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Phase-error correction in digital holography
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The quality of images computed from digital holograms or heterodyne array imaging is degraded by phase
errors in the object and/or reference beams at the time of measurement. This paper describes computer simu-
lations used to compare the performance of digital shearing laser interferometry and various sharpness met-
rics for the correction of such phase errors when imaging a diffuse object. These algorithms are intended for
scenarios in which multiple holograms can be recorded with independent object speckle realizations and a
static phase error. Algorithm performance is explored as a function of the number of available speckle realiza-
tions and signal-to-noise ratio (SNR). The performance of various sharpness metrics is examined in detail and
is shown to vary widely. Under ideal conditions with >15 speckle realizations and high SNR, phase corrections
better than \/50 root-mean-square (RMS) were obtained. Corrections better than \/10 RMS were obtained in
the high SNR regime with as few as two speckle realizations and at object beam signal levels as low as 2.5
photons/speckle with six speckle realizations. © 2008 Optical Society of America
OCIS codes: 090.1000, 090.1760, 100.3010, 100.3020, 100.3190, 040.2840.

1. INTRODUCTION

A digital hologram of an object can be recorded via the
configuration shown in Fig. 1. The first beam splitter in
the figure divides the collimated laser beam into a refer-
ence beam and an illumination beam, while the second
beam splitter reflects the reference beam and transmits
the object beam (light scattered from the object). The de-
tector array records a digital hologram, i.e., the interfer-
ence pattern between the reference and object beams. The
intensity interference pattern H(x,y) at the detector
plane can be written as

H(x,y) =|R(x,y) + F(x,y)?, (1)

where R(x,y) and F(x,y) are the optical fields associated
with the reference and object beams at the detector plane,
respectively. Ideally, the reference beam would be a per-
fect plane wave and the object beam would contain no
phase errors. In such a case, the reference and object
beams can be written as

R(x,y) = Ro expli(kx + kyy)], (2)

1 T
F(x,y) = -~ exp(ikz)exp[ig(x2 +y2)]

x f f f(f,n)exp{i(e%ﬁ)}
. J_ Az

21
Xexp| —i—(xé+yn) |d&dy, (3)
Az

where R is the amplitude of the reference wave, k&, and &,
are the transverse components of the reference wave vec-
tor, A is the wavelength of light, z is the longitudinal dis-
tance between the detector array and the nominal object
plane, f(¢, ) is the optical field scattered by the object in
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the nominal object plane, and the Fresnel approximation
[1] has been used.

Using an off-axis reference beam [2], i.e., &, # 0 and/or
k,#0, F(x,y) can be reconstructed from H(x,y). Then a
coherent image of the object (with spatial resolution de-
termined by the diameter of the detector array) can be
digitally computed by inverting Eq. (3). Taking the 2D
spatial Fourier transform of Eq. (1) and using the ideal
form of R(x,y) given in Eq. (2) yields

H(fof,) = |Ro28(F i f,) + F(f o[ )*F (fof,)
. k. ky
+R F §r+f"’ﬂ +fy

Ao raet)
+R0F o fx’2ﬂ_ f;/ ’ (4)
where i:I(fx,fy) and F’(fx,fy) are the 2D spatial Fourier
transforms of H(x,y) and F(x,y), respectively, (f,.f,) are
spatial-frequency coordinates, J(f,,f,) is a 2D Dirac delta
function, and * denotes a cross correlation.

The first two terms on the right-hand side of Eq. (4)
represent the autocorrelations of the Fourier transforms
of the reference and object beams, respectively, and are
centered about the dc spatial frequency. The third and
fourth terms represent the Fourier transforms of the ob-
ject beam and its holographic twin, respectively, which
are offset from the dc spatial frequency by a distance pro-
portional to the magnitude of the transverse reference

wave vector VkZ+kZ. Provided \s’kf+k§ is sufficiently

large, satisfying theyholographic condition such that the
third and fourth terms of Eq. (4) do not overlap the second
term, the Fourier transform of the object beam can be iso-
lated with a window function and inverse transformed to

yield F(x,y) to within an arbitrary multiplicative constant

© 2008 Optical Society of America
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Fig. 1. Layout for recording digital holograms.

and an arbitrary piston phase (ignoring detector nonlin-
earities, measurement noise, and edge/window effects).

In any real system, the computed image can be de-
graded if the reference field is not a perfect plane wave
and/or the object beam includes errors from the second
beam splitter or atmospheric turbulence. In general the
reference and object fields can differ from their ideal
forms in both amplitude and phase; the quality of the
computed image is, however, much more sensitive to
phase errors than it is to amplitude errors. Thus, we will
consider the case of phase errors only, such that the aber-
rated reference and object fields R, (x,y) and F,(x,y) can
be written as

Rs(x’y) =R(x,y)eXP[l¢R(x,y)], (5)

Fa(x’y) =F(x,y)eXP[l¢F(x,y)], (6)

where ¢r(x,y) and ¢g(x,y) are the phase errors of the ob-
ject and reference beams, respectively. Equation (6) is
limited to the isoplanatic case, for which the object-beam
phase errors are in a volume fairly close to the detector.
Using these expressions, the hologram intensity pattern
H,(x,y) with phase errors can be written as

H,(x,y) = |R,(x,y) + F,(x,y)|?
=[R(x,y) + F(x,y)explid(x,y)]7, (7)
where
P(x,y) = pplx,y) — dr(x,y). (8)

When using the procedure described above for recon-
structing the object field from a hologram, the result is an
aberrated object field G(x,y) of the form

G(x,y) =F(x,y)explid(x,y)]. )

Alternatively, aberrated field measurements such as
these can be obtained by heterodyne array measurements
making use of a local oscillator [3].

