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Wiener reconstruction of undersampled imagery
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We derive a Fourier-domain Wiener filter for the reconstruction of undersampled imagery. The filter differs
from previous implementations in that it permits adjustment of the trade-offs between sharpness of the recon-
struction, noise amplification, and aliasing artifact suppression. Additionally, a net transfer function that char-
acterizes the combined effects of the imaging system and the reconstruction process is derived. This net trans-
fer function is valid for both unaliased and aliased spatial frequencies. The expression for the net transfer
function is applicable to more general linear image sharpening algorithms. © 2009 Optical Society of America

OCIS codes: 070.2615, 100.1830, 100.2980, 100.3020, 110.4280, 110.4850.
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. INTRODUCTION
he Wiener filter [1–4] is widely used in the reconstruc-
ion of imagery sampled at or above the Nyquist limit
5,6]. The Wiener filter requires accurate knowledge of
he system optical transfer function, but has several ad-
antages. It is optimum in the sense that it yields a re-
onstruction with the minimum expected mean-square er-
or based on the object and noise statistics. Being linear,
t is computationally efficient and requires just one con-
olution operation to compute the reconstruction. In some
ircumstances, the Wiener filter can yield reconstructions
f the same quality or better than more complex, nonlin-
ar, iterative algorithms [7].

Many imaging systems, however, operate below the Ny-
uist limit due in part to signal-to-noise and field-of-view
onsiderations [8]. While a Wiener filter applicable to un-
ersampled imagery has been derived previously in the
patial domain [4], we present a Fourier-domain deriva-
ion. While the Fourier-domain treatment does have limi-
ations (it does not apply to space-variant imaging condi-
ions and becomes considerably more complicated when
he object and/or noise statistics are nonstationary), there
re a number of advantages. In the Fourier domain, it is
asy to separate the terms representing the unaliased
nd aliased portions of the image and the noise. This be-
ng done, filter parameters can be introduced to control
he trade-offs between the sharpness of the reconstruc-
ion, noise amplification, and the suppression of aliasing
rtifacts. Additionally, the Fourier-domain analysis yields
n expression for a net transfer function that represents
he combined effects of the imaging system and the recon-
truction process at both unaliased and aliased spatial
requencies. This net transfer function is a nontrivial gen-
ralization of the well-known result for Wiener filtering
yquist sampled data, for which the net transfer function

s simply the product of the imaging system transfer func-
ion and the Fourier-domain Wiener filter. Previous
patial-domain work on using the Wiener filter with un-
ersampled data did not yield this result. The net trans-
er function is a vital tool for assessing the overall perfor-
1084-7529/09/020283-6/$15.00 © 2
ance of the system and can be used to compute various
mage quality metrics [9,10]. For example, [11] uses the
et transfer function to calculate the relative edge re-
ponse of an undersampled imaging system.

A mathematical model for undersampled imagery is de-
cribed in Section 2. The Wiener filter for undersampled
magery is derived in Section 3. An expression for the net
ystem transfer function after reconstruction is given in
ection 4. An example with simulated imagery is dis-
ussed in Section 5. Section 6 is a summary.

. IMAGING MODEL
or notational convenience, all of the equations in Sec-

ions 2–4 will be written in one dimension; the extension
o two dimensions is straightforward. Assuming space-
nvariant imaging conditions, the incoherent image i�x� of
n object o�x� is given by the convolution

i�x� = s�x� � o�x�, �1�

here s�x� is the system incoherent impulse response or
oint-spread function (PSF). A digitally sampled version
f this image can be written as

hm = i�m�x� =�
−�

�

i�x���x − m�x�dx, �2�

here the subscript m� �−M /2 , �2−M� /2 , . . . , �M−2� /2� is
n image-domain sample index, M is the total number of
amples, �x is the sample spacing, and ��x� is the Dirac
elta function. In practice, there is noise in the measure-
ent of hm. Thus, a noisy version of the digital image can

e written as

gm = hm + nm, �3�

here nm are additive noise samples. The discrete Fou-
ier transform (DFT) of g is given by
m

