from the true solution: the solution is out-
side of the capture range. The capture range for a given system
can be extended through taking a diversity of additional mea-
surements and adapting the model to be consistent with these
measurements [5—7]. Random starting points or auxiliary sys-
tem information can also be used to perform a global search
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without changing the capture range of the optimization algo-
rithm itself [8,9].

Segmented systems such as the JWST require phase retrieval
algorithms that can capture surface errors in individual primary
segments (piston, tip, tilt, etc.) as well as aberrations that are
not limited to individual segments, like global defocus, astig-
matism, and coma. An important aberration of the first type is
per-segment piston aberrations. This kind of retrieval can be
done through the use of additional experimental components
like pseudo non-redundant masks (PRNMs) or grisms with
closure phase [10-12]. Lofdahl and Eriksson have shown that
it is also possible to take multiple images at predetermined
wavelengths to determine per-segment piston aberrations [13].
Currently, the JWST uses dispersed fringe sensing (DFS) with a
dispersed Hartmann sensor (DHS) to reduce segment piston
aberration anywhere from a maximum of 350 pm down to ap-
proximately 1 pm, which is considered coarse phasing [1,2,14].
From this point, the RMS wavefront error (WFE) is small
enough that image-based wavefront sensing can be performed
to lower the overall RMS WFE to 50 nm [2,15]. Without the
coarse phasing step, the WEFE falls outside of the capture range
of image-based wavefront sensing due to 27 piston phase
ambiguities, which cause local minima [2]. We seek to over-
come this ambiguity with polychromatic light and use a grid
search to search the segment piston parameter space for a global
minimum.

A. Grid Searches Using Polychromatic Models

In monochromatic systems, a 277 phase ambiguity arises due to
the periodic nature of the phases. If a simple monochromatic two-
segment system is considered with a phase difference Ap rad


mailto:scott.paine1@gmail.com
mailto:scott.paine1@gmail.com
mailto:scott.paine1@gmail.com
https://doi.org/10.1364/AO.56.009186
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.56.009186&domain=pdf&date_stamp=2017-11-10

Research Article

0.5
—— 20% Bandwidth
—— 10% Bandwidth
0.2l lTTl Monochromatic
[}
2
S o3
]
=1
Q
=
5 0.2
=
w
0.1 u
0.0 U u u U

"6 -4 -2 o 2
Path Difference Between Segments (waves)
Fig. 1. Data consistency metric values for a simple two-segment sys-
tem with a square spectrum at different bandwidths and a piston path
difference of 1 wave. The path difference values are in units of the
central wavelength 4.

between the two segments, then Ap + 27z, for all integers 7,
will produce the same PSFs, since exp(iAp) = exp[i(2zn +
Ap)]. This means that a measured PSF for a monochromatic
system will have several simulated PSFs that will cause a data
consistency metric, such as a sum of square differences between
the computed and measured PSFs, to be zero for any segment
piston values of p,, p, such that p, - p, = Ap + 2zn. Such an
effect is shown by the red (upper) line in Fig. 1, for which the
true value of Ap is 27 rad, or 1.0 waves.

It is possible to remove this ambiguity with bandwidth. The
phase in wavelengths (cycles) for a given wavelength 4 is equal
to OPD /A, where the OPD is the physical optical path differ-
ence. Introducing different values of 4 leads to different phases,
making Ap vary with wavelength. This removes the ambiguity
and leads to only one correct value of Ap that reduces the data
consistency metric to near zero. Figure 1 shows the effects of
10% (middle green line) and 20% (lower blue line) bandwidth
having a flat-top spectra used in simulating PSFs and comput-
ing estimated PSFs. Here, we define bandwidth of the flat-top
spectra as the ratio of the total difference in wavelength divided
by a central wavelength, which we call 4. Our simulated PSFs
are built using discretely sampled versions of a continuous spec-
trum, which allows us to make individual PSFs corresponding
to each wavelength component and perform a sum weighted by
the spectrum to create a broadband PSF, which we compare to
broadband data [16]. The true solution in Fig. 1 lies where the
OPD between segments is 4. We see that the error metric for
broadband light is zero only for an OPD of 44 and is nonzero
for all other phase difference values.