In Section 2 below, the technical details of two ap-
proaches for correcting for unknown phase errors in
G(x,y) are reviewed: (i) digital shearing laser interferom-
etry (DSLI) [4,5] and (ii) sharpness metric maximization
[6-9]. Both approaches are intended for use with diffuse
extended objects, but can also be used for objects having
glints. DSLI requires a modest number of digital holo-
grams with independent object speckle realizations to be
recorded for a constant ¢(x,y). Thus, in the case of dy-
namic phase errors, DSLI is limited to scenarios in which
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a modest number of digital holograms can be recorded
with adequate signal-to-noise ratio (SNR) before ¢(x,y)
varies appreciably. Alternatively, the sharpness metric
maximization approach can work in some cases with only
a single object speckle realization, but it also benefits
greatly from multiple speckle realizations. Furthermore,
DSLI can be performed only when one has a noninter-
rupted array of measurement points, whereas the sharp-
ness approaches can work for sparse-aperture and
segmented-aperture systems. In general, the accuracy of
each algorithm varies somewhat depending on the details
of the object, the nature of the phase error, the number of
available speckle realizations, and the SNR. Note that
when maximizing sharpness for synthetic-aperture radar,
as described in [7,9], one has a 1D phase error and uses
multiple range lines having the same phase error to ob-
tain the statistics needed to accurately estimate the
phase error. In this paper, however, we have a 2D phase
error and use multiple speckle realizations to obtain the
statistics needed to accurately estimate the phase error.

Section 3 describes the details of computer simulation
experiments designed to compare the relative perfor-
mance of DSLI and a variety of sharpness metrics as a
function of the number of available speckle realizations
and the SNR for a given scene and atmospheric phase er-
ror. The residual root-mean-square (RMS) phase error (ig-
noring piston, tip, and tilt terms) after correction is used
to quantify the performance of each algorithm. Section 4
presents results of the computer simulation experiments
and Section 5 is a summary.

2. PHASE-ERROR-CORRECTION
ALGORITHMS

This section describes both the DSLI and sharpness met-
ric phase-error-correction approaches. For the develop-
ment of both approaches, we assume that the object field
in the detector plane has been reconstructed from digital
holography or heterodyne array measurements for N in-
dependent object speckle realizations with a constant
phase error ¢(x,y), such that the given object field at the
detector for the nth speckle realization can be written in a
form analogous to Eq. (9) as

G,(x,y) =F,(x,y)explid(x,y)]. (10)

A. Digital Shearing Laser Interferometry

Starting with aberrated object fields of the form given in
Eq. (10), the first step in DSLI is to compute the digitally
sheared quantities

N

Sx(x’y) = NZ Gn(x5y)GZ(x - A;y)9 (11)
n=1
N

S, (x,y) = I—VE G,(x,y)G (x,y - ), (12)
n=1

where A is a shear distance, which for simplicity is shown
as the same in both dimensions, but can differ in x and y.
Substituting Eq. (10) into Eq. (11) yields
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Sx(x,y) = eXp{l[¢(x’y) - ¢(x - Avy)]}
N
X5 2 P y)F, (@~ A,). (13)
n=1

Using Eq. (3), the summation in Eq. (13) can be expressed
as

N
2 Faley)F, (2 = A.)

n=1

1
)\2 5 exp{z—[x —(x - A)2]}

ffffNEfn(f,n)f‘(«i 7)

-
Az

2
X eXp{— ig[&’A +(E-&x+(n- n’)y]}dfdnd§’d77’,
(14)

where f,(£, 7) represents the nth speckle realization of the
object field in the nominal object plane. For diffuse ob-
jects, the object field is essentially delta-correlated in
(¢, ), such that the following approximation,

1 N
szE FEDFE ) = kI(En)dE-E,n- 7)), (15)
n=1

becomes an equality as N approaches infinity, where «is a
constant and I(¢, ) is the intensity of the light reflected
from the object that would be observed under spatially in-
coherent illumination. Inserting Eqgs. (14) and (15) into
Eq. (13) and integrating yields

S,(x.y) = eXp{L[¢(x,y) lx-Ay)]}

o
><exp|:i—(2xA - Az)]
Az

Y 2
X f f I(¢, n)eXp(— i—éA)d§d77
—00 -0 A’Z

= —— expli[d(x,y) — plx — A,y)]}

T\
T A

Xexp| i—(2xA - A?) [I| —,0], (16)
Az Az

where T(fx,fy) is the Fourier transform of I(¢,»). This is
analogous to the derivation of the Van Cittert—Zernike

theorem [4,5,10], in which I (fy,fy) represents the object
mutual intensity. In a similar manner,
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Sylx,y) = eXp{l[¢(x,y) Plx,y - M}

A
Xexp{z—(ZyA AQ)} (0 —) (17)

The sheared and averaged quantities S,(x,y) and S, (x,y)
thus have a phase component that is a finite difference of
the phase error, similar to what one gets, for example, in
shearing interferometry. It is important to note that the
mutual intensity contribution to the phase of S,(x,y) is
limited to an arbitrary constant phase, i.e., the phase of

I[A/(\2),0]. S.(x,y) also experiences a linear phase term
2mxA/(\z) associated with the quadratic phase before the
integral in Eq. (3).