009 Optical Society of America
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Gp =
1

�M
�

m=−M/2

M/2−1

gm exp�− i2�
mp

M 	 , �4�

here the subscript p� �−M /2 , �2−M� /2 , . . . , �M−2� /2� is
Fourier-domain sample index, i= �−1�1/2, and the spac-

ng between samples in the Fourier domain is

�u =
1

M�x
. �5�

sing Eqs. (1)–(5), the Fourier-domain samples Gp can be
ritten as [12]

Gp = Np +
1

�M�x
�

k=−�

� �
−�

� 
�S�u�O�u��

�

1

�u
sinc�u − kM�u

�u 	��u − p�u�du, �6�

here the uppercase variables represent the Fourier-
omain counterparts to the corresponding lowercase vari-
bles, and sinc�x�=sin��x� / ��x�. Equation (6) can be writ-
en as the sum of three distinct terms as

Gp = Np + Ha,p + H0,p, �7�

here Np is the noise, Ha,p is the aliased portion of the
ourier transform of the image,

Ha,p =
1

�M�x
�

k=−�

k�0

� �
−�

� 
�S�u�O�u��

�

1

�u
sinc�u − kM�u

�u 	��u − p�u�du

�
1

�M�x
�

k=−�

k�0

�

S��p − kM��u�O��p − kM��u�, �8�

nd H0,p is the unaliased portion of the Fourier transform

H0,p =
1

�M�x
�

−�

� �S�u�O�u�

�

1

�u
sinc� u

�u	���u − p�u�du

�
1

�M�x
S�p�u�O�p�u�. �9�

he sinc convolutions in the above equations, which arise
rom the truncation of the image by the width of the de-
ector array, have three effects: (i) to introduce coordinate
ranslations of kM�u [in Eq. (8) only], (ii) to limit the res-
lution of Hp to approximately �u, and (iii) to cause spec-
ral leakage proportional to the amplitude of the sinc
unction sidebands, converting the finite-support spec-
rum S�u�O�u� to a spectrum with infinite support [but
ypically having small values outside the support of S�u�].
gnoring (ii) and (iii) yields the approximate expressions
n the third lines of Eqs. (8) and (9).
. WIENER FILTER
he Wiener reconstruction of the object can be written in

he Fourier domain as

F̂p = WpGp, �10�

here Wp is the Wiener filter. The Wiener filter is speci-
ed to yield the minimum expected mean-square error be-
ween the reconstruction and the original object based on
he noise and object statistics, both of which are assumed
o be stationary. When aliasing is present, this error is
alculated with respect to the unaliased portion of the ob-
ect Fourier transform, i.e., we wish to find Wp that mini-

izes

�e� =� 1

M �
p=−M/2

M/2−1

�WpGp − Fp�2� , �11�

here the angle brackets indicate an expectation value
alculated with respect to both the noise and object sta-
istics and

Fp =
1

�M�x
�

−�

� �O�u� �

1

�u
sinc� u

�u	���u − p�u�du

�
1

�M�x
O�p�u� �12�

epresents an unaliased discrete version of the Fourier
ransform of the original object. Substituting Eq. (7) into
q. (11) yields

�e� =
1

M �
p=−N/2

N/2−1

��Wp
2����Np�2� + �NpHa,p

* � + �Np
*Ha,p� + ��Ha,p�2�

+ �NpH0,p
* � + �Np

*H0,p� + �Ha,pH0,p
* � + �Ha,p

* H0,p�

+ ��H0,p�2�� − Wp��NpFp
*� + �Ha,pFp

*� + �H0,pFp
*��

− Wp
*��Np

*Fp� + �Ha,p
* Fp� + �H0,p

* Fp�� + ��Fp�2��. �13�

f the noise is zero-mean and independent of the object
tatistics, the cross-terms involving Np with Ha,p, H0,p, or
p vanish. Also, the cross-terms involving Ha,p with H0,p
nd those involving Ha,p with Fp vanish due to the follow-
ng property of O�u�

�O�u�O*�u��� = �o�u���u − u��, �14�

here �o�u� is the spectral density or power spectrum of
he object, which results from the object stationarity as-
umption [13]. The only remaining term that varies from
he standard Wiener filter derivation [3] is ��Ha,p

2 � �, which
an be evaluated as

��Ha,p
2 �� �

1

M�x2 �
k=−�

k�0

�

�
k�=−�

k��0

�

S��p − kM��u�S*��p − k�M��u�

� �O��p − kM��u�O*��p − k�M��u��

�
1

M�x2 �
k=−�

k�0

�

�S��p − kM��u��2�o��p − kM��u�
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�
1

M�x2�a�p�u�, �15�

here �a�u� represents the aliased portion of the image
ower spectrum,

�a�u� = �
k=−�

k�0

�

�S�u − kN�u��2�o�u − kN�u�. �16�

hus, the expected mean-square error can be written as

�e� �
1

M2�x2 �
p=−M/2

M/2−1

��Wp
2���n�p�u� + �a�p�u��

+ ��Wp
2��S�p�u��2 − WpS�p�u� − Wp

*S*�p�u� + 1�

��o�p�u��, �17�

here �n�u� is the noise power spectrum, defined by

��Np�2� =
1

M�x2�n�p�u�. �18�

olving for the Wiener filter that minimizes E yields
p

w
1
t
a
i
�
fi
t

Wp =
S*�p�u��o�p�u�

�S�p�u��2�o�p�u� + cn�n�p�u� + ca�a�p�u�
,

�19�

here cn and ca are parameters that have been intro-
uced to allow for trade-offs between sharpness, noise,
nd aliasing artifacts in the reconstruction F̂p. The true
inimum �e� solution is for cn=ca=1. Comparing this ex-

ression with the traditional Fourier-domain Wiener fil-
er [3], the term representing aliasing �a�p�u� appears as
n additional noise term. When there is no aliasing, i.e.,
a�p�u�=0, Eq. (19) reduces to the form of a Wiener–
elstrom filter without aliasing.

. NET SYSTEM TRANSFER FUNCTION
ote that the Wiener filter can be written as a sampled
ersion of a continuous function ��u�, i.e.,

Wp =�
−�

�

��u���u − p�u�du = ��p�u�, �20�

here ��u� is a periodic function defined as
��u� = �
S*�u��o�u�

�S�u��2�o�u� + cn�n�u� + ca�a�u�
for

− M�u

2
� u 	

M�u

2

��u − M�u� otherwise
� . �21�

sing Eqs. (7)–(10), (20), and (21), the reconstruction F̂p can be written as

F̂p = Wp�Np + Ha,p + H0,p� � WpNp +
1

�M�x
�

k=−�

�

WpS��p − kM��u�O��p − kM��u�

= WpNp +
1

�M�x
�

k=−�

� �
−�

�

��u�S�u�O�u���u − �p − kM��u�du. �22�

t is evident from this equation that the net system transfer function, after Wiener filtering, is given by

Snet�u� = ��u�S�u�, �23�

hich can be written as

Snet�u� =
S�u�S*�u − kM�u��o�u − kM�u�

�S�u − kM�u��2�o�u − kM�u� + cn�n�u − kM�u� + ca�a�u − kM�u�

for �k −
1

2	M�u � u 	 �k +
1

2	M�u and all k � �0, ± 1, ± 2, . . . �. �24�
Figure 1(a) illustrates the system transfer function
�u� for an undersampled imaging system, in which �x is
factor of 8/3 larger than the Nyquist sample spacing

the diffraction-limited cutoff frequency is 4/ �3�x�]. The
ertical dashed lines represent the range of spatial fre-
uencies for which the Nyquist sampling condition is sat-
sfied. Figure 1(b) shows a representative periodic exten-
ion of the Wiener filter ��u�. The portion of ��u� between
he dashed lines represents the Wiener filter W that
ould actually be used to reconstruct the image. Figure
(c) shows the net system transfer function Snet�u�, equal
o the product of S�u� and ��u�, which is valid at both un-
liased and aliased spatial frequencies. Note that Eq. (23)
s valid for any linear sharpening kernel, e.g., generic 3

