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Phase-error correction in digital holography
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The quality of images computed from digital holograms or heterodyne array imaging is degraded by phase
errors in the object and/or reference beams at the time of measurement. This paper describes computer simu-
lations used to compare the performance of digital shearing laser interferometry and various sharpness met-
rics for the correction of such phase errors when imaging a diffuse object. These algorithms are intended for
scenarios in which multiple holograms can be recorded with independent object speckle realizations and a
static phase error. Algorithm performance is explored as a function of the number of available speckle realiza-
tions and signal-to-noise ratio (SNR). The performance of various sharpness metrics is examined in detail and
is shown to vary widely. Under ideal conditions with �15 speckle realizations and high SNR, phase corrections
better than � /50 root-mean-square (RMS) were obtained. Corrections better than � /10 RMS were obtained in
the high SNR regime with as few as two speckle realizations and at object beam signal levels as low as 2.5
photons/speckle with six speckle realizations. © 2008 Optical Society of America

OCIS codes: 090.1000, 090.1760, 100.3010, 100.3020, 100.3190, 040.2840.
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. INTRODUCTION
digital hologram of an object can be recorded via the

onfiguration shown in Fig. 1. The first beam splitter in
he figure divides the collimated laser beam into a refer-
nce beam and an illumination beam, while the second
eam splitter reflects the reference beam and transmits
he object beam (light scattered from the object). The de-
ector array records a digital hologram, i.e., the interfer-
nce pattern between the reference and object beams. The
ntensity interference pattern H�x ,y� at the detector
lane can be written as

H�x,y� = �R�x,y� + F�x,y��2, �1�

here R�x ,y� and F�x ,y� are the optical fields associated
ith the reference and object beams at the detector plane,

espectively. Ideally, the reference beam would be a per-
ect plane wave and the object beam would contain no
hase errors. In such a case, the reference and object
eams can be written as

R�x,y� = R0 exp�i�kxx + kyy��, �2�

F�x,y� =
1

i�z
exp�ikz�exp�i

�

�z
�x2 + y2��

��
−�

� �
−�

�

f��,��exp�i
�

�z
��2 + �2��

�exp�− i
2�

�z
�x� + y���d�d�, �3�

here R0 is the amplitude of the reference wave, kx and ky
re the transverse components of the reference wave vec-
or, � is the wavelength of light, z is the longitudinal dis-
ance between the detector array and the nominal object
lane, f�� ,�� is the optical field scattered by the object in
1084-7529/08/040983-12/$15.00 © 2
he nominal object plane, and the Fresnel approximation
1] has been used.

Using an off-axis reference beam [2], i.e., kx�0 and/or
y�0, F�x ,y� can be reconstructed from H�x ,y�. Then a
oherent image of the object (with spatial resolution de-
ermined by the diameter of the detector array) can be
igitally computed by inverting Eq. (3). Taking the 2D
patial Fourier transform of Eq. (1) and using the ideal
orm of R�x ,y� given in Eq. (2) yields

H̃�fx,fy� = �R0�2��fx,fy� + F̃�fx,fy��F̃�fx,fy�

+ R0
*F̃	 kx

2�
+ fx,

ky

2�
+ fy


+ R0F̃*	 kx

2�
− fx,

ky

2�
− fy
 , �4�

here H̃�fx , fy� and F̃�fx , fy� are the 2D spatial Fourier
ransforms of H�x ,y� and F�x ,y�, respectively, �fx , fy� are
patial-frequency coordinates, ��fx , fy� is a 2D Dirac delta
unction, and � denotes a cross correlation.

The first two terms on the right-hand side of Eq. (4)
epresent the autocorrelations of the Fourier transforms
f the reference and object beams, respectively, and are
entered about the dc spatial frequency. The third and
ourth terms represent the Fourier transforms of the ob-
ect beam and its holographic twin, respectively, which
re offset from the dc spatial frequency by a distance pro-
ortional to the magnitude of the transverse reference
ave vector �kx

2+ky
2. Provided �kx

2+ky
2 is sufficiently

arge, satisfying the holographic condition such that the
hird and fourth terms of Eq. (4) do not overlap the second
erm, the Fourier transform of the object beam can be iso-
ated with a window function and inverse transformed to
ield F�x ,y� to within an arbitrary multiplicative constant
008 Optical Society of America
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nd an arbitrary piston phase (ignoring detector nonlin-
arities, measurement noise, and edge/window effects).

In any real system, the computed image can be de-
raded if the reference field is not a perfect plane wave
nd/or the object beam includes errors from the second
eam splitter or atmospheric turbulence. In general the
eference and object fields can differ from their ideal
orms in both amplitude and phase; the quality of the
omputed image is, however, much more sensitive to
hase errors than it is to amplitude errors. Thus, we will
onsider the case of phase errors only, such that the aber-
ated reference and object fields R	�x ,y� and F	�x ,y� can
e written as

R	�x,y� = R�x,y�exp�i
R�x,y��, �5�

F	�x,y� = F�x,y�exp�i
F�x,y��, �6�

here 
R�x ,y� and 
F�x ,y� are the phase errors of the ob-
ect and reference beams, respectively. Equation (6) is
imited to the isoplanatic case, for which the object-beam
hase errors are in a volume fairly close to the detector.
sing these expressions, the hologram intensity pattern
	�x ,y� with phase errors can be written as

H	�x,y� = �R	�x,y� + F	�x,y��2

= �R�x,y� + F�x,y�exp�i
�x,y���2, �7�

here


�x,y� = 
F�x,y� − 
R�x,y�. �8�

hen using the procedure described above for recon-
tructing the object field from a hologram, the result is an
berrated object field G�x ,y� of the form