A number of different algorithms [11-14] exist for re-
constructing wavefronts from sheared phase data. A
wavefront reconstructed from the digital shear data in
Egs. (16) and (17) will ideally have a phase &(x,y) given
by

d(x,y) = Plx,y) +)\1(x2+y2) +ax+by+ec, (18)
z

where a and b are arbitrary tip and tilt terms associated
with the piston phases of the mutual intensity terms

I[A/(\2),0] and I[0,A/(\2)], and ¢ is an arbitrary piston
phase term. The piston, tip, and tilt phase terms do not
affect image quality. An estimate of the unaberrated ob-

ject field I:’n(x, y) in the detector plane is then given by

F,(x,y) = G,(x,y)exp[— i d(x,y)]. (19)

The corresponding estimate for the field ffn(g, 7) in the
nominal object plane is

. 1 T A B
fulém) = EGXP{—iE(§2+ ﬂZ)]f_x f_an(x,y)

2
Xexp|:ig(x§+y77):|dxdy, (20)

to within an arbitrary piston phase and (&, 7) coordinate
shift. Note that the quadratic term in Eq. (18) is already

multiplying ﬁ'n(x, y), so it should not be included in this
integral. Finally, a speckle-averaged intensity estimate

1 (&, ) of the object is computed as

I(¢,m) = —2 &2 (21)

rLl

Since we are here concerned only with the image inten-
sity, the quadratic phase term outside the integral in Eq.
(20) can be ignored. Also, the quadratic phase term in
(x%2+y?) is canceled by the phase estimate. Thus, we can
act as though both quadratic phase terms are zero and
perform Fourier transforms rather than Fresnel trans-
forms. That is, the object can be treated as though it is in
the far field (Fraunhofer regime) even if it is in the near
field (Fresnel regime).
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B. Sharpness Metric Maximization

In the sharpness metric approach, a nonlinear optimiza-
tion algorithm is used to find a phase error estimate
é(x,y) that maximizes a quantitative measure of the
sharpness of a speckle-averaged intensity estimate of the
object. The functional dependence of I1(£,7) on ¢(x,y) is
given by Egs. (19)—(21). We consider sharpness metrics of
the following two forms

M= T[], (22)
(¢m)
M= 3 TEn-IE-¢,9-7)], (23)

&n) (& ,9)eD

where the (£,7) summations are over a set of image
samples, I'(/) is a nonlinear function, and D is a neighbor-
ing system of (¢, %') shift coordinates.

Table 1 lists forms of I'(I) we considered for sharpness
metrics for use in Eq. (22), which are called statistics-
based sharpness metrics, because Eq. (22) is equivalent to
an estimator for the statistical moment of I'(I) for the

speckle-averaged image, if 1 (&, m) is viewed as a stochastic
process. Note that metric M; is equivalent to the metrics
S1 and S5 from [6] for «=2 and a>2, respectively, and
metric M3 yields a minimum entropy phase estimate and
is equivalent to S; from [6].

Table 2 lists the forms of I'(AI) we considered for use in

Eq. (23), where AI=I(¢,7)-1(é-&,7-7'). These are
called correlation metrics, since Eq. (24) is equivalent to
an estimator for statistical moments between neighboring
points in the speckle-averaged image. Note that M, with
a=2 is equivalent to a finite difference approximation of
S from [6]. We previously found M5 to be useful for inco-
herent image restoration when there were missing areas
within the spatial-frequency domain. Note that while [6]
dealt with incoherent images, we are dealing here with
coherent, speckled images (for N=1) and speckle-reduced
images (for N>1).

It is important to understand the principle behind each
metric, and how each metric differs. Note that the value
of a statistics-based metric is independent of the spatial
organization of an image, but is completely determined by
the histogram of an image. However, the value of a
correlation-based metric depends on the differences be-
tween neighboring spatial samples in an image. Due to
energy conservation, the effect of maximizing a statistic-
based metric is intimately related to I'"(I) [9], the second
derivative of I'(I) with respect to I. As explained in [9], the

Table 1. Statistics-Based Sharpness Metrics Based
on the Form of Eq. (23)

Metric I'a Effect on Image Histogram
M, I* for a>1 Concentrates on making:
bright points brighter for o> 2,
dark points darker for a<2
M, -I*for 0<a<1 Concentrates on making
dark points darker
My I'In(I) Concentrates on making

dark points darker
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Table 2. Correlation-Based Sharpness Metrics
Based on the Form of Eq. (24)

Effect on Differences between

Metric I'(AI) Neighboring Image Points
M, |AT|« Increases differences
M; 1 Concentrates on making |Al|~a
(AD2+a? differences smaller

third column of Table 1 indicates whether each metric
concentrates more on making bright points brighter or
dark points darker. Since the differences between neigh-
boring image intensity samples are not conserved, the ef-
fect of maximizing a correlation-based metric is largely
determined by I''(A), the first derivative of I'(AI) with re-
spect to AI. The third column of Table 2 lists the general
effect maximizing M, or M5 has on the differences be-
tween neighboring image samples.

