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Phase retrieval with signal bias

Samuel T. Thurman and James R. Fienup*

The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
*Corresponding author: fienup@optics.rochester.edu

Received September 17, 2008; accepted January 27, 2009;
posted February 26, 2009 (Doc. ID 101702); published March 25, 2009

The effect of a uniform measurement bias, due to background light, stray light, detector dark current, or de-
tector offset, on phase retrieval wavefront sensing algorithms is analyzed. Simulation results indicate that the
root-mean-square error of the retrieved phase can be more sensitive to an unaccounted-for signal bias than to
random noise in practical scenarios. Three methods for reducing the impact of signal bias are presented.
© 2009 Optical Society of America
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. INTRODUCTION
sing phase retrieval, the aberrations of an imaging sys-

em can be determined from measurements of the system
oint spread function (PSF) [1–7]. Let A�� ,�� and ��� ,��
e the amplitude and phase of the generalized pupil func-
ion [8] of such a system. Under the Fresnel approxima-
ion, the three-dimensional PSF for a simple lens system
s given by [8]

s�x,y,z� = ��
−�

� �
−�

�

A��,��exp�i���,���

�exp� − i2�

��di + z�
��x + �y��

� exp� i�

�
	 1

do
+

1

di + z
−

1

f 
��2 + �2��d�d��2

,

�1�

here � is the wavelength of light, do is the object dis-
ance, di is the image distance, f is the effective focal
ength of the system, and z indicates the amount of longi-
udinal defocus with respect to the nominal image plane.
igure 1 indicates the geometry of a simple imaging sys-

em. In this paper, the PSF measurements are modeled as

s̃�x,y,zk� = s�x,y,zk� + n�x,y,zk� + b, �2�

here zk are the defocus amounts for each measurement
lane, k= �1,2, . . . ,K� is an index for the measurement
lanes, K is the total number of measurement planes,
�x ,y ,zk� is zero-mean additive noise, and b is an additive
easurement bias. Bias sources include the detector off-

et, detector dark current, background light, and/or stray
ight. Typically an estimate of the bias is subtracted from
he data using a dark current or dark frame subtraction
ethod before performing phase retrieval. In Eq. (2), b

epresents the residual signal bias after such a dark sub-
raction. Given s̃�x ,y ,zk� and knowledge of A�� ,��, a
hase retrieval algorithm can be used to solve the inverse
roblem of determining ��x ,�� from the PSF data.
1084-7529/09/041008-7/$15.00 © 2
The quality of a pupil phase estimate �̂�� ,�� is affected
y the bias b (in addition to being affected by random
oise). Reference [9] mentions signal bias as a limiting
actor for the quality of phase retrieval results. This paper
xamines the nature of errors in �̂�� ,�� resulting from a
SF bias and methods for mitigating these errors. Section
describes a baseline phase retrieval algorithm optimiz-

ng a data consistency metric that does not account for a
ignal bias. Section 3 presents simulation results, which
how that errors associated with signal bias typically oc-
ur as additional high spatial-frequency components of
ˆ �� ,�� and that these errors can be greater than errors
ssociated with measurement noise under realistic condi-
ions. Additionally, physical arguments are given for the
igh spatial-frequency nature of the errors. Section 4 ex-
mines three methods for mitigating against these errors
y (i) parameterization of �̂�� ,�� as a Zernike-polynomial
xpansion, (ii) use of weighting functions, and (iii) use of a
ias-independent data consistency metric. The advan-
ages and disadvantages of each of these approaches are
iscussed. Section 5 is a summary. Portions of this paper
ere presented in Ref. [10].