In this example, removing the phase ambiguity by using
broadband light left a number of local minima in the data con-
sistency metric values. A gradient-based nonlinear optimization
procedure will typically move to the local minimum nearest to a
starting point. Therefore, if we have a starting guess for the path
difference of our two-segment system that is not within the
range 0.54;—1.54, we will end up in a local minimum that is
not the global solution. To overcome this, we note that, within
a certain range, all local minima are roughly separated by a path
difference that is an integer multiple of Aq. Therefore, in our
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optical model in the computer, we can adjust the optical path
values for a single segment by amounts 7l (where 7 is an in-
teger) and check our data consistency metric for an improve-
ment. In a system with more segments, each path difference
between segments will cause different interference fringes in
the PSF in different directions, so we can attempt to use this
technique on each segment to recover a solution for the per-
segment phase difference for all segments.

Figure 1 also demonstrates that the grid search itself has a
capture range. The 20% bandwidth case has local minima that
do not align with the monochromatic case in regions where the
difference between segments is greater about £54, from the
true value; similarly, the 10% bandwidth has different local
minima where the path difference is greater than about £104,
from the true value. This capture range of the grid search is
determined by the coherence length of the light allowed
through the optical system. When the path difference between
two segments is greater than the coherence length, the fields
from the two segments become incoherent with respect to one
another and lose the coherent effects such as fringe patterns in
the PSF that help our optimizer estimate the phase differences.

2. ALGORITHM
A brute force algorithm, trying -54g, 44, ..., +44¢, +54¢

piston values for all combinations of each of the 17 non-phased
segments of the JWST would require ~10!'7 PSF evaluations,
which is impractical. Our efficient algorithm can be split into
three basic parts: an initial nonlinear optimization, a grid
search, and a final nonlinear optimization. For our nonlinear
optimization we use the limited-memory BFGS algorithm
with bounds, which is a gradient-based optimization algorithm
[17]. For a data consistency metric, we utilize a gain-and-bias-
invariant normalized mean squared error metric, given by

Y wEm )aM(xy) + B - D)
B >, (x5 )[D(, )P ’

where D(x, y) is our broadband data, M(x, y) is our modeled
broadband intensity, w(x,y) is a weighting mask (used, for
example, to ignore the effects of bad pixels), and @ and f are
gain and bias terms determined to minimize @ as in Ref. [18].
For our work here, we have no weighting on our metric, so
w(x, y) = 1. For our initial guesses of the WEE in all the sim-
ulations in this paper, except for those at the end of Section 3,
we included known terms in our physical model (such as de-
focus) and set all other wavefront parameters to zero, in order to
have a consistent starting point for all simulations. It is also
feasible to use a random starting guess for the WFEs with ap-
propriate RMS WEFE. To place ourselves in a local minimum
close to the starting guess, we enforced bounds on the per-
segment piston phase values, forcing them to lie between -24,
and 24,. This prevented the optimizer from giving large per-
segment piston differences. We then use the parameters from
this local minimum and the original optical model in our grid
search algorithm. We first establish a baseline data consistency
metric value using the PSF generated by our forward model
with the stagnated parameters and the measured data. We then
alter the path difference value for a single segment by an integer
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amount of 4y, and use our physical model to generate a PSF,
and compute its data consistency metric value. If the new value
is less than the baseline, then we accept the new value as the
baseline and update our parameters to keep the new piston
value. We repeat this for several integer values of 4, for a single
segment, and then repeat this over all segments. This grid
search is run until no improvement is made to the baseline error
metric value, which means that it must be run at least twice.
Once this is complete, we use the new values for our parameters
as a starting point for a final gradient-based nonlinear opti-
mization without enforcing any piston bounds to “fine-tune”
the result.

