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Signal-to-noise ratio trade-offs associated with
coarsely sampled Fourier transform spectroscopy
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We derive the spectral signal-to-noise ratio (SNR) trade-offs associated with coarsely sampled Fourier trans-
form spectroscopy using a step-and-integrate measurement scheme. We show that there is no SNR penalty in
the shot noise limit and a slight SNR benefit in the detector noise limit for the case of coarse sampling to
achieve the same spectral resolution as a baseline Nyquist sampling scenario, where the total detector inte-
gration time is the same for both sampling cases. © 2007 Optical Society of America

OCIS codes: 300.6300, 070.6020.
s

w
e
s
d

f
G
t

w
s
D

i
t
m
fi
l

. INTRODUCTION
he Nyquist sampling criterion [1,2] states that a band-

imited signal f��� can be completely specified by an infi-
ite set of uniformly spaced samples, provided that the
ample spacing �� satisfies the Nyquist sampling condi-
ion ���1/ �2�max�, where F���, the Fourier transform of
���, vanishes for �����max. In some cases, e.g., if f��� has a
ne-sided or bandpass spectrum, it is possible to use a
oarser sample spacing and yet completely specify f��� [3].

We consider the signal-to-noise (SNR) trade-offs associ-
ted with coarse sampling [4–8] for Fourier transform
pectroscopy (FTS) using the step-and-integrate method
f data collection [7,8]. For the case of an ideal Michelson-
nterferometer-based instrument, the response, h���, of a
etector at the output plane of the interferometer varies
ith the time delay, �, between the arms of the interfer-
meter as [9]

h��� =
td

2�0

�

S����1 + cos�2�����d�, �1�

here td is the detector integration time per measure-
ent, S��� is the spectrum of the source as seen by the

etector in units of photoelectrons/s/Hz, and the optical
ath difference (OPD) between the arms of the interfer-
meter is given by c� with c being the speed of light. The
odulation of the interference pattern is given by

f��� = h��� − h̄ =
td

2�0

�

S���cos�2����d�, �2�

here h̄ is the average of h��� over all �, i.e.,

h̄ =
td

2�0

�

S���d�. �3�

he continuous Fourier transform of f��� is given by
1084-7529/07/092817-5/$15.00 © 2
F��� =�
−�

�

f���exp�− i2����d� =
td

4
�S��� + S�− ���. �4�

In practice, only a finite number, N, of measurement
amples can be made, say,

gn = f�n���, �5�

here the subscript n� �−N /2 ,−N /2+1, . . . , �N−2� /2�, for
ven N, is an integer sample index and �� is the sample
pacing. Thus, spectral information is obtained via the
iscrete Fourier transform (DFT), defined as

Gp =
1

	N



n=−N/2

N/2−1

gn exp�− i2�
np

N � , �6�

or p� �−N /2 ,−N /2+1, . . . , �N−2� /2�. The DFT samples
p can be expressed in terms of the continuous Fourier

ransform F��� as (see Appendix A)

Gp =
1

	N��
�

−�

� F��� � � 1

��
sinc� �

��
��

� � 1

N��
comb� �

N��
������ − p���d�, �7�

here the � symbol represents a convolution operation,
inc�x�=sin��x� / ��x�, comb�x�=
k=−�

� ��x−k�, ��x� is the
irac delta function, and

�� = 1/�N��� �8�

s the spectral sampling interval. The primary effect of
he sinc convolution is to limit the full width at half-
aximum spectral resolution of Gp to 1.21�� (or peak-to-
rst-null resolution of ��). We will ignore the sinc convo-

ution for notational convenience and rewrite Eq. (7) as
007 Optical Society of America
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Gp =
1

	N��
�

−�

�

F���
1

N��
comb�� − p��

N��
�d�

=
td

4	N��



q=−�

�

S��p − qN���� + S�− �p − qN����, �9�

here the sinc convolution is now embedded in S���. The
ffect of the comb convolution is to sum periodically
hifted copies of S��� with a period equal to N��, thus
aliasing” high frequency ����	N�� /2� information into
he interval over which Gp is defined �����N�� /2�. Alias-
ng can be problematic if the nonzero portions of each
hifted copy of S��� overlap. The Nyquist sampling condi-
ion ensures that this does not occur for f��� bandlimited
o �����max. However, in cases where S��� is a bandpass
pectrum, it may be possible to use a coarser �-domain
ampling and still ensure that the nonzero portions of
ach shifted copy of S��� do not overlap. In such cases,
igh-spatial-frequency information can be dealiased us-