. BASELINE PHASE RETRIEVAL
LGORITHM
iven a particular pupil phase estimate �̂�� ,��, the corre-

ponding PSF estimates ŝ�x ,y ,zk� can be computed via a
iscrete form of Eq. (1) using fast Fourier transforms. The
eighted normalized mean square error [11] between the
odeled PSFs and the measurements can be used as a

uantitative data consistency metric �1, defined as

�1 =
1

K

k



�x,y�

w�x,y,zk��	kŝ�x,y,zk� − s̃�x,y,zk��2



�x,y�

w�x,y,zk�s̃2�x,y,zk�
, �3�

here w�x ,y ,z� is a weighting function (useful, for ex-
mple, to negate the effects of bad detector pixels) and
ach 	 is given by
k
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	k =



�x,y�

w�x,y,zk�s̃�x,y,zk�ŝ�x,y,zk�



�x,y�

w�x,y,zk�ŝ2�x,y,zk�
, �4�

hich minimizes �1 for any particular ŝ�x ,y ,zk�. Note
hat �1 accounts for an arbitrary scaling factor in the
ata through the 	k parameters in Eq. (3). This accommo-
ates any changes in the detector gain, exposure time, or
ource intensity between PSF measurements. However,
1 does not account for an arbitrary additive signal bias.
1=1 indicates complete disagreement between ŝ�x ,y ,zk�
nd s̃�x ,y ,zk�, �1=0 indicates perfect agreement, while
ntermediate values represent the square of the normal-
zed root-mean-square (RMS) error, e.g., �1=0.01 indi-
ates 10% RMS error. The baseline phase retrieval algo-
ithm is to use a conjugate gradient (CG) algorithm to
teratively search for the point-by-point pupil phase esti-

ate �̂�� ,�� that minimizes �1 using w�x ,y ,zk�=1.

. ERRORS DUE TO SIGNAL BIAS
his section examines the influence of a signal bias b on
he quality of the retrieved phase �̂�� ,�� through numeri-
al simulation. Figure 2 shows the pupil amplitude
�� ,��, phase ��� ,��, and corresponding noiseless PSFs

�x ,y ,zk� for the simulations. The diameter of the circular
perture represented by A�� ,�� was D=50 mm. ��� ,��

Object
Imaging System

Image

do di

ξ

η

x

y

z

f = Focal Length

Fig. 1. Imaging system geometry.
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ig. 2. Pupil function (a) amplitude A�� ,�� and (b) phase ��� ,��
n units of wavelength � of imaging system used for the numeri-
al simulations. The corresponding intensity PSFs s�x ,y ,zk� in
ront of and behind focus are shown in (c) and (d).
as a randomly drawn Kolmogorov phase screen [12]
ith piston, tip, and tilt terms subtracted and has 0.25�
MS and 2.09� peak-to-valley values for �=0.5 
m. In

he pupil plane there were 190 samples across the pupil
iameter with a sample spacing of 0.263 mm. The two
SFs s�x ,y ,zk� were computed via Eq. (1) using do=�, di
f=1200 mm, and zk= �−5,5� mm, which correspond to
2.2� peak-to-valley of defocus wavefront aberration in
he pupil. The sample spacing in the PSF domain corre-
ponds to a detector pixel pitch of p=5 
m, which yields a
etector sampling ratio [13] of Q=�f /Dp=2.4. Figures 2(c)
nd 2(d) show the center 96�96 samples of each PSF. Ad-
itionally, the PSFs were scaled such that the peak value
n each measurement plane was 80,000 detected photons.

Phase retrieval was performed for either the case of
arious amounts of detector read noise (shot noise was
ot included) with no signal bias or no noise with various
ignal bias levels. The detector read noise n�x ,y ,zk� was
ero-mean Gaussian distributed with a standard devia-
ion of �r photons. The accuracy of the retrieved phase
as characterized by the RMS phase error � between

ˆ �� ,�� and ��� ,��, ignoring any piston, tip, and tilt phase
erms. Figure 3(a) is a plot of � versus either �r or b, ob-
ained by starting with the true phase as an initial esti-
ate and running 200 iterations of a CG routine to find a

oint-by-point phase estimate �̂�� ,�� that minimizes �1.
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ig. 3. RMS error in the phase retrieval results using the base-
ine data consistency metric �1 and (triangles) different amounts
f detector read noise �r and no signal bias, (squares) same noisy
ata with negative values clipped to zero, (circles) different
mounts of signal bias b and no noise, and (crosses) same biased
ata with negative values clipped to zero. The results shown in
a) were obtained by starting the phase retrieval algorithm with
he true pupil phase, while those shown in (b) were obtained
tarting with ��� ,��=0.
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esults are shown with and without clipping negative
ata values (due to the noise or a negative bias) to 0.
hese results reflect how noise and bias displace the glo-
al minimum of �1 from the true solution. Figure 3(b)
hows similar results obtained by starting with zero for
he initial phase estimate, retrieving a �̂�� ,�� parameter-
zed by Zernike polynomials (this approach is described in
ubsection 4.A), and then running 200 CG iterations to
btain a final point-by-point phase map �̂�� ,��. These re-
ults indicate the accuracy of the retrieved phase when
tarting with no knowledge of ��� ,��. Both graphs indi-
ate that the RMS phase error � increases as either �r or
b� increases and that the quality of the retrieved phase
as more sensitive to b than �r. The fact that the results

