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ABSTRACT 

We analyze a Fourier-domain Wiener filter for the reconstruction of aliased imagery. The filter is designed to minimize 
the expected mean square error for the unaliased portion of the object Fourier transform. This analysis yields a net 
system transfer function, which characterizes the combined effects of the imaging system, sampling, and the 
reconstruction process, that is valid at both aliased and unaliased spatial frequencies. This transfer function provides 
insight into how aliasing artifacts are modified by the reconstruction process. Additionally, the net transfer function is 
useful for characterizing the combined performance of the imaging system and post processing. For example, the net 
system transfer function can be used to calculate the edge response for reconstructed imagery even in the presence of 
aliasing. Examples are used to illustrate these aspects of using the Wiener filter with aliased imagery. 
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1. INTRODUCTION
Imaging systems are commonly undersampled due to signal-to-noise ratio (SNR) [1] and field of view considerations. 
However, many of the image reconstruction algorithms presented in the open literature are formulated for unaliased 
imagery. This raises a number of questions. How applicable are such algorithms to aliased imagery? How do these 
algorithms enhance or suppress aliasing artifacts? Does the concept of a net transfer function describing the combined 
effects of the imaging system and reconstruction remain valid when aliasing is present? This paper answers these 
questions. 

Section 2 provides a mathematical foundation for analyzing the reconstruction of aliased imagery. Section 3 analyzes the 
effect of a linear reconstruction algorithm, in which a reconstruction is obtained by convolving an aliased image with a 
reconstruction kernel, on the unaliased portion of the image, aliasing artifacts, and noise. This analysis yields a net 
transfer function that characterizes the combined effect of the imaging system and the reconstruction process. Section 4 
discusses a Wiener reconstruction algorithm that properly accounts for aliasing artifacts. Section 5 presents a number of 
examples that illustrate the benefits of our analysis. Section 6 is a summary. Reference [2] discusses various aspects of 
this work in greater detail. 

2. ALIASED IMAGERY 
For convenience, the analysis is presented in 1D. The extension to 2D is straightforward. Let f(x) represent the intensity 
of an incoherent object being imaged by an isoplanatic system with incoherent point spread function s(x) and detector 
pixel pitch p. The recorded digital image gm is given by 

, d    for all 2 , ..., 2 2m mg n f x y s mp x x m M M , (1) 

where m is a sample index, M is the number of image samples, and nm is a zero-mean, random process that represents 
measurement noise. Note that the effect of finite-area detector pixels can be included in s(x). The discrete Fourier 
transform (DFT) Gu of the recorded image, given by 
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can be written as [2] 
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where Go,u is the unaliased portion of the image, given by 
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Ga,u is the aliased portion of the image, given by 
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Nu is the DFT of nm, S(fx) is the transfer function for the imaging system [given by the continuous Fourier transform of 
s(x)], and F(fx) is the continuous Fourier transform of the object f(x). The approximations involved in Eqs. (4) and (5) 
arise from ignoring the effect of only have data for a finite number M of pixels. Each k term in Eq. (5) represents an alias 
copy of the continuous Fourier transform of the image being recorded. 

3. RECONSTRUCTION OF ALIASED IMAGERY 
We consider the case of a general linear reconstruction algorithm, in which a reconstruction ˆmf  is formed as a discrete 
circulant convolution of the aliased image gm with a reconstruction filter wm, i.e.,

1ˆm m m mf g w
M

. (6) 

In the Fourier domain, the reconstruction can be expressed as 

û u uF W G , (7) 

where ûF , Gu, and Wu are the corresponding DFTs of ˆmf , gm, and wm, respectively. Substituting Eqs. (3), (4), and (5) 
into Eq. (7) yields 
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Let (fx) represent a continuous periodic extension of Wu, defined such that 
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Now, Eq. (8) can be written as 
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where 

net x x xS f f S f , (12) 

is a net transfer function that describes the combined effect of imaging with S(fx), sampling, and reconstruction with Wu
on the underlying signal. In other words, the unaliased and aliased signal components of the reconstruction are 
equivalent to the viewing the object through a system with a transfer function Snet(fx) and sampling. It is important to 
note that the expression for Snet(fx) is valid for aliased spatial frequencies, i.e., for fx  –1/(2p) or fx > 1/(2p). When there 
is no aliasing, Eq. (12) yields the well-known result that the net transfer function simply the product of the individual 
transfer functions of the imaging system and the reconstruction filter. 