ng a priori knowledge of the bandpass interval of S���.
Coarse sampling is a well-known technique [4–8] and

as several advantages over Nyquist sampling related to
he fact that coarse sampling can obtain the same spec-
ral resolution as Nyquist sampling, but with fewer mea-
urements. In imaging FTS, where raw data sets can be
ery large and even problematic, coarse sampling by a
actor of 2–4 can provide some data reduction. Also, mak-
ng fewer measurements within the same data collection
ime reduces the data rate, enabling the use of slower
eadout and recording electronics (although the readout
rocess cannot be lengthened arbitrarily). Coarse sam-
ling requires fewer mechanical stepping motions during
ata collection, which can be easier on hardware. If SNR
s not an issue, coarse sampling can be used to reduce the
otal data collection time [7,8]. However, SNR is often one
f the most important issues. In Section 2 we derive the
pectral SNR for coarsely sampled FTS. Section 3 ana-
yzes the SNR trade-offs of coarse sampling in comparison
ith Nyquist sampling for the detector and shot noise

imits. We show that there is no SNR penalty in the shot
oise limit and there is a slight SNR advantage in the de-
ector noise limit for coarse sampling to achieve the same
pectral sampling/resolution as a Nyquist sampling case,
or the same total detector integration time in both sam-
ling cases. Section 4 contains a coarsely sampled FTS ex-
mple. Section 5 is a summary.

. SPECTRAL SNR
n addition to gn, each measurement sample includes
oise 
n. We consider the case of zero-mean, statistically

ndependent noise where the noise covariance is given by

�
m
n� = ��,n
2 �m,n, �10�

here �m,n is the Kronecker delta function,

��,n
2 = �d

2 + h�n���, �11�

nd �d
2 is the variance of the detector noise and the second

erm is the variance of the shot noise associated with the
ntensity of the interference pattern h��� given in units of
etected photoelectrons. Since the visibility of the inter-
erence pattern tends to be small for large OPDs between
he arms of the interferometer, the following approxima-
ion is typically valid:

��,n
2 � �d

2 + h̄ = �d
2 +

td

2�0

�

S���d�. �12�

ssuming that the noise in each sample is independent,
he variance of the real part of the DFT of the noise in
omputing Gp is given by

��,p
2 =�� 1

	N



n=−N/2

N/2


n cos�− i2�
pn

N ��2�
=

1

N 

m=−N/2

N/2



n=−N/2

N/2

�
m
n�cos�− 2�
pm

N �cos�− 2�
pn

N � ,

=
1

N 

n=−N/2

N/2

��,n
2 cos2�2�

pn

N � , �13�

here we have made use of Eq. (10). Substituting Eq. (12)
nto this expression and simplifying yields

��,p
2 = ��d

2

2
+

td

4�0

�

S���d���1 + �p,0 + �p,−N/2�. �14�

he spectral SNR is defined as the ratio of the spectral
ignal, Gp, to the standard deviation of the noise in that
ignal, ��,p, i.e.,

SNRp =
Gp

��,p
. �15�

. Detector Noise Limit
hen detector noise dominates, i.e.,

�d
2 �

td

2�0

�

S���d�, �16�

he spectral SNR can be approximated as

SNRd,p =

td 

q=−�

�

S��p − qN���� + S�− �p − qN����

2	2N�d��	�1 + �p,0 + �p,−N/2�
,

�17�

here typically only one of the terms in the infinite sum
ill be nonzero for any given p. Thus, SNRd,p obeys the

ollowing proportionality relation:

SNRd,p 
td

	N��
= 	Ntd��. �18�

. Shot Noise Limit
hen shot noise dominates, i.e.,

td

2�0

�

S���d� � �d
2 , �19�

he spectral SNR can be approximated as
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SNRs,p =

	td 

q=−�

�

S��p − qN���� + S�− �p − qN����

2	N��	�
0

�

S���d��1 + �p,0 + �p,−N/2�

,

�20�

hich scales as

SNRs,p 
	td

	N��
= 	Ntd��. �21�

. TRADE-OFFS
onsider the ideal scenario in which there is no temporal
verhead associated with each measurement, such that
he detector integration time for each gn sample is given
y