3. MONTE CARLO ANALYSIS

To improve and analyze this algorithm, we performed several
Monte Carlo analyses. First, we examined how the algorithm
with the grid search included compared with a simple nonlinear
optimization approach. We examined 1000 cases that included
Poisson noise with 40,000 peak photo-electrons and zero-mean
Gaussian read noise with a standard deviation of 12 photo-
electrons. Our simulated model had an exit pupil like that
of the JWST, with 18 hexagonal segments, and included a
20% bandwidth flat-top spectrum discretely sampled with
15 equally spaced points centered around a central wavelength
Ao. We simulated PSFs using this system where the only aber-
rations on the telescope were segment piston errors, with
amounts that were randomly chosen from a uniform distribu-
tion between 0 and 3.54¢. This allows the PSFs to statistically
be outside of the capture range of nonlinear optimization but
inside the capture range of our grid search. Our optimizer was
given three images with defocus amounts of 44, 0, and -44,,
which is consistent with the imaging capabilities of the JWST
and improves the probability of convergence for image-based
wavefront sensing [1,2,5,19].

In these preliminary trials, none of the cases converged when
only nonlinear optimization was used. The grid search imple-
mentation found the correct phases in 874 of the 1000 test
cases. By including two more images corresponding to 81,
and -84 defocus frames, the grid search implementation found
the correct phases in 903 of the 1000 test cases. Finally, by
allowing for an additional grid search after our second nonlinear
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optimization step, the correct phases were obtained in 925 of
the 1000 test cases.

We considered the effect of the shape of the spectrum on the
probability of convergence by implementing physical models
with discretely sampled rectangular, triangular, and Gaussian
spectra, shown in Fig. 2. The spectra used for these models
were shaped so that they all had identical coherence lengths,
using the coherence time 7, = [° [S()|*dv/([s° S(v)dv)?,
where S(v) is our spectrum. This definition was adapted from
Eq. (5) in Ref. [20], using the Fourier relationship between the
complex degree of self-coherence I'(7) and the spectrum S(v).
We used the same noise parameters and defocus planes as in the
previous trial, but we chose random segment piston values uni-
formly distributed between -5y and 54, ensuring that there
would be cases that fall outside of the capture range. We also
allowed for two grid searches in our optimization. Figure 3
shows the results of these Monte Carlo simulations. In these
simulations, both triangular and Gaussian spectra performed
significantly better than the square spectrum when the path
differences fell outside of the coherence length of the spectrum.
When the path differences were within the coherence length
of the spectrum, there was no appreciable difference in con-
vergence probability with respect to the type of spectrum.
However, there was notably lower convergence for the square
spectrum relative to the other two when the coherence length
was shorter.

For the longest coherence length (narrowest spectrum), we
believe the decrease in convergence rates results from data con-
sistency metric values at or near the noise floor for minima near
the solution, as can be seen on the green line in Fig. 1. It be-
came difficult to differentiate between solutions, and therefore
the algorithm became stuck in a local minima. There are values
around the global minimum consisting of errors of 4, differ-
ence for segments where the local minima are very close in mag-
nitude. Noise will make these values even closer, leading to local
minima that are difficult to discern from the true global min-
ima. At the shortest coherence length, we believe differences in
convergence come from the coherence effects of the spectra.
Recall that the complex degree of self-coherence I'(7) is pro-
portional to the Fourier transform of the spectrum S(v). Of
the three spectra in these simulations, only the square spectrum
has a Fourier transform with negative sidelobes. We believe
this causes the local minima of our error metric to change to
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Fig. 2. Discretely sampled (a) square, (b) triangular, and (c) Gaussian spectra used for polychromatic models for convergence comparison. The
wavelength samples are in terms of the central wavelength 4. Each sample has the same coherence length, and has 15 equally spaced samples.
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Fig. 3. Convergence comparisons for different spectra with path
differences up to 104, at different coherence lengths. All results are
from simulations that use two grid searches.