G�x,y� = F�x,y�exp�i
�x,y��. �9�

lternatively, aberrated field measurements such as
hese can be obtained by heterodyne array measurements
aking use of a local oscillator [3].
In Section 2 below, the technical details of two ap-

roaches for correcting for unknown phase errors in
�x ,y� are reviewed: (i) digital shearing laser interferom-

try (DSLI) [4,5] and (ii) sharpness metric maximization
6–9]. Both approaches are intended for use with diffuse
xtended objects, but can also be used for objects having
lints. DSLI requires a modest number of digital holo-
rams with independent object speckle realizations to be
ecorded for a constant 
�x ,y�. Thus, in the case of dy-
amic phase errors, DSLI is limited to scenarios in which

Fig. 1. Layout for recording digital holograms.
modest number of digital holograms can be recorded
ith adequate signal-to-noise ratio (SNR) before 
�x ,y�
aries appreciably. Alternatively, the sharpness metric
aximization approach can work in some cases with only
single object speckle realization, but it also benefits

reatly from multiple speckle realizations. Furthermore,
SLI can be performed only when one has a noninter-

upted array of measurement points, whereas the sharp-
ess approaches can work for sparse-aperture and
egmented-aperture systems. In general, the accuracy of
ach algorithm varies somewhat depending on the details
f the object, the nature of the phase error, the number of
vailable speckle realizations, and the SNR. Note that
hen maximizing sharpness for synthetic-aperture radar,
s described in [7,9], one has a 1D phase error and uses
ultiple range lines having the same phase error to ob-

ain the statistics needed to accurately estimate the
hase error. In this paper, however, we have a 2D phase
rror and use multiple speckle realizations to obtain the
tatistics needed to accurately estimate the phase error.

Section 3 describes the details of computer simulation
xperiments designed to compare the relative perfor-
ance of DSLI and a variety of sharpness metrics as a

unction of the number of available speckle realizations
nd the SNR for a given scene and atmospheric phase er-
or. The residual root-mean-square (RMS) phase error (ig-
oring piston, tip, and tilt terms) after correction is used
o quantify the performance of each algorithm. Section 4
resents results of the computer simulation experiments
nd Section 5 is a summary.

. PHASE-ERROR-CORRECTION
LGORITHMS

his section describes both the DSLI and sharpness met-
ic phase-error-correction approaches. For the develop-
ent of both approaches, we assume that the object field

n the detector plane has been reconstructed from digital
olography or heterodyne array measurements for N in-
ependent object speckle realizations with a constant
hase error 
�x ,y�, such that the given object field at the
etector for the nth speckle realization can be written in a
orm analogous to Eq. (9) as

Gn�x,y� = Fn�x,y�exp�i
�x,y��. �10�

. Digital Shearing Laser Interferometry
tarting with aberrated object fields of the form given in
q. (10), the first step in DSLI is to compute the digitally
heared quantities

Sx�x,y� =
1

N�
n=1

N

Gn�x,y�Gn
*�x − �,y�, �11�

Sy�x,y� =
1

N�
n=1

N

Gn�x,y�Gn
*�x,y − ��, �12�

here � is a shear distance, which for simplicity is shown
s the same in both dimensions, but can differ in x and y.
ubstituting Eq. (10) into Eq. (11) yields



U
a

w
o
j
�

b
c
f
c
E

w
a
t
m

T
t
t
s
m
l
Ĩ
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Sx�x,y� = exp
i�
�x,y� − 
�x − �,y���

�
1

N�
n=1

N

Fn�x,y�Fn
*�x − �,y�. �13�

sing Eq. (3), the summation in Eq. (13) can be expressed
s

1

N�
n=1

N

Fn�x,y�Fn
*�x − �,y�

=
1

�2z2 exp�i
�

�z
�x2 − �x − ��2��

��
−�

� �
−�

� �
−�

� �
−�

� 1

N�
n=1

N

fn��,��fn
*���,���

� exp�i
�

�z
��2 − ��2 + �2 − ��2��

� exp�− i
2�

�z
���� + �� − ���x + �� − ���y��d�d�d��d��,

�14�

here fn�� ,�� represents the nth speckle realization of the
bject field in the nominal object plane. For diffuse ob-
ects, the object field is essentially delta-correlated in
� ,��, such that the following approximation,

1

N�
n=1

N

fn��,��fn
*���,��� � �I��,����� − ��,� − ���, �15�

ecomes an equality as N approaches infinity, where � is a
onstant and I�� ,�� is the intensity of the light reflected
rom the object that would be observed under spatially in-
oherent illumination. Inserting Eqs. (14) and (15) into
q. (13) and integrating yields

Sx�x,y� =
�

�2z2 exp
i�
�x,y� − 
�x − �,y���

�exp�i
�

�z
�2x� − �2��

��
−�

� �
−�

�

I��,��exp	− i
2�

�z
��
d�d�

=
�

�2z2 exp
i�
�x,y� − 
�x − �,y���

�exp�i
�

�z
�2x� − �2��Ĩ	 �

�z
,0
 , �16�

here Ĩ�fx , fy� is the Fourier transform of I�� ,��. This is
nalogous to the derivation of the Van Cittert–Zernike
heorem [4,5,10], in which Ĩ�fx , fy� represents the object
utual intensity. In a similar manner,
Sy�x,y� �
�

�2z2 exp
i�
�x,y� − 
�x,y − ����

�exp�i
�

�z
�2y� − �2��Ĩ	0,

�

�z
 . �17�

he sheared and averaged quantities Sx�x ,y� and Sy�x ,y�
hus have a phase component that is a finite difference of
he phase error, similar to what one gets, for example, in
hearing interferometry. It is important to note that the
utual intensity contribution to the phase of Sx�x ,y� is

imited to an arbitrary constant phase, i.e., the phase of
�� / ��z� ,0�. Sx�x ,y� also experiences a linear phase term
�x� / ��z� associated with the quadratic phase before the
ntegral in Eq. (3).