td = T/N, �22�

here T is the time for making all N measurements.
ables 1 and 2 list the trade-offs associated with coarse
ampling in comparison with Nyquist sampling for three
pecific cases of coarse sampling with a constant T: (i)
oarse sampling using the same number of samples as the
yquist sampling case, but sampling over a wider range

f OPDs to achieve finer spectral resolution; (ii) coarse
ampling to yield the same spectral sampling as the Ny-
uist sampling case, but with fewer OPD samples; and
iii) coarse sampling to yield the same spectral SNR as
he Nyquist sampling case, but with fewer OPD samples
hile holding constant the spectral SNR given by either
q. (17) or Eq. (20). In the tables, ��0 and N0 represent

he sample spacing and number of samples used for the
yquist sampling case, respectively. For each case, the in-

egration time td is calculated using Eq. (21), the spectral
ampling �� is calculated using Eq. (8), and the spectral
NR is calculated using either Eq. (17) or Eq. (20). The
egree of coarse sampling, represented by the factor �, is
reater than unity for coarse sampling and less than
nity for oversampling. From Table 1 we see that coarse
ampling in the detector noise limit with N0 samples

Table 1. Coarse versus Nyquist Sampl

Nyquist
Sampling

Sa
of

ample Spacing, �� ��0

umber of Samples, N N0

ntergration Time, td t0

pectral Sampling, �� ��0

pectral SNR SNR0
ields a spectral sampling/resolution, �� that is improved
y a factor of 1/� and a spectral SNR that is reduced by a
actor of 1/� in comparison with Nyquist sampling; coarse
ampling with N0 /� samples yields the same �� but a
NR that is increased by 	� compared with Nyquist sam-
ling; coarse sampling with �−2/3N0 samples yields a ��
hat is improved by �−1/3 with the same SNR as Nyquist
ampling. From Table 2, we see that the coarse sampling
n the shot noise limit with N0 samples yields the same
rade-offs as in the detector noise limit; i.e., �� and the
pectral SNR are reduced by 1/� compared with Nyquist
ampling, which results from the fact that SNRd and
NRs scale identically with ��, as indicated by Eqs. (17)
nd (20). Note that the last two columns of Table 2 are
dentical, i.e., coarse sampling with N0 /� samples in the
hot noise limit yields the same �� and spectral SNR as
he Nyquist sampling case, and differ from the detector-
oise-limited case.
In practice there usually is some temporal overhead as-

ociated with making each measurement. For example,
tepping the time delay between measurements typically
equires the physical movement of a mirror or corner cube
n the interferometer and waiting for vibrations to settle,
nd the time to read out a large detector array in the case
f imaging FTS may be nonnegligible. Assuming that the
emporal overhead, ts, associated with stepping the time
elay between each successive measurement is fixed, td is
iven by the following equation instead of Eq. (21):

td =
T − Nts

N
. �23�

hus, coarse sampling with a smaller N has the benefit of
sing a larger fraction of the total time T for detector in-
egration.

. EXAMPLE
o illustrate coarsely sampled FTS and the SNR trade-
ffs, we simulate the measurement of the American Soci-
ty for Testing and Materials reference solar spectrum
10] over the �=118.3–157.8 THz ��=1.900–2.535 �m�
pectral band. For the simulation, S��� was the bandlim-
ted ASTM G173-03 spectrum converted to photoelectron

rade-Offs in the Detector Noise Limit

Coarse Sampling

mber
es, N

Same Spectral
Sampling, ��

Same Spectral
SNR

���0 ���0

N0

�

N0

�2/3

�t0 �2/3t0

��0 ��0

�1/3

0 	�SNR0 SNR0
ing T

me Nu
Sampl

���0

N0

t0

��0

�

SNR
�
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nits and scaled to have an integrated flux of
07 photoelectrons/s as seen by a detector with a uniform
pectral response. Figure 1(a) shows a spectrum calcu-
ated from a noiseless set of Nyquist sampled ��=1� inten-

Table 2. Coarse versus Nyquist Sam

Nyquist
Sampling

Sa
of

ample Spacing, �� ��0

umber of Samples, N N0

ntegration Time, td t0

pectral Sampling, �� ��0

pectral SNR SNR0

ig. 1. Example spectra recovered from simulated FTS measur
dditionally with undersampling. For (a) and (b) �=1 (Nyquist s
=4, N=96. For the coarse sampling cases ���1�, the unshaded
ions contain aliased spectra. The vertical dotted lines in (c)–(e)
ity samples for N0=384, a total integration time of T
1 s, and ts=0 s. Figure 1(b) shows a noisy spectrum cal-
ulated from the same set of Nyquist samples plus Pois-
on shot noise and Gaussian detector noise with a �d