The derived net transfer function Snet(fx) has a number of practical uses, one of which is to calculate the normalized edge 
response ER(x) for the reconstructed imagery [3]. ER(x) can be used to characterize the performance of an imaging 
system. The edge response can be computed from Snet(fx) using the following expression 

net
1ER exp i2 d
2 x x x x

x

ix S f f xf f
f

, (13) 

where (fx) is the Dirac delta function. A standard approach for characterizing an imaging system is to: (i) extract ER(x)
from the image of an edge and (ii) use the extracted ER(x) to estimate Snet(fx). For aliased imagery, the edge needs to be 
tilted with respect to the image coordinates. ER(x) is also used to compute the relative edge response RER of an imaging 
system as 

RER ER 2 ER 2p p . (14) 

RER is a measure of the spatial resolution of an imaging system with respect to pixel pitch. RER plays a significant role 
in determining overall image quality. 

4. WIENER FILTER FOR ALIASED IMAGERY 
The Wiener filter [4-8] is a particularly attractive reconstruction algorithm for a number of reasons. It is simple to 
implement and computationally efficient, yet it yields results that are better than or comparable to more complex, 
iterative algorithms [8]. In Reference [2], we derived a Fourier-domain Wiener filter that properly accounts for aliasing. 
Prior implementations exist for the aliased imagery [7], but these are formulated in the spatial domain as the solution to a 
large matrix equation and do not offer much physical insight. Working in the Fourier domain has the advantage of being 
able to easily distinguish terms associated with the unaliased portion of the underlying signal, aliasing artifacts, and 
noise. Specifically, the Fourier-domain Wiener filter W(u,v) can be written as [2] 
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where o(fx), a(fx), and n(fx) are power spectra for the object being imaged, aliasing artifacts in the measured image, 
and noise in the measured image, respectively. The parameters ca and cn in Eq. (13) are used to control the trade-offs 
between edge sharpness, artifact suppression, and noise gain in the reconstructed image. With ca = cn = 1, the Wiener 
filter of Eq. (13) yields a reconstruction with the minimum expected mean-squared error for the unaliased portion of the 
object Fourier transform, i.e., the following error measure is minimized 
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where the angle brackets represent and expectation value computed with respect to both the noise and object statistics 
(the image is considered to be a stochastic process). 

A practical model [9-13] for the unaliased object power spectrum is 

Proc. of SPIE Vol. 7076  70760J-3



2
0

o 2 2

for 0

for 0

A

A
, (17) 

where  is a radial spatial-frequency coordinate in two dimensions, and A0, A and  are parameters of the model. 
Keeping with 1D notation, the power spectrum for the aliased artifacts in the unprocessed image gm can be written as 
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when the object is wide-sense stationary, as is often assumed for Fourier-domain Wiener filter implementations [6,7]. 
The noise is nearly white for typical imaging scenarios, such that n(fx) = n, a constant, is a good approximation. 
Reference [2] outlines a method for estimating the various power spectrum parameters A0, A,  and n for noisy, aliased 
imagery that accounts for both S(fx) and aliasing. This method was used to obtain the results in Section 5. 

5. EXAMPLES 
This section examines a number of examples using simulated data to illustrate various aspects of Wiener filtering aliased 
imagery. Figure 1 shows the object f(x) used for the simulations. Figure 2(a) shows a simulated image gm for an 
unaberrated imaging system with a circular pupil, operating at  FN/p = 1, where FN is the system f-number. Figures 
2(b), 2(c) and 2(d) show the image contributions due to the unaliased portion of the image, aliasing artifacts, and noise, 
respectively. These are the spatial-domain counter parts of Go,u, Ga,u, and Nu, respectively. The simulation included shot 
noise only, and the average number of photons per pixel in the image was 30,000. Figures 2(a) and 2(b) are displayed 
using the same grayscale as Fig. 1, while Figs. 2(c) and 2(d) use a grayscale stretched by a factor of 5. The effect of 
aliasing is particularly noticeable in the upper left corner of the image, where the finely-spaced diagonal lines on the 
parking lot pavement appear to be orieneted in the wrong direction when compared to the actual object shown in Fig. 1. 