3. COMPUTER SIMULATION EXPERIMENTS

This section describes the details of computer simulation
experiments for exploring the relative performance of
DSLI and the different sharpness metrics for phase-error
correction.

The flowchart in Fig. 2 outlines the steps in simulating
digital holography data. All of the simulations shown here
start with the 256 X 256 incoherent intensity image for
I(¢, ) shown in Fig. 3 [15]. Independent object speckle re-
alizations were generated by

fa(&m) = NI(£7)[N(0,0.5) +iN(0,0.5)] (24)

where N(u,o?) represents an independent random vari-
able having a Gaussian distribution with a mean x and
variance o2, giving us {|f,,(¢, 7)|?)=I(&, ), where the angle
brackets denote the average over an ensemble of speckle

Circular Complex Gaussian
Random Numbers

| |r % | | Zero Pad D

Object Intensity, Complex Object
1&m) Realization, f,,(£,7) |
Y FFT & Crop
Complex Ideal Digital
Field, F,(x,y) , Hologram, H,,(x,y)
ey .-
» > >
Phase Error, A
olcy)
e ¥ Off-Axis Plane-Wave
Reference Field, R(x,y)
Degraded Digital
Hologram, H_ ,(x,y)
Aberrated Y | |2
Complex e —>
Field, G,(x,y) :
Photon &
Detector Noise

Fig. 2. Flowchart for simulating digital holography data.
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Fig. 3. Incoherent intensity image I(£, ) used for simulations.

realizations. For each speckle realization, F,(x,y) was
computed by zero-padding each 256 X 256 f,,(¢, n) to a size
of 1024 X 1024, applying a fast Fourier transform (FFT),
and cropping the resulting FFT to a size of 512X 512. Us-
ing just an FFT to calculate F,(x,y) and neglecting the
quadratic phase in Eq. (3) can be done because the solu-
tion is independent of the quadratic phase factors, as de-
scribed above.

An ideal digital hologram H,,(x,y) with no phase errors
or noise was created by adding F,(x,y) to an ideal refer-
ence field R(x,y) having the form of Eq. (2) and computing
the squared modulus. A degraded digital hologram
H, ,(x,y) was created by: (i) including the phase error
¢(x,y), shown in Fig. 4, in F,(x,y) to yield an aberrated
object field, (ii) adding R(x,y) to this field and computing
the squared modulus, (iii) adding Poisson-distributed shot
noise and Gaussian-distributed detector read noise, (iv)
dividing by a detector A/D converter gain, and (v) quan-
tizing the result to yield H, ,(x,y) in digital number (DN)
units of the detector.

Fig. 4. Phase error ¢(x,y) used for simulations in units of
waves. The phase error is a random-draw atmospheric phase
screen [16] (with tip and tilt subtracted) with D/r,=8, where D is
the width of the detector and r( is Fried’s parameter.
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The detector read noise standard deviation was 40 pho-
toelectrons, the well depth was 5 X 10* photoelectrons, the
A/D converter gain was 12.2 photoelectrons/DN, and the
bit depth was 12. The shot noise statistics are determined
by the measured power in units of photoelectrons. The in-
tensity of the object beam was scaled to have a given av-
erage number of detected photoelectrons per pixel Pg. The
amplitude of R(x,y) was scaled to yield an average num-
ber of detected photoelectrons per pixel Pg, such that Pp
+Pr was equal to 80% of the detector well depth, or 4
X 10* photoelectrons. Thus, the standard deviation of the
shot noise was always =200 photoelectrons. Different
SNRs were simulated by changing Py, which in all cases
was much less than Pp. The dominant noise source was
shot noise. The average speckle size in the detector plane
was approximately 4 X 4 pixels, since f,(x,y) was initially
zero-padded by a factor of four along each dimension.
Thus, Py in units of average number of photoelectrons/
pixel can be converted to units of object-beam
photoelectrons/speckle by multiplying by 16.

The flow chart in Fig. 5 outlines the procedure for re-
constructing the aberrated object field G, (x,y) from each
digital hologram. H,(x,y) is multiplied by a window func-
tion, W(x,y), to reduce edge effects and reduce sidelobes
in the image domain, and an inverse FFT is performed on

the result to yield ﬁn(fx,fy) having the form of Eq. (4). An
aberrated holographic image of the object is obtained by a
coordinate shift and multiplication by another window
function. Performing an FFT on the aberrated image and
downsampling by a factor of two (by discarding every
other sample) yields a 256 X256 G, (x,y). This downsam-
pling was done to reduce the excess memory require-
ments and computational burden of working with an
oversampled version of G,(x,y). Both W(x,y) and the ho-
lographic image window function were flattop windows
with raised-cosine edges 11 pixels wide. After the 4X em-
bedding of the object and 2X downsampling, the G, (x,y)
fields were sampled at twice Nyquist and the intensity at
Nyquist. Coarser sampling than this would result in re-
duced performance by DSLI [4,5].