A number of different algorithms [11–14] exist for re-
onstructing wavefronts from sheared phase data. A
avefront reconstructed from the digital shear data in
qs. (16) and (17) will ideally have a phase 
̂�x ,y� given
y


̂�x,y� � 
�x,y� +
�

�z
�x2 + y2� + ax + by + c, �18�

here a and b are arbitrary tip and tilt terms associated
ith the piston phases of the mutual intensity terms

�� / ��z� ,0� and Ĩ�0,� / ��z��, and c is an arbitrary piston
hase term. The piston, tip, and tilt phase terms do not
ffect image quality. An estimate of the unaberrated ob-
ect field F̂n�x ,y� in the detector plane is then given by

F̂n�x,y� = Gn�x,y�exp�− i
̂�x,y��. �19�

The corresponding estimate for the field f̂n�� ,�� in the
ominal object plane is

f̂n��,�� =
1

�z
exp�− i

�

�z
��2 + �2���

−�

� �
−�

�

F̂n�x,y�

�exp�i
2�

�z
�x� + y���dxdy, �20�

o within an arbitrary piston phase and �� ,�� coordinate
hift. Note that the quadratic term in Eq. (18) is already
ultiplying F̂n�x ,y�, so it should not be included in this

ntegral. Finally, a speckle-averaged intensity estimate
ˆ�� ,�� of the object is computed as

Î��,�� =
1

N�
n=1

N

�f̂n��,���2. �21�

Since we are here concerned only with the image inten-
ity, the quadratic phase term outside the integral in Eq.
20) can be ignored. Also, the quadratic phase term in
x2+y2� is canceled by the phase estimate. Thus, we can
ct as though both quadratic phase terms are zero and
erform Fourier transforms rather than Fresnel trans-
orms. That is, the object can be treated as though it is in
he far field (Fraunhofer regime) even if it is in the near
eld (Fresnel regime).
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. Sharpness Metric Maximization
n the sharpness metric approach, a nonlinear optimiza-
ion algorithm is used to find a phase error estimate
ˆ �x ,y� that maximizes a quantitative measure of the
harpness of a speckle-averaged intensity estimate of the
bject. The functional dependence of Î�� ,�� on 
̂�x ,y� is
iven by Eqs. (19)–(21). We consider sharpness metrics of
he following two forms

M = �
��,��


�Î��,���, �22�

M = �
��,��

�
���,����D


�Î��,�� − Î�� − ��,� − ����, �23�

here the �� ,�� summations are over a set of image
amples, 
�I� is a nonlinear function, and D is a neighbor-
ng system of ��� ,��� shift coordinates.

Table 1 lists forms of 
�I� we considered for sharpness
etrics for use in Eq. (22), which are called statistics-

ased sharpness metrics, because Eq. (22) is equivalent to
n estimator for the statistical moment of 
�I� for the
peckle-averaged image, if Î�� ,�� is viewed as a stochastic
rocess. Note that metric M1 is equivalent to the metrics
1 and S5 from [6] for �=2 and ��2, respectively, and
etric M3 yields a minimum entropy phase estimate and

s equivalent to S7 from [6].
Table 2 lists the forms of 
��I� we considered for use in

q. (23), where �I= Î�� ,��− Î��−�� ,�−���. These are
alled correlation metrics, since Eq. (24) is equivalent to
n estimator for statistical moments between neighboring
oints in the speckle-averaged image. Note that M4 with
=2 is equivalent to a finite difference approximation of
4 from [6]. We previously found M5 to be useful for inco-
erent image restoration when there were missing areas
ithin the spatial-frequency domain. Note that while [6]
ealt with incoherent images, we are dealing here with
oherent, speckled images (for N=1) and speckle-reduced
mages (for N�1).

It is important to understand the principle behind each
etric, and how each metric differs. Note that the value

f a statistics-based metric is independent of the spatial
rganization of an image, but is completely determined by
he histogram of an image. However, the value of a
orrelation-based metric depends on the differences be-
ween neighboring spatial samples in an image. Due to
nergy conservation, the effect of maximizing a statistic-
ased metric is intimately related to 
��I� [9], the second
erivative of 
�I� with respect to I. As explained in [9], the

Table 1. Statistics-Based Sharpness Metrics Based
on the Form of Eq. (23)

Metric 
�I� Effect on Image Histogram

M1 I� for ��1 Concentrates on making:
bright points brighter for ��2,

dark points darker for ��2
M2 −I� for 0���1 Concentrates on making

dark points darker
M3 I ln�I� Concentrates on making

dark points darker
hird column of Table 1 indicates whether each metric
oncentrates more on making bright points brighter or
ark points darker. Since the differences between neigh-
oring image intensity samples are not conserved, the ef-
ect of maximizing a correlation-based metric is largely
etermined by 
���I�, the first derivative of 
��I� with re-
pect to �I. The third column of Table 2 lists the general
ffect maximizing M4 or M5 has on the differences be-
ween neighboring image samples.