n Fig. 3(b) are very similar to those in Fig. 3(a) indicates
hat, for these particular cases, phase retrieval assuming
o prior knowledge of the phase was converging to the
lobal minimum solution.

For the case with noise, clipping negative values to zero
ielded poorer phase retrieval results than not clipping.
or the case of negative bias, the result was better than
ot clipping. Presumably, both of these observations are
ue to a small positive bias that is introduced by asym-
etrically clipping the data. For the case of positive bias,

lipping had no effect since there were no negative values
o clip. To put the values of �r and b shown in Fig. 3 into
erspective, the detector gain for a 12-bit camera with a
ell depth of 80,000 photons is approximately 20 photons/
etector count. Thus, a residual bias level of b=5 detector
ounts=100 photons, which represent only 0.1% of the de-
ector dynamic range, yielded a RMS phase error �

� /12.
Figure 4 shows the normalized RMS error, ��1,

hrough the solution space of �̂�� ,�� along a line param-
terized by

�̂��,�� = ���,�� + t��̂0��,�� − ���,���, �5�

here �̂0�� ,�� is a particular phase retrieval result and t
s a scalar. Figure 4 shows the normalized RMS error
long a line corresponding to �̂0�� ,�� equal to the phase
etrieval result obtained by starting with the true pupil
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ig. 4. Normalized RMS error, ��1, along various cuts through
he phase-retrieval solution space parameterized by t through
q. (5) for b=0 and 100 photons. The curves illustrate the fact

hat the minimum of �1, which occurs at the true solution �t
0� for b=0 (dashed curve), is not a minimum for b=100 photons

solid curve).
hase when b=100 (solid curve). When b=0 (dashed line),
he normalized RMS error equals 0 for the true pupil
hase corresponding to t=0. When b=100 photons, the
rue pupil phase does not correspond to a minimum of the
bjective function �1. Consequently, the phase retrieval
lgorithm converges on a solution with a lower �1, which
orresponds to t=1 in the graph. The difference between
he two curves shown in Fig. 4 gives some indication of
ow a signal bias can change the topography of the error
etric over the solution space.
Figure 5 shows the difference between the phase re-

rieval result �̂�� ,�� and the true phase ��� ,�� for the
ase b=100 photons. Note that the phase error associated
ith the signal bias is composed predominantly of high

patial frequencies on the order of tens of cycles per aper-
ure diameter. The high spatial-frequency character of
his error can be understood in either the spatial or Fou-
ier domains. In the spatial domain, an additive bias is
quivalent to the addition of a large halo or intensity ped-
stal to each PSF. The phase retrieval algorithm intro-
uces high spatial-frequency errors in �̂�� ,�� to diffract
ight into this halo region and thus minimize �1. Let
˜ �u ,v ,zk� be the spatial Fourier transform of the mea-
ured PSFs s̃�x ,y ,zk�, given by

S̃�u,v,zk� =�
−�

� �
−�

�

s̃�x,y,zk�exp�− i2��ux + vy��dxdy

= S�u,v,zk� + N�u,v,zk� + b��u,v�, �6�

here S�u ,v ,zk� (proportional to the optical transfer func-
ion) and N�u ,v ,zk� are the corresponding 2D Fourier
ransforms of s�x ,y ,zk� and n�x ,y ,zk�, respectively, and
�u ,v� is a two-dimensional Dirac delta function. Note
hat a spatial-domain bias results in a delta function term
ocated at the dc spatial frequency in the Fourier domain.