For each set of G, (x,y), various phase-error estimates
were generated using both DSLI and the sharpness met-
rics. Each algorithm yielded two polynomial-based and
one point-by-point phase-error estimate ¢(x,y). The
polynomial-based phase maps have the form

dlay) = D, Coth(x,y), (25)
k

where % is an index for the basis functions i;(x,y) (analo-
gous to the Zernike polynomials) and C}, are expansion co-
Digital
Hologram, H,,(x,y) Holographic Image
IFFT, Shift, & Window -~

Window i FFT &

Function 2x Downsample
W(x.y) , Y
Reconstructed Field

From Object, G ,(x,y)

Fig. 5. Flowchart for reconstructing an object field from a digi-
tal hologram.
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efficients. The first polynomial-based ¢(x,y) includes
p(x,y) up to 10th order (63 terms not including piston,
tip, and tilt) and the second includes up to 15th order (133
terms). The 15th-order polynomial ¢(x,y) was then used
as an initial guess in computing a point-by-point ¢(x,y).
Starting with a polynomial-based phase estimate as the
initial guess typically ensures that the algorithm is rea-
sonably close to, and within the capture range of, the true
phase-error estimate in the high-dimensional space of all
point-by-point phase estimates.

For DSLI, the procedure for generating phase error es-
timates is:

1. Compute the quantities S,(x,y) and S,(x,y) from
G, (x,y) using Eqgs. (11) and (12);

2. Compute the 10th- and 15th-order polynomial-based
&(x,y)’s from arg[S,(x,y)] and arg[S,(x,y)] using an ana-
lytic method analogous to that of [14];

3. Starting with the 15th-order polynomial version of
&(x,y), compute a point-by-point version of ¢(x,y) by run-
ning 100 iterations of a conjugate-gradient routine that
tries to minimize the weighted mean-square error func-
tion [11]

Epsii= >, Wx,y)Wix - A,y){dlx,y) - dx - Ay)

(x,y)

- arg[sx(x7y)]}2 + 2 W(x?y)W(x’y - A){a)(x’y)
(x,y)

- dla,y - 8) - arg[S, (x,y)], (26)

where a 2X downsampled version of the window function
described above is used for W(x,y). W(x,y) is included in
Eq. (26) to reduce artifacts in ¢(x,y) arising from edge ef-
fects and the use of FFTs in computing G,,(x,y).

For the sharpness metric approach, a conjugate-
gradient routine was used to iteratively find the polyno-
mial coefficients C;, or point-by-point phase values that
minimize the negative of a particular sharpness metric
(equivalent to maximizing the same sharpness metric).
The polynomial coefficients were determined by starting
with an initial guess for each coefficient of zero, perform-
ing five conjugate-gradient iterations including only up to
3rd-order terms, performing five more iterations includ-
ing up to 4th-order terms, performing five more iterations
including up to 5th-order terms, and so on, up to 15th or-
der (performing five additional conjugate-gradient itera-
tions each time an additional order of polynomials is in-
cluded in the phase estimate). The point-by-point ¢(x,y)
resulted from running only 25 conjugate-gradient itera-
tions, starting from the 15th-order polynomial estimate.
The polynomial estimation of the phase error mitigates,
to a degree, the likelihood of oversharpening that is dis-
cussed below.

The results of the phase-correction algorithms are com-
pared in terms of the root-mean-square (RMS) residual
phase error. While the phase error introduced into the
simulated data ¢(x,y) is a 512 X512 point-by-point phase
map, the phase-error correction algorithms yield phase-
error estimates ¢(x,y) having dimensions of 256 X 256. As

a result, each ¢(x,y) was compared to a 2 X2 boxcar av-
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erage and 2X downsampled version of ¢(x,y) having di-
mensions of 256 X 256. Piston, tip, and tilt phase differ-
ences between (%(x ,y) and ¢(x,y) were then removed by
finding the piston, tip, and tilt coefficients, a, b, and c, re-
spectively, that minimize the metric

E =, W(x,y)|exp{i[ $(x,y) + a + bx + cy]} — expli p(x,)]|%.
(2,)

(27)

As in Eq. (26), W(x,y) is included here to reduce artifacts
from edge effects. Finally the residual RMS phase error
o, was calculated as

ai=[ D W(x',y'>]‘12 Wi.y)

(5" ()

x {arglexp{il $(x,y) +a + bx +cy - plx,y) W,
(28)

where W(x,y) is included again to weight down the re-
sidual phase errors at the array edges. In general,
wrapped phase-error estimates were not an issue since all
of the algorithms first estimated unwrapped polynomial-
based phase maps and then used these results as initial
guesses in forming point-by-point phase maps. Neverthe-
less, the particular form of Eq. (28) yields a o4 that is not
affected by modulo-27 (between-7 and ) differences be-

tween é(x,y) and &(x,y).

4. SIMULATION RESULTS

This section presents simulation results that compare the
relative performance of DSLI and various sharpness met-
rics for phase-error correction in two scenarios: (i) in the
high-SNR regime with Pr=640 photoelectrons/speckle, as
a function of the number of available object speckle real-
izations, and (ii) as a function of SNR using six object
speckle realizations.