. COMPUTER SIMULATION EXPERIMENTS
his section describes the details of computer simulation
xperiments for exploring the relative performance of
SLI and the different sharpness metrics for phase-error

orrection.
The flowchart in Fig. 2 outlines the steps in simulating

igital holography data. All of the simulations shown here
tart with the 256�256 incoherent intensity image for
�� ,�� shown in Fig. 3 [15]. Independent object speckle re-
lizations were generated by

fn��,�� = �I��,���N�0,0.5� + iN�0,0.5�� �24�

here N�� ,�2� represents an independent random vari-
ble having a Gaussian distribution with a mean � and
ariance �2, giving us ��fn�� ,���2�=I�� ,��, where the angle
rackets denote the average over an ensemble of speckle

Table 2. Correlation-Based Sharpness Metrics
Based on the Form of Eq. (24)

Metric 
��I�
Effect on Differences between

Neighboring Image Points

M4 ��I�� Increases differences
M5 1

��I�2+�2

Concentrates on making ��I���
differences smaller

Fig. 2. Flowchart for simulating digital holography data.
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ealizations. For each speckle realization, Fn�x ,y� was
omputed by zero-padding each 256�256 fn�� ,�� to a size
f 1024�1024, applying a fast Fourier transform (FFT),
nd cropping the resulting FFT to a size of 512�512. Us-
ng just an FFT to calculate Fn�x ,y� and neglecting the
uadratic phase in Eq. (3) can be done because the solu-
ion is independent of the quadratic phase factors, as de-
cribed above.

An ideal digital hologram Hn�x ,y� with no phase errors
r noise was created by adding Fn�x ,y� to an ideal refer-
nce field R�x ,y� having the form of Eq. (2) and computing
he squared modulus. A degraded digital hologram

	,n�x ,y� was created by: (i) including the phase error
�x ,y�, shown in Fig. 4, in Fn�x ,y� to yield an aberrated
bject field, (ii) adding R�x ,y� to this field and computing
he squared modulus, (iii) adding Poisson-distributed shot
oise and Gaussian-distributed detector read noise, (iv)
ividing by a detector A/D converter gain, and (v) quan-
izing the result to yield H	,n�x ,y� in digital number (DN)
nits of the detector.

Fig. 3. Incoherent intensity image I�� ,�� used for simulations.

ig. 4. Phase error 
�x ,y� used for simulations in units of
aves. The phase error is a random-draw atmospheric phase

creen [16] (with tip and tilt subtracted) with D /r0=8, where D is
he width of the detector and r is Fried’s parameter.
0
The detector read noise standard deviation was 40 pho-
oelectrons, the well depth was 5�104 photoelectrons, the
/D converter gain was 12.2 photoelectrons/DN, and the
it depth was 12. The shot noise statistics are determined
y the measured power in units of photoelectrons. The in-
ensity of the object beam was scaled to have a given av-
rage number of detected photoelectrons per pixel PF. The
mplitude of R�x ,y� was scaled to yield an average num-
er of detected photoelectrons per pixel PR, such that PF
PR was equal to 80% of the detector well depth, or 4
104 photoelectrons. Thus, the standard deviation of the

hot noise was always �200 photoelectrons. Different
NRs were simulated by changing PF, which in all cases
as much less than PR. The dominant noise source was

hot noise. The average speckle size in the detector plane
as approximately 4�4 pixels, since fn�x ,y� was initially

ero-padded by a factor of four along each dimension.
hus, PF in units of average number of photoelectrons/
ixel can be converted to units of object-beam
hotoelectrons/speckle by multiplying by 16.
The flow chart in Fig. 5 outlines the procedure for re-

onstructing the aberrated object field Gn�x ,y� from each
igital hologram. Hn�x ,y� is multiplied by a window func-
ion, W�x ,y�, to reduce edge effects and reduce sidelobes
n the image domain, and an inverse FFT is performed on
he result to yield H̃n�fx , fy� having the form of Eq. (4). An
berrated holographic image of the object is obtained by a
oordinate shift and multiplication by another window
unction. Performing an FFT on the aberrated image and
ownsampling by a factor of two (by discarding every
ther sample) yields a 256�256 Gn�x ,y�. This downsam-
ling was done to reduce the excess memory require-
ents and computational burden of working with an

versampled version of Gn�x ,y�. Both W�x ,y� and the ho-
ographic image window function were flattop windows
ith raised-cosine edges 11 pixels wide. After the 4� em-
edding of the object and 2� downsampling, the Gn�x ,y�
elds were sampled at twice Nyquist and the intensity at
yquist. Coarser sampling than this would result in re-
uced performance by DSLI [4,5].
For each set of Gn�x ,y�, various phase-error estimates

ere generated using both DSLI and the sharpness met-
ics. Each algorithm yielded two polynomial-based and
ne point-by-point phase-error estimate 
̂�x ,y�. The
olynomial-based phase maps have the form


̂�x,y� = �
k

Ck�k�x,y�, �25�

here k is an index for the basis functions �k�x ,y� (analo-
ous to the Zernike polynomials) and Ck are expansion co-

ig. 5. Flowchart for reconstructing an object field from a digi-
al hologram.
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fficients. The first polynomial-based 
̂�x ,y� includes
k�x ,y� up to 10th order (63 terms not including piston,
ip, and tilt) and the second includes up to 15th order (133
erms). The 15th-order polynomial 
̂�x ,y� was then used
s an initial guess in computing a point-by-point 
̂�x ,y�.
tarting with a polynomial-based phase estimate as the

nitial guess typically ensures that the algorithm is rea-
onably close to, and within the capture range of, the true
hase-error estimate in the high-dimensional space of all
oint-by-point phase estimates.
For DSLI, the procedure for generating phase error es-

imates is:

1. Compute the quantities Sx�x ,y� and Sy�x ,y� from
n�x ,y� using Eqs. (11) and (12);
2. Compute the 10th- and 15th-order polynomial-based

ˆ �x ,y�’s from arg�Sx�x ,y�� and arg�Sy�x ,y�� using an ana-
ytic method analogous to that of [14];

3. Starting with the 15th-order polynomial version of
ˆ �x ,y�, compute a point-by-point version of 
̂�x ,y� by run-
ing 100 iterations of a conjugate-gradient routine that
ries to minimize the weighted mean-square error func-
ion [11]

EDSLI = �
�x,y�

W�x,y�W�x − �,y�

̂�x,y� − 
̂�x − �,y�

− arg�Sx�x,y���2 + �
�x,y�

W�x,y�W�x,y − ��

̂�x,y�

− 
̂�x,y − �� − arg�Sy�x,y���2, �26�

here a 2� downsampled version of the window function
escribed above is used for W�x ,y�. W�x ,y� is included in
q. (26) to reduce artifacts in 
̂�x ,y� arising from edge ef-

ects and the use of FFTs in computing Gn�x ,y�.

For the sharpness metric approach, a conjugate-
radient routine was used to iteratively find the polyno-
ial coefficients Ck or point-by-point phase values that
inimize the negative of a particular sharpness metric

equivalent to maximizing the same sharpness metric).
he polynomial coefficients were determined by starting
ith an initial guess for each coefficient of zero, perform-

ng five conjugate-gradient iterations including only up to
rd-order terms, performing five more iterations includ-
ng up to 4th-order terms, performing five more iterations
ncluding up to 5th-order terms, and so on, up to 15th or-
er (performing five additional conjugate-gradient itera-
ions each time an additional order of polynomials is in-
luded in the phase estimate). The point-by-point 
̂�x ,y�
esulted from running only 25 conjugate-gradient itera-
ions, starting from the 15th-order polynomial estimate.
he polynomial estimation of the phase error mitigates,
o a degree, the likelihood of oversharpening that is dis-
ussed below.

The results of the phase-correction algorithms are com-
ared in terms of the root-mean-square (RMS) residual
hase error. While the phase error introduced into the
imulated data 
�x ,y� is a 512�512 point-by-point phase
ap, the phase-error correction algorithms yield phase-

rror estimates 
̂�x ,y� having dimensions of 256�256. As
result, each 
̂�x ,y� was compared to a 2�2 boxcar av-
rage and 2� downsampled version of 
�x ,y� having di-
ensions of 256�256. Piston, tip, and tilt phase differ-

nces between 
̂�x ,y� and 
�x ,y� were then removed by
nding the piston, tip, and tilt coefficients, a, b, and c, re-
pectively, that minimize the metric

E = �
�x,y�

W�x,y��exp
i�
̂�x,y� + a + bx + cy�� − exp�i
�x,y���2.

�27�

s in Eq. (26), W�x ,y� is included here to reduce artifacts
rom edge effects. Finally the residual RMS phase error

 was calculated as

�

2 = � �

�x�,y��

W�x�,y���−1�
�x,y�

W�x,y�

� 
arg�exp
i�
̂�x,y� + a + bx + cy − 
�x,y�����2,

�28�

here W�x ,y� is included again to weight down the re-
idual phase errors at the array edges. In general,
rapped phase-error estimates were not an issue since all
f the algorithms first estimated unwrapped polynomial-
ased phase maps and then used these results as initial
uesses in forming point-by-point phase maps. Neverthe-
ess, the particular form of Eq. (28) yields a �
 that is not
ffected by modulo-2� (between-� and �) differences be-
ween 
̂�x ,y� and 
�x ,y�.

. SIMULATION RESULTS
his section presents simulation results that compare the
elative performance of DSLI and various sharpness met-
ics for phase-error correction in two scenarios: (i) in the
igh-SNR regime with PF=640 photoelectrons/speckle, as
function of the number of available object speckle real-

zations, and (ii) as a function of SNR using six object
peckle realizations.

. Performance in High Signal-to-Noise Regime
igure 6 is a graph of the residual phase error for the
SLI algorithm versus the number of available speckle

ealizations. Each point in this and all the following
raphs is the average �
 from five sets of Gn�x ,y� with in-
ependent speckle and noise realizations. For reference,
he standard deviation of the phase error 
�x ,y�, was
.34� (unwrapped) and 0.28� when computed modulo-2�,
nalogous to Eq. (28). Also for reference, a uniformly dis-
ributed, random, wrapped residual phase error will give

=0.29�. We point out that perfect 10th- and 15th-order
olynomial estimates would yield residual phase errors of

=0.09� and 0.06�, respectively, for the specific 
�x ,y�
hown in Fig. 4. Note that these values would scale with
/r0, i.e., for smaller D /r0 the same levels of correction

ould be achieved theoretically with lower-order polyno-
ials. As such, the 10th- and 15th-order polynomial-

ased phase-error estimates are expected to yield correc-
ions no better than these limiting values.