Trade-Offs in the Shot Noise Limit

Coarse Sampling

mber
es, N

Same Spectral
Sampling, ��

Same Spectral
SNR

���0 ���0

N0

�

N0

�

��0 ��0

��0 ��0

0 SNR0 SNR0

s (a) without noise, (b) with detector and shot noise, and (c)–(e)
g), N=384; for (c) �=2, N=192; for (d) �=3, N=128; and for (e)
s indicate the extent of unaliased spectra, while the shaded re-

e the extent of each length N DFT of the coarsely sampled data.
pling

me Nu
Sampl

���0

N0

t0

��0

�

SNR
�

ement
amplin
region

indicat
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70 photoelectrons. The measurements are dominated by
hot noise since

t0

2�0

�

S���d� = 1.3 � 104 photoelectrons �24�

s greater than �d
2 for the Nyquist sampling case and the

hot noise only increases for the coarse sampling cases.
igures 1(c)–1(e) show noisy spectra obtained from
oarsely sampled intensity measurements for �=2, 3, and
with N=N0 /� samples (such that each spectrum in Fig.
has the same spectral sampling/resolution). Aliased

pectra obtained from the coarse FTS measurements are
n the shaded regions of Figs. 1(c)–1(e), while unaliased
pectra are in the unshaded regions. In each case, the un-
liased spectrum is constructed by simply bandlimiting
he periodically extended spectrum to the a priori known
pectral bandwidth of S���. Referring to Table 2, the spec-
ral SNR is independent of � in the shot noise limit, with
oarse sampling to obtain a fixed ��. The root-mean-
quare errors of the noisy spectra shown in Figs.
(b)–1(e), calculated with respect to the noiseless spectra
hown in Fig. 1(a) over the range �=118.3–157.8 THz are
.89�103, 1.82�103, 1.64�103, and 1.76�103

photoelectrons/spectral sample], respectively, which are
quivalent to within the statistical fluctuations observed
n simulating the data with different noise realizations.

In this example, note that the aliased spectrum is close
o the dc frequency, �=0, when �=2 or 4, as shown in
igs. 1(c) and 1(e). While we have not considered it in this
nalysis, 1/ f noise or source intensity fluctuations on time
cales longer than td yield “pink” noise that is concen-
rated at low � values. In the presence of such noise
ources, coarse sampling such that the aliased spectrum
ppears close to �=0 can yield a lower SNR.

. SUMMARY
e have derived the SNR trade-offs associated with

oarse sampling step-and-integrate FTS. These results in-
icate that for the case of coarse sampling to obtain the
ame spectral resolution as in a baseline Nyquist sam-
ling scenario, there is no SNR penalty in the shot noise
imit and there is a SNR benefit in the detector noise
imit. These results assume that the total data collection
ime is equal for both cases and that there is no temporal
verhead associated with making each measurement.
hese results imply that the additional benefits associ-
ted with coarse sampling, such as smaller data sets and
ewer stepping motions during data collection, can be had
ithout a loss in SNR.

PPENDIX A
sing the same notation as in the Introduction, we wish

o express the DFT Gp in terms of the continuous Fourier
ransform F���. Using Eqs. (5) and (8), Eq. (6) can be writ-
en as
Gp =
1

	N



n=−N/2

N/2−1 �
−�

� �
−�

�

f���exp�− i2����

���� − n������ − p���d�d�. �A1�

oving the summation operator inside the integrals, Gp
an be expressed as

Gp = Lim

→0+

1

	N
�

−�

� �
−�

�

f���rect� � + 


N��
�� 1

��
comb� �

��
��

� exp�− i2������� − p���d�d�, �A2�

here rect�x�=1 for �x��0.5 and 0 for �x��0.5. By evalu-
ting the continuous Fourier transform integral and the
imit, Gp can be expressed in terms of F��� as

Gp =
1

	N��
�

−�

� F��� � � 1

��
sinc� �

��
��

� � 1

N��
comb� �

N��
������ − p���d�. �A3�
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