A. Performance in High Signal-to-Noise Regime
Figure 6 is a graph of the residual phase error for the
DSLI algorithm versus the number of available speckle
realizations. Each point in this and all the following
graphs is the average o, from five sets of G, (x,y) with in-
dependent speckle and noise realizations. For reference,
the standard deviation of the phase error ¢(x,y), was
0.34\ (unwrapped) and 0.28\ when computed modulo-2,
analogous to Eq. (28). Also for reference, a uniformly dis-
tributed, random, wrapped residual phase error will give
04=0.29\. We point out that perfect 10th- and 15th-order
polynomial estimates would yield residual phase errors of
04,=0.09\ and 0.06\, respectively, for the specific ¢(x,y)
shown in Fig. 4. Note that these values would scale with
D/ry, i.e., for smaller D/ry the same levels of correction
could be achieved theoretically with lower-order polyno-
mials. As such, the 10th- and 15th-order polynomial-
based phase-error estimates are expected to yield correc-
tions no better than these limiting values.

Figure 6 indicates that DSLI yields 10th- and 15th-
order polynomial phase estimates with o,~0.09\ and
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Fig. 6. DSLI performance versus number of available speckle
realizations for Pr=640 photoelectrons/speckle. Each data point
is the average of results from five trials with independent speckle
and noise realizations. The dotted curve is a theoretical predic-
tion of DSLI performance based on Egs. (29) and (30) (ignoring
photon and detector noise).

0.07\, respectively, in the best scenario (IN=20 speckle re-
alizations). These are quite close to the corresponding
limiting values. In this same scenario, the point-by-point
estimate yielded o ,~0.06\ (the ideal o, value for a point-
by-point phase estimate is zero). The point-by-point esti-
mate is superior in this case because it can better match
the true phase error than can the polynomial expansions.
Conversely, the polynomial estimates performed better
than the point-by-point estimate in the case of very few
speckle realizations, because the polynomial expansion is
a form of regularization that mitigates against the fitting
of errors in the shear data S,(x,y) and S,(x,y) due to av-
eraging over an insufficient number of speckle realiza-
tions. The crossover point, where the point-by-point phase
estimate started to yield better corrections than the 15th-
order polynomial estimate, was roughly N=10 speckle re-
alizations, which also happens to be the point at which
DSLI yields corrections with o,<\/10.

Figure 6 also shows a theoretical prediction of o re-
sulting from the speckle statistics (ignoring photon and
detector noise) given by [11]

o y(N) = ops1(IN)|0.6558[ 1 + In(2567)], (29)
where
W=y (30)
ODSLI = 2|/L\2N

is the expected standard deviation of arg[S,(x,y)] and
arg[S,(x,y)] due to the speckle statistics [4,5],

et =1(ff,)1(0,0), (31)

and u represents either u[A/(\f),0] or u[0,A/(\)]. The
theoretical curve shown in Fig. 6 was calculated using
|| =sinc(0.5), since the fields were sampled at twice the
Nyquist limit and the diffuse object was illuminated by a
square beam. Note that Eq. (30) is valid for N>10. [4,5]

Figure 7 shows DSLI results for specific trials. Each
column corresponds to a different number of speckle real-
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izations N and shows an ideal speckle-averaged image
(with no phase errors or noise), a speckle-averaged image
degraded by both phase errors and noise, and speckle-
averaged images corresponding to the 10th-order polyno-
mial and point-by-point phase error estimates from DSLI.

The performance of the sharpness metric M; with «
=2 (i.e., the commonly used squared-intensity sharpness
metric) is shown in Figs. 8 and 9. In all but the N=20
case, the point-by-point phase-error estimation failed
catastrophically by converging to a ¢(x,y) that yields an

oversharpened I(&, 7) that contains a bright, pointlike
delta function [recall that M; with =2 is maximized by

stretching the histogram of 1 (¢, m)]. Further examination
reveals that, in these cases, the point-by-point phase es-
timates contain phase vortices and yield individual

speckle images, i.e., | (&, 7% for each ne{1,2,...,N},
that contain commonly located delta functions. For N=1,

this failure mode occurs when ¢(x,y) approximates ¢(x,y)
plus the phase of F,(x,y) (which typically contains nu-
merous phase vortices). For larger N, the algorithm at-

tempted to find a <2>(x ,y) that simultaneously fits
arg[F,(x,y)] for multiple speckle realizations by matching
arg[F,(x,y)] for each n where |F,,(x,y)| was large. In doing
this the algorithm seemed to favor sharpening a small
number of speckle realizations over the others, but each

If..(£,7)|? contained a commonly located bright point. For
sufficiently large N, e.g., N=20, there were enough
speckle statistics to avoid this failure mode of overempha-
sizing bright image points and to allow the algorithm to
converge to an accurate point-by-point phase estimate
with o,=N/20. Conversely, the polynomial expansion pro-
vides regularization against this failure mode, ie., a

polynomial-based ¢(x,y) cannot contain the phase vorti-
ces generally required to match arg[F,(x,y)], allowing
phase-error estimates with o,<\/10 with as few as N
=4 speckle realizations.