hile �1 is formulated in the spatial domain, the phase
etrieval algorithm essentially searches for a pupil phase
uch that the autocorrelation of the aberrated pupil func-
ions matches S̃�u ,v ,zk�. When a bias is present, the
hase retrieval algorithm introduces a high spatial-
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ig. 5. High spatial-frequency error in the phase retrieval re-
ult (in units of wavelength �) due to signal bias for �r=0 and
=100 photons.
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requency error in �̂�� ,�� to reduce the autocorrelation of
he defocused pupil functions for small vector displace-
ents in an effort to match the ��u ,v� term in Eq. (6).
Figure 3 indicates that a negative bias results in a

maller phase error than does a positive bias of the same
agnitude. For example, b=−100 photons yielded �
0.021� while b=100 photons yielded �=0.056� (when
tarting with zero phase). This asymmetry can be inter-
reted as a result of the inability of the phase retrieval
lgorithm to match a negative-valued halo around the
easured PSFs, since modeled PSFs ŝ�x ,y ,zk� based on
q. (1) are nonnegative. In the Fourier domain, b
0 can
esult in a S̃�u ,v ,zk� that is inconsistent with the
chwartz inequality, i.e., S̃�u ,v ,zk� may no longer be
aximum at �u ,v�=0. Hence there is no phase that will

esult in a PSF that agrees with a negatively biased PSF,
hereas there may be a phase that yields a PSF that does
t least approximately agree with a positively biased PSF.
or this reason the phase retrieval algorithm is more eas-

ly lead astray by a positive bias than by a negative bias.
he asymmetry in the bias effect suggests that it is better
o slightly overestimate the signal bias when performing
dark subtraction than to underestimate the signal bias.
he next section, however, describes more systematic ap-
roaches to mitigating the error induced by b.

. MITIGATION APPROACHES
his section describes three approaches for reducing
hase retrieval errors associated with a bias in the PSF
easurements: (i) parameterization of the retrieved

hase in terms of Zernike polynomials, (ii) use of weight-
ng functions on the data, and (iii) use of a bias-
ndependent phase retrieval metric.

. Phase Parameterization
ften the pupil phase is dominated by low order aberra-

ions. In such cases, it is useful to parameterize �̂�� ,�� as
n expansion over a set of suitable basis functions. The
ernike polynomials are an obvious choice for doing so
ith a circular aperture. Taking this approach, �̂�� ,�� is
xpressed as

�̂��,�� = 

j=1

J

cjZj��,��, �7�

here Zj�� ,�� is the jth Zernike polynomial, cj are the ex-
ansion coefficients, j� �1,2, . . . ,J� is an expansion index,
nd J is the total number of terms included in the expan-
ion. Instead of searching for the values of �̂�� ,�� at indi-
idual samples of a point-by-point phase map in the pupil
hat minimize �1, the phase retrieval algorithm mini-
izes �1 with respect to the coefficients cj. Figure 6

hows � for this approach versus �r and b, for a phase pa-
ameterization using the Zernike polynomials up to and
ncluding the 30th order terms �J=496�. These results
ere obtained by starting with an initial phase estimate

ˆ �� ,��=0, running 25 CG iterations using Zernike terms
p to 2nd order �J=6�, running 25 additional iterations

ncluding 3rd order terms �J=10�, and continuing this
rocess of running iterations with additional terms up to
=496. Note that � is independent of both �r and b, which
ndicates that the phase parameterization effectively

itigates against errors associated with both noise and
ias for �r and �b��100 photons. A disadvantage of the
hase parameterization, however, was its inability to
odel the full dimensionality of ��� ,�� for the simulated
olmogorov phase screen. As a result, the expansion coef-
cients obtained through phase retrieval can be slightly
kewed to best fit the PSF data. For example, a RMS
hase error of �=0.012� was obtained using the Zernike
arameterization for the case of �r=b=0. This total error
as evenly split between residual high spatial-frequency
rrors not spanned by the first 496 Zernike polynomials
nd errors in the estimated Zernike coefficients. Adding
ore terms to the phase parameterization has two ben-

fits. First, the parameterization can better represent fine
patial details in the pupil phase, reducing the portion of
associated with residual high spatial-frequency errors.

econd, the phase retrieval algorithm generally obtains
etter estimates of the Zernike coefficients.
The phase parameterization generally makes the phase

etrieval algorithm more robust against convergence is-
ues. In general, one can take advantage of this benefit
ven when a point-by-point phase map representation of

ˆ �� ,�� is ultimately desired. With no a priori knowledge
f ��� ,��, one can perform phase retrieval with a param-
terized phase first, to get a reasonably good estimate of

ˆ �� ,�� without converging to a local minimum. A point-by-
oint phase estimate can then be obtained starting with
his result. This is the approach used to achieve the re-
ults shown in Figs. 3, 7, and 8.