Fig. 1. Object f(x) used for simulation examples [14]. 
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(a) (b) (c) (d)

Fig. 2. (a) Simulated image gm for the unaberrated imaging system and its various contributions due to the (b) unaliased 
portion of the image, (c) aliasing artifacts, and (d) noise. Figures 2(b)-2(d) are the spatial-domain counterparts of Go,u,
Ga,u, and Nu, respectively. 

(a) (b) (c) (d)

Fig. 3. (a) Wiener reconstruction ˆmf  of Fig. 2(a) using cn = ca = 0.2, and the various components of the reconstruction 
associated with the (b) unaliased portion of the image, (c) aliasing artifacts, and (d) noise. Figures 3(a)-3(d) were 
obtained by convolving Figures 2(a)-2(d) with the Wiener filter kernel wm.

Figure 3 shows the Wiener reconstruction ˆmf  of the data in Fig. 2 using cn = ca = 0.2. In addition to increasing the 
sharpness of edges in the reconstruction, the Wiener filter also amplifies the aliasing artifacts and noise. Figure 4 
demonstrates the fact that the unalaised and aliased portions of the reconstruction can be computed equivalently using 
the net transfer function Snet(fx). Figure 5 demonstrates how aliasing artifacts can be suppressed in the reconstruction at 
the expense of reduced edge sharpness by using a larger value of ca = 10. 
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(a) (b)

Fig. 4. Contributions to the Wiener reconstruction shown in Fig. 2(a) associated with the (a) unaliased portion of the image 
and (b) aliasing artifacts. Figures 4(a) and 4(b) are identical to Figures 3(b) and 3(c), but were computed by passing the 
object f(x) through the net transfer function Snet(fx) and then sampling. 

(a) (b) (c) (d)

Fig. 5. (a) Wiener reconstruction ˆmf  of Fig. 2(a) using cn = 0.2 and ca = 10, and the various components of the 
reconstruction associated with the (a) unaliased portion of the image, (b) aliasing artifacts, and (c) noise. 
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Fig. 6. The transfer function S(fx) for the unaberrated imaging system (dotted line) and the net transfer functions Snet(fx) that 
include the effect of the Wiener filter used in reconstructing Fig. 3(a) (solid line) and Fig. 5(a) (dashed line). 

Figure 6 shows cuts through the transfer function S(fx) of the unaberrated imaging system and the net transfer functions 
Snet(fx) for both values of ca = 0.2 and 10. For the smaller value of ca = 0.2, the Wiener filter Wu boosts Snet(fx) up to near 
unity for spatial frequencies |fx|  1/(2p). The form of Snet(fx) for higher spatial frequencies |fx| > 1/(2p) that are aliased 
results from the product of S(fx) with the particular values of Wu used to compensate for the transfer function of the 
imaging system S(fx) at lower, unaliased spatial frequencies. Mathematically, the coupling between Snet(fx) at aliasied 
and unaliased spatial frequencies due to Wu is described by the function (fx), which is a periodic extension of Wu along 
fx. For the larger value of ca = 10, the Wiener filter boosts Snet(fx) less in favor of better suppression of the aliasing 
artifacts.