Figure 6 indicates that DSLI yields 10th- and 15th-
rder polynomial phase estimates with � �0.09� and
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.07�, respectively, in the best scenario (N=20 speckle re-
lizations). These are quite close to the corresponding
imiting values. In this same scenario, the point-by-point
stimate yielded �
�0.06� (the ideal �
 value for a point-
y-point phase estimate is zero). The point-by-point esti-
ate is superior in this case because it can better match

he true phase error than can the polynomial expansions.
onversely, the polynomial estimates performed better

han the point-by-point estimate in the case of very few
peckle realizations, because the polynomial expansion is
form of regularization that mitigates against the fitting

f errors in the shear data Sx�x ,y� and Sy�x ,y� due to av-
raging over an insufficient number of speckle realiza-
ions. The crossover point, where the point-by-point phase
stimate started to yield better corrections than the 15th-
rder polynomial estimate, was roughly N=10 speckle re-
lizations, which also happens to be the point at which
SLI yields corrections with �
�� /10.
Figure 6 also shows a theoretical prediction of �
 re-

ulting from the speckle statistics (ignoring photon and
etector noise) given by [11]

�
�N� = �DSLI�N��0.6558�1 + ln�2562��, �29�

here

�DSLI�N� =�1 − ���2

2���2N
�30�

s the expected standard deviation of arg�Sx�x ,y�� and
rg�Sx�x ,y�� due to the speckle statistics [4,5],

��fx,fy� = Ĩ�fx,fy�/Ĩ�0,0�, �31�

nd � represents either ��� / ��f� ,0� or ��0,� / ��f��. The
heoretical curve shown in Fig. 6 was calculated using
��=sinc�0.5�, since the fields were sampled at twice the

yquist limit and the diffuse object was illuminated by a
quare beam. Note that Eq. (30) is valid for N�10. [4,5]

Figure 7 shows DSLI results for specific trials. Each
olumn corresponds to a different number of speckle real-

ig. 6. DSLI performance versus number of available speckle
ealizations for PF=640 photoelectrons/speckle. Each data point
s the average of results from five trials with independent speckle
nd noise realizations. The dotted curve is a theoretical predic-
ion of DSLI performance based on Eqs. (29) and (30) (ignoring
hoton and detector noise).
zations N and shows an ideal speckle-averaged image
with no phase errors or noise), a speckle-averaged image
egraded by both phase errors and noise, and speckle-
veraged images corresponding to the 10th-order polyno-
ial and point-by-point phase error estimates from DSLI.
The performance of the sharpness metric M1 with �

2 (i.e., the commonly used squared-intensity sharpness
etric) is shown in Figs. 8 and 9. In all but the N=20

ase, the point-by-point phase-error estimation failed
atastrophically by converging to a 
̂�x ,y� that yields an
versharpened Î�� ,�� that contains a bright, pointlike
elta function [recall that M1 with �=2 is maximized by
tretching the histogram of Î�� ,��]. Further examination
eveals that, in these cases, the point-by-point phase es-
imates contain phase vortices and yield individual
peckle images, i.e., �f̂n�� ,���2 for each n� 
1,2, . . . ,N�,
hat contain commonly located delta functions. For N=1,
his failure mode occurs when 
̂�x ,y� approximates 
�x ,y�
lus the phase of Fn�x ,y� (which typically contains nu-
erous phase vortices). For larger N, the algorithm at-

empted to find a 
̂�x ,y� that simultaneously fits
rg�Fn�x ,y�� for multiple speckle realizations by matching
rg�Fn�x ,y�� for each n where �Fn�x ,y�� was large. In doing
his the algorithm seemed to favor sharpening a small
umber of speckle realizations over the others, but each

f̂n�� ,���2 contained a commonly located bright point. For
ufficiently large N, e.g., N=20, there were enough
peckle statistics to avoid this failure mode of overempha-
izing bright image points and to allow the algorithm to
onverge to an accurate point-by-point phase estimate
ith �
=� /20. Conversely, the polynomial expansion pro-
ides regularization against this failure mode, i.e., a
olynomial-based 
̂�x ,y� cannot contain the phase vorti-
es generally required to match arg�Fn�x ,y��, allowing
hase-error estimates with �
�� /10 with as few as N
4 speckle realizations.
Figure 10 shows the performance of metrics M1 and M2

ersus the metric parameter � and of the minimum en-
ropy metric M3 for N=20 speckle realizations and PF
640 photoelectrons/speckle. Note that the minimum en-

ropy results obtained with M3 are plotted in Fig. 10 for
=1, since it has been shown [9] that minimizing entropy

s equivalent to maximizing M1 with �=1+	 for 	�1. Us-
ng M1 with ��2 gives point-by-point phase estimates
hat yield an oversharpened Î�� ,�� containing a bright
elta function, which results from M1 placing increasing
mphasis on making bright points brighter as � increases
9]. Thus, more than 20 speckle realizations were re-
uired to prevent this failure mode of M1 for ��2. For
�0.25, we speculate that M2 fails to converge to an ac-
urate 
̂�x ,y� by placing too much emphasis on minimiz-
ng various points in the degraded image that happen to
e dark due to the details of the speckle and/or noise re-
lizations.
Figure 10 indicates that the optimum value of � for M1

nd M2 is a value slightly larger or less than unity. This is
nteresting because the values of M1 and M2 are indepen-
ent of 
̂�x ,y� for �=1, since the integrated value of Î�� ,��
s a conserved quantity. The optimum sharpness metric is
nown to vary with the details of the object [9]; thus, even
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hough ��1 is ideal for the object used in the simulations
ere, the optimum value of � is expected to vary with dif-

erent objects. It is worth noting that the choice of � in M1
r M2 can yield dramatically different results, ranging

ig. 8. Sharpness metric M1 with �=2 performance versus
umber of available speckle realizations for PF=640

ig. 7. DSLI results for specific trials. Each column corresponds
ows (a) an ideal speckle-averaged image (with no phase errors or
oise, and speckle-averaged reconstructed images corresponding
stimates.
hotoelectrons/speckle.
rom catastrophic failure at one extreme to better than
/50 corrections at the other extreme, with a point-by-
oint 
̂�x ,y�.
When using a polynomial expansion for 
̂�x ,y�, the re-

ults obtained with M1 and M2 for ��0.1 were near the
imits for perfect correction mentioned above, even for �

2. Figure 11 shows the results obtained using M1 with
=1.01 (which is near optimum for large N and large
NR) as a function of the number of available speckle re-
lizations. The graph indicates that while the polynomial
xpansion was needed for regularization in the case of
nly one or two speckle realizations, an accurate point-by-
oint 
̂�x ,y� with �
�� /10 was achieved with only three
peckle realizations. A similar graph obtained by use of

3 (negative entropy) is not shown, as the results are vir-
ually identical to those already shown in Fig. 11.