Figure 10 shows the performance of metrics M; and M,
versus the metric parameter « and of the minimum en-
tropy metric M3 for N=20 speckle realizations and Pp
=640 photoelectrons/speckle. Note that the minimum en-
tropy results obtained with M3 are plotted in Fig. 10 for
a=1, since it has been shown [9] that minimizing entropy
is equivalent to maximizing M; with a=1+¢ for e<1. Us-
ing M, with a>2 gives point-by-point phase estimates
that yield an oversharpened I(£,7) containing a bright
delta function, which results from M; placing increasing
emphasis on making bright points brighter as « increases
[9]. Thus, more than 20 speckle realizations were re-
quired to prevent this failure mode of M; for «>2. For
a<0.25, we speculate that M, fails to converge to an ac-
curate ¢(x,y) by placing too much emphasis on minimiz-
ing various points in the degraded image that happen to
be dark due to the details of the speckle and/or noise re-
alizations.

Figure 10 indicates that the optimum value of « for M,
and M, is a value slightly larger or less than unity. This is
interesting because the values of M; and M4 are indepen-

dent of ¢(x,y) for @=1, since the integrated value of I(£, 7)
is a conserved quantity. The optimum sharpness metric is
known to vary with the details of the object [9]; thus, even
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N=2
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Fig. 7. DSLI results for specific trials. Each column corresponds to a different number of speckle realizations N and shows in successive
rows (a) an ideal speckle-averaged image (with no phase errors or noise), (b) a speckle-averaged image degraded by both phase errors and
noise, and speckle-averaged reconstructed images corresponding to (c) the 10th-order polynomial and (d) the point-by-point phase-error

estimates.

though @=1 is ideal for the object used in the simulations
here, the optimum value of « is expected to vary with dif-
ferent objects. It is worth noting that the choice of @ in M,
or My can yield dramatically different results, ranging
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Fig. 8. Sharpness metric M; with =2 performance versus
number of available speckle realizations for Prp=640
photoelectrons/speckle.

from catastrophic failure at one extreme to better than
N/50 corrections at the other extreme, with a point-by-
point ¢(x,y).

When using a polynomial expansion for ¢(x,y), the re-
sults obtained with M; and My for «>0.1 were near the
limits for perfect correction mentioned above, even for «
>2. Figure 11 shows the results obtained using M; with
a=1.01 (which is near optimum for large N and large
SNR) as a function of the number of available speckle re-
alizations. The graph indicates that while the polynomial
expansion was needed for regularization in the case of
only one or two speckle realizations, an accurate point-by-

point ¢(x,y) with 04<\/10 was achieved with only three
speckle realizations. A similar graph obtained by use of
M3 (negative entropy) is not shown, as the results are vir-
tually identical to those already shown in Fig. 11.

The optimum value of a« was found to vary with the
number of available speckle realizations. Figure 12 shows
o, as a function of a when different numbers of speckle
realizations are available. As the number of speckle real-
izations decreases, the optimum value of @ decreases from
1.01 for N=16 or 20 to approximately 0.5 for N=1. Figure
13 shows the results of using M, with «=0.5 versus the



S. T. Thurman and J. R. Fienup

Vol. 25, No. 4/April 2008/J. Opt. Soc. Am. A 991

Fig. 9. Sharpness metric M; with a=2 results for specific trials. Each column corresponds to a different number of speckle realizations
N and shows in successive rows (a) an ideal speckle-averaged image (with no phase errors or noise), (b) a speckle-averaged image de-
graded by both phase errors and noise, and speckle-averaged reconstructed images corresponding to (c¢) the 10th-order polynomial and (d)
the point-by-point phase-error estimates.

number of speckle realizations. While this value of « did
not perform as well as a=1.01 for large N, it performed
better than a=1.01 for N=1 and 2, as indicated by Figs.
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Fig. 10. Sharpness metric M; and M, performance versus a and
sharpness metric M3 performance for Pr=640 photoelectrons/
speckle and N=20 speckle realizations.

11-13. Additionally, for a=0.5, the polynomial expansion

for ¢(x,y) was not required for regularization in the case
of N=1 or 2 as it was for @=1.01. Thus, in cases where
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only one or two speckle realizations are available, a value
of a=0.5 is preferred over «=1.01. Note that «=0.5 is
equivalent to maximizing the sum of the field magni-
tudes.

In almost all cases examined, use of sharpness metric
M, failed catastrophically. For o<1, M, concentrates on
increasing the magnitude of relatively small differences

between neighboring pixels in I(¢, 7). As a result, the al-
gorithm failed catastrophically by converging to a ¢(x,y)

that yields an image I(£,7) that looks like a correlated
noise pattern. For a>1, M, concentrates on increasing
the magnitude of relatively large differences between
neighboring image pixels. The algorithm failed cata-
strophically by converging to a phase estimate that yields
a bright pointlike image. In a few isolated trials the
polynomial-based phase estimates resulting from use of
M, with 1.5<a=<2.75 yielded o,~\/8. However, these
appear to be “lucky” cases depending on the details of the
speckle and noise realizations, as no clear trends were
evident. In our trials of My with a=2, we obtained o,
~\/8 only about a quarter of the time with data obtained
under favorable conditions (high SNR and many speckle
realizations).