non-integer amounts past the coherence length, as seen by the
red line in Fig. 4 at approximately 5 waves of path difference.
In these simulations, we used discrete approximations to the
triangular and truncated Gaussian spectra, for which I'(r)
will be only approximately non-negative. As a result, for the
Gaussian spectrum, the spacings between the local minima in-
creased slowly, making the spacing between the global mini-
mum and the local minima a non-integer amount. As seen by
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Fig. 4. Data consistency metric values for different spectra for a sim-
ple two-segment system that has a piston path difference of 1 wave.
The path difference values are in units of the central wavelength 4.
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the blue line in Fig. 4 in the region of 6.0-8.0 waves of path
difference, the error metric value has minima that have distan-
ces between them greater than 4y, and the “depth” of these min-
ima becomes shallow outside of the coherence length. Despite
these deviations of the local minima from integer values, our
grid search could still recover the true solution since the per-
turbations of the local minima were not large. Indicated by the
black dashed curve, the triangular spectrum has local minima
that, in the region from 6.0 to 8.0 waves, also deviate from
integer wave amounts from the true solution; however, at
9.0 waves and 14.0 waves, the local minima return to being
nearly integer spaced, indicating that this triangular spectrum
may have a wider capture range than both Gaussian and rec-
tangular spectra for the same coherence length.

We performed Monte Carlo analysis to determine the ro-
bustness of our algorithm in a system with both large piston
and additional aberrations. We used our forward model of the
JWST with a Gaussian spectrum of width 0.054,. For this
analysis, we allowed all of the following to vary: the maximum
difference in piston, global RMS WFE, and per-segment RMS
WFEE other than piston. Figure 5 shows examples of data PSFs.
All simulations included the same noise statistics and defocus
planes as described previously, and used two grid searches. We
implemented bootstrapping techniques during our nonlinear
optimization algorithm to combat stagnation of the given
algorithm in a local minima. We first optimized only the per-
segment WFE and then both the global and per-segment WEE
contributions. The resulting wavefront was then used as a start-
ing guess for our grid search algorithm. Our criteria for success-
ful reconstruction was a residual RMS WFE less than 0.024,,
which was determined using error metric versus residual RMS
WEE plots like those seen in Fig. 6. The results of these sim-
ulations are summarized in Table 1. Simulations were done
with values of segment RMS WEE out to 0.54, but all sim-
ulations with greater than 0.254; waves RMS of per-segment
aberration failed to converge. We note that there is lower prob-
ability of convergence when the maximum path difference is
3.04 as compared to 6.04,. The results also show lower like-
lihood of convergence for small per-segment WFE, with the
simulations converging the most when the per-segment RMS
WPEE is 0.154¢. This did not change when the order of boot-
strapping was changed. We hypothesize that this is due to the
nonlinear optimization algorithm’s using low-order aberra-
tions to attempt to fit piston errors. For small amounts of per-
segment WEE, this would cause the algorithm to move to local

Fig. 5. Sample data PSFs prior to applying noise, with known defocuses of -84, -44, 0, 44y, and 84, from left to right. For these PSFs, the
maximum path difference is 3.04,, the global RMS WEE is 0.15/, and the (non-piston) per-segment RMS WFE is 0.054,. Each PSF array has been

square-rooted element-wise to show dimmer features.
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minima with much higher per-segment RMS WFE than in the
true solution, which would be used to try to fit features that
were not attributed to per-segment wavefront. It was common
in the failed retrievals that a single segment would have a large
amount of tilt, which would cause the energy to overlap with
another segment’s energy in some frames. This has been ob-
served before, and can be countered by using a geometrical op-
tics approach that ensures that light from neighboring segments
does not overlap in the modeled PSFs if it does not overlap in
the data [8,21]. The results in Table 1 show overall that the
algorithm is robust to additional per-segment RMS WFE of up
to 0.24¢, and additional global RMS WFE of up to 0.254; that
is, the probability of success for any one retrieval is high enough
that with a few different random starting guesses, we can expect
a successful retrieval with high probability. The starting point
for the nonlinear optimizations in Table 1 was an aberration-
free system, which means the optimizer can get stuck in local
minima near this guess in parameter space. We chose a parti-
cular start, underlined in Table 1 with 0.054, of per-segment
WEE, 0.154, of global WFE, and 3.04; maximum path differ-
ence. Table 1 shows a 43.3% chance of success for an ensemble
of cases having the same statistics. This particular case had stag-
nated at a wavefront that had 1.84; residual RMS WFE from
the true solution, and produced an estimate with residual global
WFE and per-segment WFE. We then tried optimization with