The optimum value of � was found to vary with the
umber of available speckle realizations. Figure 12 shows

 as a function of � when different numbers of speckle
ealizations are available. As the number of speckle real-
zations decreases, the optimum value of � decreases from
.01 for N=16 or 20 to approximately 0.5 for N=1. Figure
3 shows the results of using M with �=0.5 versus the

fferent number of speckle realizations N and shows in successive
, (b) a speckle-averaged image degraded by both phase errors and
he 10th-order polynomial and (d) the point-by-point phase-error
2

to a di
noise)
to (c) t
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umber of speckle realizations. While this value of � did
ot perform as well as �=1.01 for large N, it performed
etter than �=1.01 for N=1 and 2, as indicated by Figs.

ig. 9. Sharpness metric M1 with �=2 results for specific trials.
and shows in successive rows (a) an ideal speckle-averaged im

raded by both phase errors and noise, and speckle-averaged reco
he point-by-point phase-error estimates.

ig. 10. Sharpness metric M1 and M2 performance versus � and
harpness metric M3 performance for PF=640 photoelectrons/
peckle and N=20 speckle realizations.
1–13. Additionally, for �=0.5, the polynomial expansion
or 
̂�x ,y� was not required for regularization in the case
f N=1 or 2 as it was for �=1.01. Thus, in cases where

column corresponds to a different number of speckle realizations
ith no phase errors or noise), (b) a speckle-averaged image de-

ted images corresponding to (c) the 10th-order polynomial and (d)

ig. 11. Sharpness metric M1 with �=1.01 performance versus
umber of available speckle realizations for PF=640
hotoelectrons/speckle.
Each
age (w

nstruc
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nly one or two speckle realizations are available, a value
f �=0.5 is preferred over �=1.01. Note that �=0.5 is
quivalent to maximizing the sum of the field magni-
udes.

In almost all cases examined, use of sharpness metric
4 failed catastrophically. For ��1, M4 concentrates on

ncreasing the magnitude of relatively small differences
etween neighboring pixels in Î�� ,��. As a result, the al-
orithm failed catastrophically by converging to a 
̂�x ,y�
hat yields an image Î�� ,�� that looks like a correlated
oise pattern. For ��1, M4 concentrates on increasing
he magnitude of relatively large differences between
eighboring image pixels. The algorithm failed cata-
trophically by converging to a phase estimate that yields

bright pointlike image. In a few isolated trials the
olynomial-based phase estimates resulting from use of
4 with 1.5���2.75 yielded �
�� /8. However, these

ppear to be “lucky” cases depending on the details of the
peckle and noise realizations, as no clear trends were
vident. In our trials of M4 with ��2, we obtained �


� /8 only about a quarter of the time with data obtained
nder favorable conditions (high SNR and many speckle
ealizations).

Use of sharpness metric M5 was extensively tested in
igh SNR regimes for N=20 speckle realizations and a
ide range of � values, but failed to yield any accurate
hase-error corrections. The effect of a particular � value
epends on the absolute scaling of Î�� ,��. For large and
ven very modest values of � (�0.05 for the case consid-
red here), M5 concentrates on reducing large magnitude
ifferences between neighboring pixels in the speckle-
veraged image, and the algorithm failed by converging
o a 
̂�x ,y� that yielded a severely blurred image. For very
mall � ��0.01�, the algorithm did not yield any notice-
ble improvement in the quality of the speckle-averaged
mage, and we speculate that the algorithm was trying es-
entially to smooth out individual speckles.

. Performance versus Signal-to-Noise Ratio
he performance of DSLI and each of the statistics-based
harpness metrics of Table 1 was explored as a function of

ig. 12. Sharpness metric M1 and M2 performance versus � for
F=640 photoelectrons/speckle with different numbers of avail-
ble speckle realizations.
NR for the case of N=6 speckle realizations. Figure 14
hows how the performance of DSLI varies with SNR. Us-
ng a 15th-order polynomial expansion, DSLI yielded cor-
ections with �
�� /6 down to signal levels of PF=3
hotoelectrons/speckle. Figure 15 shows the performance
f sharpness metric M1 with �=1.01 (the best performing
etric in the high SNR case with N=20) as a function of

he object beam energy. This plot shows that corrections
� /10 were achievable down to signal levels of PF=2.5

hotoelectrons/speckle. The average performance of M1
egraded sharply below this SNR.
Figure 16 shows results for specific trials at different

ignal levels. Results (not shown) obtained with metric
3 were nearly identical to those obtained with M1 using
=1.01. Figure 17 shows a plot of the performance of M1
ith �=1.25, which was better than using �=1.01 for
F�3 photoelectrons/speckle. This suggests that the
harpness metric that performs best depends on the SNR.
igure 18 shows the performance of M1 and M2 over a
ange of different � values at different signal levels. This

ig. 13. Sharpness metric M2 with �=0.5 performance versus
umber of available speckle realizations for PF=640
hotoelectrons/speckle.