3 and 5�5 sharpening kernels, as well as the Wiener
lter, when ��u� is replaced by the periodic extension of
he DFT of said kernel.

Figure 2 provides further insight into the interpreta-
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ion of Snet�u�. The following two sequences yield the
ame final image: (i) passing the object data through the
ransfer function of the imaging system S�u�, sampling,
nd reconstructing with Wiener filter Wp, and (ii) passing
he object data through the net transfer function Snet�u�
nd sampling. Either process yields the same result, even
ith aliasing. Note that the addition of noise is omitted

rom these steps, as Snet�u� does not apply to the noise.

. EXAMPLE IMPLEMENTATION
igure 3 shows an aerial photograph [14] with a 7.6 cm

3 in.� ground sample distance (GSD) used as the digital
bject, o�x ,y�, for this example. Figure 4 shows a simu-
ated 45.7 cm �18 in.� GSD noisy image, gm,n, where the
ystem PSF s�x ,y� is given by the convolution of the Airy
isk pattern for an aberration-free optical system and a
mall square window representing the spatial area of an
ndividual detector pixel. The sampling ratio [8] was Q

f / �D�x�=0.75, where 
 is the wavelength of light, f is
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ig. 1. Diagram illustrating Fourier-domain contributions to
he net system transfer function: (a) the unaliased transfer func-
ion of the imaging system S�u�, (b) the periodically extended
ersion of the Wiener filter ��u�, and (c) the unaliased net sys-
em transfer function Snet�u�. The vertical dashed lines indicate
he extent of the unaliased portion of the Fourier domain, �u�
1/ �2�x�.
he system focal length, and D is the pupil diameter.
hus, gm,n is undersampled by a factor of 8/3 in compari-
on to the Nyquist sampling rate (Q=2 for Nyquist sam-
ling), as was the case for Fig. 1. Both Poisson-distributed
hot noise, where the average image signal was

Signal, O(u)

Pass Through S(u)

S(u)O(u)

Sample

Wiener Filter

H0,p+Ha,p

Wp(H0,p+Ha,p)

Pass Through Snet(u)

Snet(u)O(u)

Sample

Wp(H0,p+Ha,p)

ig. 2. Diagram illustrating the interpretation of the net trans-
er function Snet�u�. Passing object data through S�u�, downsam-
ling, and reconstructing with Wp (left) yields the same result as
assing object data through Snet�u� and downsampling (right).

Fig. 3. Digital object [14] used for simulation.
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0,000 photoelectrons/pixel, and Gaussian-distributed
etector read noise, with a standard deviation of 20 pho-
oelectrons, were included in gm,n. Additionally, 10-bit
uantization was applied to gm,n. These conditions are
epresentative of ideal exposure conditions with a realis-
ic detector, yielding a high signal-to-noise ratio image.

Both the object and noise power spectra, �o�u ,v� and
n�u ,v�, respectively, are needed for the Wiener filter.
ere we switch from 1D to 2D notation. A common model

7,15–20] for the power spectrum of typical objects or
ecenes is

�o�u,v� = 
A0
2 for � = 0

A2�−2� for � � 0, �25�

here �= �u2+v2�1/2 is the radial spatial frequency coordi-
ate and A0, A, and � are parameters of the model. The
orresponding model for the image power spectrum
i�u ,v�, including both the unaliased and aliased portions

f the noise-free image, is given by

�i�u,v� = �
k=−�

�

�
�=−�

�

�S�u − kM�u,v − �M�v��2

��o�u − kM�u,v − �M�v�. �26�

ypically, the noise is nearly white [21], such that

�n�u,v� = �n, �27�

s a constant, independent of spatial frequency. Assuming
he noisy Fourier-domain samples �Gp,q�2 are statistically
ndependent (except for correlations arising from the Her-

itian symmetry of Gp,q) and obey a negative-exponential
robability distribution [22] of the form