. Data Weighting Function
he weighting function w�x ,y ,zk� in Eq. (3) is used to ig-
ore the contribution to �1 from certain portions of

ˆ�x ,y ,zk�. Figure 7 shows the RMS phase error � for
oint-by-point phase maps �̂�� ,�� obtained be minimizing
1 with the following weighting:

w�x,y,zk� = �
1 � 
 12

cos2���� − 12�/12� 12 � � � 18

0 � � 18
� , �8�

here �=�x2+y2 is a radial spatial-domain coordinate
ith units of pixels. Comparing Fig. 7 with Fig. 3, it is
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vident the use of w�x ,y ,zk� significantly reduces the im-
act of both �r and b on the quality of the phase retrieval
esults. The results shown in Fig. 7 were obtained with
00 CG iterations minimizing �1, starting with either the
rue pupil phase ��� ,�� or the polynomial phase esti-
ates �̂�� ,�� obtained in Subsection 4.A.
The form of Eq. (8) was chosen to yield w�x ,y ,zk�=1 in
region a bit larger than the visible extent of the PSFs

hown in Figs. 2(c) and 2(d) and w�x ,y ,zk�=0 in the re-
ion where the PSFs are near zero, with a smooth transi-
ion from w�x ,y ,zk�=1 to w�x ,y ,zk�=0. The phase re-
rieval algorithm ignores data at detector pixels where
�x ,y ,zk�=0. Note that this is not the same as setting the
SF data to zero and seeking a phase that matches the
esulting PSF. For minimizing the impact of �r, this is a
ood choice for w�x ,y ,zk� since the signal-to-noise ratio is
oorest in the regions surrounding each PSF. Addition-
lly, this is a good choice for minimizing the impact of b,
ince it limits the extent of the bias “halo” surrounding
ach PSF to the region where w�x ,y ,zk��0.

. Bias-Independent Metric
etric �1, given by Eq. (3), accounts for different multi-

licative scaling factors 	k between the measured PSFs.
s mentioned above, these scaling differences originate

rom changes in the detector exposure time, gain setting,
r source intensity. Each PSF measurement can also have
n additive bias �k due to dark current accumulated
hroughout the exposure, detector offset, or stray light. In
his paper, the bias b included in the simulated data via
q. (2) is the same for each PSF measurement. A new
ata consistency metric �2 can be defined to account for
n arbitrary additive signal bias as well as a scaling fac-
or. Such a metric is given by

�2 =
1

K

k



�x,y�

w�x,y,zk��	kŝ�x,y,zk� + �k − s̃�x,y,zk��2



�x,y�

w�x,y,zk�s̃2�x,y,zk�
,

�9�

here 	k and �k are chosen to minimize �2. Solving for
he �k that yields ��2 /��k=0 yields

�k =



�x,y�

w�x,y,zk��s̃�x,y,zk� − 	kŝ�x,y,zk��



�x,y�

w�x,y,zk�
. �10�

ubstituting Eq. (10) into Eq. (9) yields

�2 =
1

K

k



�x,y�

w�x,y,zk��	kĝ�x,y,zk� − g̃�x,y,zk��2



�x,y�

w�x,y,zk�s̃2�x,y,zk�
,

�11�
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efined by Eq. (8) was used to ignore data outside the bright por-
-100 -50 0 50 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Noise σ
r
or Bias b [photons]

R
M

S
P
h
as

e
E
rr

o
r
σ

[w
av

es
]

Noise

Noise w/ Clipped Data

Bias

Bias w/ Clipped Data

-100 -50 0 50 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Noise σ
r
or Bias b [photons]