Use of sharpness metric M5 was extensively tested in
high SNR regimes for N=20 speckle realizations and a
wide range of « values, but failed to yield any accurate
phase-error corrections. The effect of a particular « value

depends on the absolute scaling of I (¢,m). For large and
even very modest values of @ (=0.05 for the case consid-
ered here), M5 concentrates on reducing large magnitude
differences between neighboring pixels in the speckle-
averaged image, and the algorithm failed by converging
to a ¢(x,y) that yielded a severely blurred image. For very
small « (<0.01), the algorithm did not yield any notice-
able improvement in the quality of the speckle-averaged
image, and we speculate that the algorithm was trying es-
sentially to smooth out individual speckles.

B. Performance versus Signal-to-Noise Ratio
The performance of DSLI and each of the statistics-based
sharpness metrics of Table 1 was explored as a function of
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Fig. 12. Sharpness metric M; and M, performance versus « for
Pr=640 photoelectrons/speckle with different numbers of avail-
able speckle realizations.
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Fig. 13. Sharpness metric M, with «=0.5 performance versus
number of available speckle realizations for Pp=640
photoelectrons/speckle.

SNR for the case of N=6 speckle realizations. Figure 14
shows how the performance of DSLI varies with SNR. Us-
ing a 15th-order polynomial expansion, DSLI yielded cor-
rections with o,~\/6 down to signal levels of Pp=3
photoelectrons/speckle. Figure 15 shows the performance
of sharpness metric M; with «=1.01 (the best performing
metric in the high SNR case with N=20) as a function of
the object beam energy. This plot shows that corrections
<\/10 were achievable down to signal levels of Pr=2.5
photoelectrons/speckle. The average performance of M,
degraded sharply below this SNR.

Figure 16 shows results for specific trials at different
signal levels. Results (not shown) obtained with metric
M3 were nearly identical to those obtained with M7 using
a=1.01. Figure 17 shows a plot of the performance of M;
with «=1.25, which was better than using a«=1.01 for
Pr<3 photoelectrons/speckle. This suggests that the
sharpness metric that performs best depends on the SNR.
Figure 18 shows the performance of M; and My over a
range of different « values at different signal levels. This
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Fig. 14. DSLI performance versus object beam intensity for N
=6 speckle realizations.



S. T. Thurman and J. R. Fienup

0.3 G{

—©— 10" order polynomial estimate

—%— 15" order polynomial estimate
—=e—— Point-by-point estimate

0]

02

0.1p

Residual RMS Phase Error, o, [waves]

1 10 100
Object Beam Intensity [photoelectrons/speckle]
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graph clearly shows that the optimum value of « gradu-
ally changed from approximately 0.9 at high signal levels
to about 1.25 for low signal levels for N=6 speckle real-
izations.
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5. SUMMARY

We have examined the performance of digital shearing la-
ser interferometry (DSLI) and a number of different
sharpness metrics for phase-error correction for imagery
computed from digital holography or heterodyne array
data. Algorithm performance is expected to vary with ob-
ject details, nature of the phase errors, number of avail-
able speckle realizations, and SNR. Our simulations ex-
amined algorithm performance as a function of the
number of speckle realizations and SNR, while keeping
the object and phase error fixed. DSLI is generally more
robust than sharpness metrics, in that DSLI did not ex-
hibit catastrophic failure modes associated with over-
sharpening or excessive blurring. In all cases, however,
the best performing sharpness metric outperformed DSLI
in terms of residual RMS phase error. We hypothesize
that this happens because sharpness metrics employ a
priori information (high-quality images typically have
wider histograms than those of corresponding low-quality
images) that DSLI does not.

The best performing sharpness metric was found to
vary with both the number of speckle realizations and
SNR. Simulation results with DSLI yielded phase-error

19.2 ¢ /speckle 64 e /speckle

Fig. 16. Sharpness metric M; with a=1.01 results for specific trials. Each column corresponds to a different object beam intensity Pp
with different speckle realizations and shows in successive rows (a) an ideal speckle-averaged image (with no phase errors or noise), (b)
a speckle-averaged image degraded by both phase errors and noise, and speckle-averaged reconstructed images corresponding to (c) the
10th-order polynomial and (d) the point-by-point phase-error estimates.



994 J. Opt. Soc. Am. A/Vol. 25, No. 4/April 2008

03

—©— 10" order polynomial estimate

—%— 15" order polynomial estimate
—=e—— Point-by-point estimate

02F

0.1f

Residual RMS Phase Error, o p [waves]

1 10 100
Object Beam Intensity [photoelectrons/speckle]

Fig. 17. Sharpness metric M; with a=1.25 performance versus
object beam intensity for N=6 speckle realizations.
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Fig. 18. Sharpness metrics M; and M, performance versus « for
N=6 speckle realizations with different object beam intensities.

corrections with less than A/10 RMS residual phase error
in high SNR conditions (640 photons/speckle for the object
beam) with ten or more speckle realizations and =\/6
corrections with only ~3 photons/speckle and six speckle
realizations. In the high SNR regime, the best performing
sharpness metrics achieved <\/50 corrections with >16
speckle realizations and <\/10 corrections with as few as
two speckle realizations. With only 3 photons/speckles for
the object beam, the best performing sharpness metric
achieved \/10 corrections. Also worth noting is that DSLI
requires samples over a contiguous aperture, but the
sharpness metrics do not.
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