P��Gp,q
2 �� =

1

�i�p�u,q�v� + �n
exp� − �Gp,q

2 �

�i�p�u,q�v� + �n
� ,

�28�

hen the power spectrum parameters A, �, and �n can be
stimated from the image data Gp,q by maximizing the
ollowing log-likelihood function [22,23]

Fig. 4. Noisy aliased image gm,n.
ig. 5. Wiener filter reconstructions f̂m,n of Fig. 4, with cn=1 and
a) ca=0, (b) ca=1, and (c) ca=5. The arrows indicate a region con-
aining noticeable aliasing artifacts associated with the painted
ines of the parking lot; note that the stripes appear to go in the
rong direction.
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L = �
�p,q���0,0�

− �Gp,q�2

�i�p�u,q�v� + �n
− ln��i�p�u,q�v� + �n�.

�29�

dditionally, A0=G0,0 can be used to evaluate the object
ower spectrum at the dc spatial frequency. Note that the
�x2 factors appearing in Eqs. (15) and (18) have been

ropped from Eqs. (28) and (29) for notational conve-
ience as they do not affect the maximization of L.
Figure 5 shows Wiener filter reconstructions for the ex-

mple imagery using object and noise power spectra esti-
ates, resulting from the method described above, and
lter parameter values cn=1 and ca=0, 1, and 5. These re-
onstructions demonstrate the trade-off between sharp-
ess and the suppression of aliasing artifacts (e.g., the
staircasing” effect on the tilted edges and the periodic
ines on the pavement appearing to go the wrong way) as-
ociated with the value of ca. Figure 5(a) appears visually
o be the sharpest, while Fig. 5(c) is the least sharp, being
nly marginally sharper than the unprocessed image
hown in Fig. 4. However, the aliasing artifacts in the re-
ion indicated are most noticeable in Fig. 5(a) and least
oticeable in Fig. 5(c). Figure 6 shows Snet�u ,0� for each
ase. Note that for ca=0, the Wiener filter boosts Snet�u�
p to near unity for all the unaliased spatial frequencies

u�	1/ �2�x�, since the signal-to-noise ratio is high. As the
alue of ca increases, however, the amount of boosting of
net�u� is reduced to provide better suppression of aliasing
rtifacts, at the expense of reduced edge sharpness in the
econstruction.

. SUMMARY
e have derived a Fourier-domain Wiener filter for

liased imagery. Filter parameters were introduced to
ontrol the trade-offs of edge sharpness, noise amplifica-
ion, and aliasing artifact suppression. An expression for
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Spatial Frequency, u [1/∆x]

S(u,0)

S
net

(u,0), c
a
= 0

S
net

(u,0), c
a
= 1

S
net

(u,0), c
a
= 5

ig. 6. Net system transfer functions Snet�u ,v� corresponding to
ach of the reconstructions shown in Fig. 5. For comparison, the
ystem transfer function before processing S�u ,v� is also shown.
he vertical dotted lines represent the extent of the unaliased
ortion of the object Fourier transform, �u�	1/ �2�x�.
he net system transfer function Snet�u ,v� after applica-
ion of the Wiener filter (or any other linear filter) was de-
ived. This expression for Snet�u ,v� is a vital tool for the
nalysis of overall system performance (including the ef-
ects of both the imaging system and the reconstruction
lgorithm). Finally, an example implementation of the
iener filter was demonstrated. This example illustrated

he trade-off between image sharpness and aliasing arti-
acts associated with the filter parameter ca.
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