ig. 14. DSLI performance versus object beam intensity for N
6 speckle realizations.
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raph clearly shows that the optimum value of � gradu-
lly changed from approximately 0.9 at high signal levels
o about 1.25 for low signal levels for N=6 speckle real-

ig. 15. Sharpness metric M1 with �=1.01 performance versus
bject beam intensity for N=6 speckle realizations.
zations. S
. SUMMARY
e have examined the performance of digital shearing la-

er interferometry (DSLI) and a number of different
harpness metrics for phase-error correction for imagery
omputed from digital holography or heterodyne array
ata. Algorithm performance is expected to vary with ob-
ect details, nature of the phase errors, number of avail-
ble speckle realizations, and SNR. Our simulations ex-
mined algorithm performance as a function of the
umber of speckle realizations and SNR, while keeping
he object and phase error fixed. DSLI is generally more
obust than sharpness metrics, in that DSLI did not ex-
ibit catastrophic failure modes associated with over-
harpening or excessive blurring. In all cases, however,
he best performing sharpness metric outperformed DSLI
n terms of residual RMS phase error. We hypothesize
hat this happens because sharpness metrics employ a
riori information (high-quality images typically have
ider histograms than those of corresponding low-quality

mages) that DSLI does not.
The best performing sharpness metric was found to

ary with both the number of speckle realizations and

NR. Simulation results with DSLI yielded phase-error
ig. 16. Sharpness metric M1 with �=1.01 results for specific trials. Each column corresponds to a different object beam intensity PF
ith different speckle realizations and shows in successive rows (a) an ideal speckle-averaged image (with no phase errors or noise), (b)
speckle-averaged image degraded by both phase errors and noise, and speckle-averaged reconstructed images corresponding to (c) the

0th-order polynomial and (d) the point-by-point phase-error estimates.
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orrections with less than � /10 RMS residual phase error
n high SNR conditions (640 photons/speckle for the object
eam) with ten or more speckle realizations and �� /6
orrections with only �3 photons/speckle and six speckle
ealizations. In the high SNR regime, the best performing
harpness metrics achieved �� /50 corrections with �16
peckle realizations and �� /10 corrections with as few as
wo speckle realizations. With only 3 photons/speckles for
he object beam, the best performing sharpness metric
chieved � /10 corrections. Also worth noting is that DSLI
equires samples over a contiguous aperture, but the

ig. 17. Sharpness metric M1 with �=1.25 performance versus
bject beam intensity for N=6 speckle realizations.

ig. 18. Sharpness metrics M1 and M2 performance versus � for
=6 speckle realizations with different object beam intensities.
harpness metrics do not.
CKNOWLEDGMENTS
his work was supported by Lockheed Martin Corpora-

ion. The authors thank Joe Marron for useful discussions
nd suggestions.

EFERENCES
1. J. Goodman, Introduction to Fourier Optics, 3rd ed.

(Roberts, 2004).
2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts

and communication theory,” J. Opt. Soc. Am. 52, 1123–1130
(1962).

3. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne
holography with two-dimensional photodetector arrays,”
Opt. Lett. 25, 716–718 (2000).

4. J. R. Fienup, J. N. Cederquist, J. C. Marron, T. J. Schulz,
and J. H. Seldin, “Heterodyne array phasing by digital
shearing laser interferometry,” in IRIS Specialty Group on
Active Systems Meeting Digest, October 16–18, 1990.

5. J. N. Cederquist, J. R. Fienup, J. C. Marron, T. J. Schulz,
and J. H. Seldin, “Digital shearing laser interferometry for
heterodyne array phasing,” Proc. SPIE 1416, 266–277
(1991).

6. R. A. Muller and A. Buffington, “Real-time correction of
atmospherically degraded telescope images through image
sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974).

7. R. G. Paxman and J. C. Marron, “Aberration correction of
speckled imagery with an image-sharpness criterion,” Proc.
SPIE 976, 37–47 (1988).

8. J. R. Fienup, A. M. Kowalczyk, and J. E. Van Buhler,
“Phasing sparse arrays of heterodyne receivers,” Proc.
SPIE 2241, 127–131 (1994).

9. J. R. Fienup and J. J. Miller, “Aberration correction by
maximizing generalized sharpness metrics,” J. Opt. Soc.
Am. A 20, 609–620 (2003).

0. J. W. Goodman, Statistical Optics (Wiley, 2000), Sec. 5.6,
pp. 207–211.

1. D. L. Fried, “Least-squares fitting a wave-front distortion
estimate to an array of phase-difference measurements,” J.
Opt. Soc. Am. 67, 370–375 (1977).

2. W. H. Southwell, “Wave-front estimation from wave-front
slope measurements,” J. Opt. Soc. Am. 70, 998–1006
(1980).

3. H. Takajo and T. Takahashi, “Least-squares phase
estimation from the phase difference,” J. Opt. Soc. Am. A 5,
416–425 (1988).

4. E. Acosta, S. Bará, M. A. Rama, and S. Rios,
“Determination of phase mode components in terms of local
wave-front slopes: an analytical approach,” Opt. Lett. 20,
1083–1085 (1995).

5. Provided courtesy of Jet Propulsion Laboratories (J. B.
Breckinridge).

6. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation
of a Kolmorgorov phase screen,” Waves Random Media 2,
209–224 (1992).

7. D. L. Fried, “Optical resolution through a randomly
inhomogeneous medium for very long and very short

exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).