Next, we illustrate the practical uses of Snet(fx) mentioned in Section 4. Figure 7(a) shows a noiseless simulated image of 
a tilted edge for the unaberrated imaging system, while Fig. 7(b) shows a reconstruction with the same Wiener filter used 
to obtain the results shown in Fig. 3 with cn = ca = 0.2. Figure 8 shows the normalized edge response ER(x) of the 
unaberrated imaging system obtained by two methods: (i) extraction from the image of Fig. 7(a) and (ii) direct 
computation from S(fx) using Eq. (13). Note that both methods yield identical forms of ER(x). Figure 9 shows the 
normalized edge response ER(x) for the reconstructed image of Fig. 7(b), again obtained by extraction from the aliased 
imagery and by direct computation using Snet(fx). As expected, the edge responses agree. Additionally, the relative edge 
response RER of a system can be computed using Eq. (14). Without reconstruction, a value of RER = 0.692 was 
computed using S(fx). Including the effect of the Wiener filter, values of RER = 0.995 and 0.776 were computed for ca = 
0.2 and 10, respectively, using Snet(fx). 

(a) (b)

Fig. 7. (a) Simulated image gm of an edge tilted by 2° with respect to the image coordinates and (b) the reconstruction ˆmf
of Fig.6(a) obtained by applying the same Wiener filter used to reconstruct Fig. 3(a). 
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Fig. 8. Normalized edge response ER(x) for the unaberrated imaging system obtained by extraction from the image shown 
in Fig. 7(a) (squares) and direct computation using S(fx) (solid line). 
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Fig. 9. Normalized edge response ER(x) for the Wiener filtered imagery from the unaberrated system obtained by extraction 
from the image shown in Fig. 7(b) (circles) and direct computation using Snet(fx) (solid line). 

For the last example, we consider an aberrated imaging system. Figure 10 shows the pupil wavefront aberration function 
used for this purpose. This wavefront aberration function was obtained by: (i) generating a random-draw atmospheric 
phase screen with Komolgorov statistics [15], (ii) subtracting piston, tip, and tilt phase terms across the pupil, and (iii) 
scaling the amplitude of the phase screen to have a root-mean-squared phase error of /5 (the resulting peak-to-valley 
phase error was 1.04 ). Figure 11 shows a simulated image gm with an average number of 80,000 photons per pixel. 
Figure 12 shows the Wiener reconstruction results for cn = ca = 0.2. Figure 13 shows the modulation transfer function 
|S(fx)| of the aberrated imaging system and the net modulation transfer function |Snet(fx)| for the reconstructed imagery. 
Notice that |Snet(fx)| > 1 for a number of aliased spatial frequencies. This is due to combined effects of the aggressive 
boosting needed to compensate for S(fx) at unaliased spatial frequencies and the relatively small penalty associated with 
aliasing artifacts for ca = 0.2. One could adjust the values of ca and cn could to obtain a reconstruction suited to personal 
liking. 
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Fig. 10. Wavefront aberration function in units of waves for the aberrated imaging system. 

(a) (b) (c) (d)

Fig. 11. (a) Simulated image gm for the aberrated imaging system and its various contributions due to the (b) unaliased 
portion of the image, (c) aliasing artifacts, and (d) noise. 
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(a) (b) (c) (d)

Fig. 12. (a) Wiener reconstruction ˆmf  of Fig. 10(a) using cn = ca = 0.2, and the various components of the reconstruction 
associated with the (a) unaliased portion of the image, (b) aliasing artifacts, and (c) noise. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) (b)

Fig. 13. (a) The modulation transfer function |S(fx)| of the aberrated imaging system and (b) the net modulation transfer 
function Snet(fx), which includes the effects of the Wiener filter used in reconstructing Fig. 12(a). 

6. SUMMARY
It is apparent that one can sensibly apply linear reconstruction algorithms to aliased imagery. The analysis of Section 3 
provides insight into how such algorithms affect the various components of an image, namely the unaliased portion of an 
image, aliasing artifacts, and noise. A net transfer function that describes the combined effects of an imaging system, 
sampling, and the reconstruction process was derived. A Fourier-domain Wiener filter that properly accounts for aliasing 
artifacts was presented in Section 4. The Wiener filter contains parameters that can be used to adjust the trade-offs 
between edge sharpness, suppression of aliasing artifacts, and noise gain for the reconstruction. A number of examples 
were discussed in Section 5 to illustrate the features of the Wiener filtering algorithm and point out the practical uses of 
the net transfer function. 
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