Table 1. Monte Carlo Results for Determining Robustness of Grid Search Algorithm for 20% Bandwidth®
Maximum Segment Path Difference: 3.0 Maximum Segment Path Difference: 6.0
Segment RMS WEE (A) Segment RMS WEE (A)
0.00 0.05 010 015 020 0.25 0.00 0.05 010 015 020 0.25
© 000 | 26 46 81 98 79 10 © 000 | 64 69 91 96 80 6
<) o
g 0.05 | 34 52 72 96 80 10 g 0.05 | 68 76 92 89 70 4
g 0.10 | 43 52 73 94 71 7 E 0.10 | 63 77 87 90 62 3
) @
s 015 ] 45 43 69 93 53 6 s 015| 69 72 86 85 51 1
| |
m 020 38 51 72 79 37 3 ™ 020 73 75 88 76 23 2
> >
2 025 36 50 66 57 19 2 2 025| 59 71 70 57 11 0
Maximum Segment Path Difference: 9.0, Maximum Segment Path Difference: 12.0A
Segment RMS WEFE (1) Segment RMS WEFE (1)
0.00 0.05 010 015 020 025 0.00 0.05 010 015 020 025
@ 0.00 | 40 50 75 81 51 3 o 0.00 11 19 24 36 24 0
o )
S 005| 38 45 74 8 59 3 S 005 14 14 28 3 11 0
£ 010 5 53 68 81 45 5 £ 010 12 16 30 31 19 1
%) @
s 015 | 47 57 74 78 30 3 s 015 12 19 22 30 11 0
| =
f_‘j 020 | 43 39 63 61 19 3 f_‘j 0.20 13 9 19 22 8 2
> >
< 025| 39 59 53 44 15 1 < 025 7 10 19 21 5 0

“Each cell contains the percentage of successful retrievals, with a total of 97 trials per cell.
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this case again, but with 30 different random starting guesses
that each had the same amount of per-segment WFE, global
WEFE, and maximum path difference as the true wavefront,
but having different values of the particular coefficients. Of
the 30 random starting guesses, 27 converged to a solution with
less than 0.024, residual RMS WFE, which was our criterion
for convergence. This result demonstrates that utilizing a small
number of random starting guesses can greatly increase the
probability of a successful retrieval for this algorithm.

4. FAILURE MODES

This algorithm has two types of local minima that most com-
monly account for convergence failure. Figure 7(a) shows the
difference between the true wavefront and an estimated wave-
front for which a particular segment path difference falls out-
side of the coherence length. This minimum occurs due to a
shift in local minima in the data consistency metric for large
path separations. The blue line in Fig. 1 and the red line in
Fig. 4 show how the local minima change for 20% bandwidth
when the path difference between segments is longer than 5
waves for a flat-top spectrum: the local minima go from near-
integer values to near-half-integer values. For the Gaussian
spectrum, the distance between adjacent local minima slowly
increases until they reach a difference that is far enough from
integer Ay amounts that the grid search could not recover, as
seen by the blue line in Fig. 4. The triangular spectrum has
the same behavior near the coherence length, but then has
the minima shift once more to be closer to integer 4, separa-
tions, as seen by the black dashed line in Fig. 4. For all spectra,
this problem was accounted for algorithmically for our Monte
Carlo simulations by setting constraints on the maximum path
difference between any two segments in the system, and is
detectable by the larger data consistency error value that is
calculated from the simulated PSFs. Despite the larger error
metric, however, one is still stuck in the local minimum, unable
to find the global minimum.