R
M

S
P
h
as

e
E
rr

o
r
σ

[w
av

es
]

Noise

Noise w/ Clipped Data

Bias

Bias w/ Clipped Data

(a)

(b)

ig. 8. Same as Fig. 3 except the bias-independent metric �2
as used in the phase retrieval algorithm.
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here

ĝ�x,y,zk� = ŝ�x,y,zk� −



�x,y�

w�x,y,zk�ŝ�x,y,zk�



�x,y�

w�x,y,zk�
, �12�

g̃�x,y,zk� = s̃�x,y,zk� −



�x,y�

w�x,y,zk�s̃�x,y,zk�



�x,y�

w�x,y,zk�
. �13�

he desired value of 	k is obtained by solving ��2 /�	k
0 to yield

	k =



�x,y�

w�x,y,zk�g̃�x,y,zk�ĝ�x,y,zk�



�x,y�

w�x,y,zk�ĝ2�x,y,zk�
. �14�

nserting this expression into Eq. (11) and simplifying
ields

�2 =
1

K

k
�


�x,y�
w�x,y,zk�s̃2�x,y,zk��−1

���

�x,y�

w�x,y,zk�g̃2�x,y,zk��
− �


�x,y�
w�x,y,zk�ĝ2�x,y,zk��−1

��

�x,y�

w�x,y,zk�g̃�x,y,zk�ĝ�x,y,zk��2� . �15�

Figure 8 shows the RMS phase error � obtained using
2 versus �r and b with w�x ,y ,zk�=1. These results were

btained after 200 CG iterations, starting with an initial
hase estimate equal to (a) the true pupil phase or (b) the
arameterized phase retrieval results of Subsection 4.A.
his second starting condition is based on the strategy of
sing a phase parameterization to find an approximate
olution while avoiding problems with local minima and
hen using a point-by-point representation to obtained a
ore detailed phase estimate. Note that the phase re-

rieval results are independent of the value of the signal
ias b, except when negative data values are clipped to 0,
hich produces errors in the PSF measurements. The ef-

ects of clipping are complicated by the fact that clipping
an introduce signal-dependent errors into the PSF mea-
urements by selectively clipping negative values when
he signal bias is negative. When applied to an array of
ero-mean noise, clipping reduces the noise variance by
liminating all of the negative values but causes the noise
o have a positive mean value. Presumably clipping
ielded better results with noisy data because the clip-
ing reduces the standard deviation of the read noise, and
2 ignores any induced bias. Comparing Figs. 3 and 8, it

eems that the results using �2 are slightly more sensi-
ive to the noise level �r in some cases than are the re-
ults using �1. One possible reason for this is that the
hase retrieval algorithm can better fit the texture of the
ero-mean noise in s̃�x ,y ,z � in the region surrounding
k
ach PSF with a nonnegative computed PSF by assuming
negative bias �k. Figure 9 supports this hypothesis. The
lot shows the value of �k given by Eq. (10) for each plane
f data versus �r. The figure indicates that the phase re-
rieval algorithm tended to include a negative additive
ias �k, of which the magnitude increases with the
mount of read noise.

. SUMMARY
ark subtraction techniques can be used to remove a sig-
al bias from PSF measurements used for phase re-
rieval. Numerical simulations, however, indicate that
mall amounts of residual bias remaining in the measure-
ents can degrade the quality of phase retrieval results.
umerical simulation results indicate that the RMS error

n the phase retrieved using the baseline algorithm is
bout a factor of two more sensitive to the amount of re-
idual signal bias than the same amount of detector read
oise. The phase error induced by a signal bias is com-
osed predominantly of high spatial frequencies, since
uch errors can produce a halo of energy outside the
right area of the true PSF. Three approaches for effec-
ively mitigating the effect of signal bias were examined:
i) parameterizing the retrieved phase in terms of Zernike
olynomials, (ii) use of a data weighting function, and (iii)
se of bias-independent data consistency metric. All three
pproaches reduced the errors due to the bias. The phase
arameterization can introduce errors if the number of
hase terms does not adequately describe the true solu-
ion, and the bias-independent metric is a bit more sensi-
ive to noise than a standard data consistency metric, but
his is very effective when the bias error dominates.
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