Figure 7(b) shows the more difficult failure mode. Here, one
or more contiguous group(s) of segments differ from the true
wavefront solution by Aq. The failure seen in Fig. 7(b) shows
one of the more obvious groupings, but the differing groups
can be as small as two segments. This type of failure is particu-
larly difficult to detect, as the data consistency metric value does
not differ greatly from the data consistency metric value at the
true solution when enough noise is present. This is illustrated
in Fig. 8, which shows that there are cases in which we could

[ /
/N
(a) (b)
Fig. 7. Modes of failure for the grid search algorithm: (a) a segment

outside the coherence width of the model, and (b) the more common
failure mode, the “split telescope.” Color bar values are in units of 4.
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Fig. 8. Histogram of error metric values versus failure type for the

same simulation group in Fig. 6. Note the overlap between the “split
telescope” minima and the successful retrievals.

not differentiate the “split telescope” and true solutions by sim-
ply looking at the error metric. There are a set of cases in Fig. 8
where the error metric is below 2 x 1073 and all of the cases are
successful, indicating a possible threshold that guarantees suc-
cess. With higher than 64, path differences, the group of local
minima corresponding to other types of failure have error met-
ric values that overlap the “split telescope group” more, and it
becomes even more difficult to determine if a retrieval is cor-
rect, a “split telescope,” or a general failure. When we examined
the number of these types of failures versus successful retrievals
in our Monte Carlo simulations, we found that there were 2—5
times more successful retrievals than “split telescopes,” depend-
ing on path difference.

We hypothesize that the “split telescope” occurs due to the
use of defocus diversity. In planes with defocus, the fields for
individual segments overlap less if the segments are farther
away. Therefore, fringe patterns in the PSFs will be stronger
when due to nearby pairs of segments, and a preference for cor-
rect fitting relative to neighbors occurs. The only frame where
all segment fields overlap each other fully is at focus, which is
the case for only one frame in our model, and this zero-defocus
plane tends to be less informative for phase retrieval than the
out-of-focus planes. Therefore, the preference of fitting to
neighbors causes different groups to form and the solution falls
into this local minimum. This can be overcome, once again, by
using multiple starting guesses and placing more stringent re-
quirements on acceptance for a solution: for example, having an
error metric value below 2 x 107 for the cases in Fig. 8.

5. CONCLUSION

We presented a computational method for extending the cap-
ture range of image-based wavefront sensing for a segmented
system with per-segment piston errors of multiple waves of
the central wavelength 4,. We accomplish this by taking advan-
tage of the quasi-periodic shape of the error metric as a function
of path difference between segments with polychromatic light
and performing a grid search by adjusting segment piston val-
ues in integer units of 4y. Our method works for piston errors
within the coherence length of a given light source, and is ro-
bust to additional aberrations and noise. Defocus diversity is
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used for improving convergence probability. The algorithm fails
when segment path differences are outside of the coherence
length of the source or when strong fitting preference to neigh-
boring segments causes groups of segments to dephase from
the remainder of the telescope, referred to as a “split telescope.”
We find that coupling this method with multiple random start-
ing guesses for parameters other than per-segment piston error
increases the probability of convergence, even in the presence
of additional aberrations.

We are currently examining methods of preventing the
“split telescope” failure by adjusting contiguous segment
groups. It may also be possible to utilize mixed-integer nonlin-
ear problem (MINLP) optimization to perform a tree search for
the global minimum [22]. This method requires constant prun-
ing of branches, or large amounts of memory to hold or cache
possible solutions. We could also attempt to prevent the “split
telescope” by adjusting the segments neighbor-first. In this way,
we would not allow any distant segments to move until all of
their neighbors were appropriately fit, preventing dephasing for
groups. Additionally, we will examine the effects of random
starting guesses across all of the cases in Table 1 to see if con-
vergence can be improved across all trials.

Funding. NASA Goddard Space Flight Center (GSFC)
(NNXI15AE94A).
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