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Noise histogram regularization for iterative image
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We derive a regularization term for iterative image reconstruction algorithms based on the histogram of the
residual difference between a forward-model image of a given object estimate and noisy image data. The term
can be used to constrain this residual histogram to be statistically equivalent to the expected noise histogram,
preventing overfitting of noise in a reconstruction. Reconstruction results from simulated imagery are pre-
sented for the cases of Gaussian and quantization noise. © 2007 Optical Society of America
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. INTRODUCTION
he typical image reconstruction problem can be stated
s follows. Let m� �1,2, . . . ,M� and n� �1,2, . . . ,N� be in-
eger sample indices on a two-dimensional Cartesian grid.
or a space-invariant optical system, the noisy image
�m ,n� of a spatially incoherent object f�m ,n� can be mod-
led as

g�m,n� = s�m,n� * f�m,n� + ��m,n�, �1�

here s�m ,n� is the point-spread function (PSF) of the op-
ical system, the * symbol represents a discrete two-
imensional convolution, and ��m ,n� represents a statis-
ically independent realization of additive noise at each
ample point. Given g�m ,n� and s�m ,n�, and statistical
nowledge of ��m ,n�, we wish to reconstruct an object es-
imate f̂�m ,n�.

It is well known that the image reconstruction problem
s ill posed, making regularization necessary to prevent
verfitting of noise by many reconstruction algorithms.
ere, we consider iterative reconstruction algorithms

hat use a nonlinear optimization routine, e.g., conjugate
radient, to find a reconstruction f̂�m ,n� that maximizes
r minimizes some metric, e.g., a likelihood metric. One
egularization approach is to stop iterating when some
onvergence criteria are met.1 Another approach is to in-
lude a term in the metric that prevents overfitting of
oise by incorporating a priori information about either

�m ,n� or ��m ,n�. The maximum entropy metric2 incorpo-
ates knowledge that f�m ,n� must be nonnegative and the
verage over all possible objects is uniformly gray. The
aximum residual likelihood metric3 incorporates knowl-

dge that ��m ,n� has no spatial structure.
Intuitively, the quality of f̂�m ,n� is expected to increase

s more a priori information about f�m ,n� and/or ��m ,n�
s included in the reconstruction algorithm. Here, we de-
ive a regularization term that incorporates a priori
nowledge of the histogram of �̂�m ,n�, the normalized re-
idual difference between a forward-model image of an
bject estimate and noisy image data given by
1084-7529/07/030608-10/$15.00 © 2
�̂�m,n� =
s�m,n� * f̂�m,n� − g�m,n�

��m,n�
, �2�

here ��m ,n� is the standard deviation of ��m ,n� at
ample �m ,n�. The regularization term provides a means
f quantifying the difference between the �̂�m ,n� histo-
ram and one expected from the statistics of ��m ,n�
��m ,n� /��m ,n�. Regularization can be achieved by us-

ng this noise histogram (NH) term to constrain the
ˆ �m ,n� histogram to be statistically equivalent to one ex-
ected from the noise statistics. This NH term differs
rom the “exact error fitting” statistic of Bryan and
killing,4 which also incorporates a priori knowledge of
he residual histogram, in that the NH term is based on
n orthonormal expansion of the probability density func-
ion (PDF) of ��m ,n�, whereas Bryan and Skilling’s met-
ic is based on the statistics of the sorted residuals. Also,
ryan and Skilling formulated their metric for Gaussian
oise, whereas the NH term is more generally applicable
o other types of noise.

Section 2 contains a review of PDF estimation using or-
hogonal expansions, upon which the NH term is based.
ection 3 gives the formulation of the NH regularization
erm. Section 4 contains reconstruction results from
imulated imagery for the cases of Gaussian and quanti-
ation noise. Conclusions are given in Section 5.

. PROBABILITY DENSITY FUNCTION
STIMATION
his section is a review of the technique of PDF estima-

ion using orthonormal expansions from Refs. 5 and 6
hat is needed for the derivation of the NH term in Sec-
ion 3. Given J independent realizations of a random vari-
ble, xj for j� �1,2, . . . ,J�, with an unknown PDF p�x�, we
ish to form an estimate p̂�x� of the PDF. When applied to

he image reconstruction problem, �xj� represents the nor-
alized residual �̂�m ,n�. For a set of appropriately cho-

en basis functions, �k�x� for k� �1,2, . . . ,K�, the true
DF can be expressed as the sum
007 Optical Society of America
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p�x� = �
k=1

K

ck�k�x�, �3�

here ck are expansion coefficients and �k�x� are basis
unctions that satisfy the orthonormality condition

�
−�

�

�k�x��l�x�dx = �k,l, �4�

here �k,l is the Kronecker delta function. The coefficients
k are given by

ck =�
−�

�

�k�x�p�x�dx = ��k�x��, �5�

here the angle brackets indicate an expectation value.
uppose we wish to find a PDF estimate of the same form
s Eq. (3), i.e.,

p̂�x� = �
k=1

K

ĉk�k�x�, �6�

here ĉk are the expansion coefficients for p̂�x�. Equation
5) suggests that the coefficients ĉk can be estimated from
xj� using the sample-mean formula, i.e.,

ĉk =
1

J�
j=1

J

�k�xj�. �7�

sing well known results from statistics, coefficients ĉk
alculated in this manner have mean values �k and vari-
nces �k

2 given by

�k 	 �ĉk� = ck, �8�

�k
2 	 �ĉk

2� − �ĉk�2 =
�ck

2� − ck
2

J
. �9�

he PDF for each ĉk is Gaussian with mean value ck and
tandard deviation �k by the central limit theorem, re-
ardless of the form of p�x� (assuming both ck and �k exist
nd are finite). Finally, the equations in this section are
alid for a general p�x�.

. REGULARIZATION TERM
n this section we use the results of Section 2 to formulate
he NH regularization term. Suppose that the PDF of
�m ,n�, the noise in an image at each pixel, has the same
istribution with the exception of a scaling of the stan-
ard deviation ��m ,n�. Then the normalized noise ��m ,n�
s equivalent to MN independent realizations of a unit-
ariance random variable having a PDF p�x�. By inspec-
ion of Eqs. (1) and (2), the normalized residual �̂�m ,n�
an be viewed as an estimate of ��m ,n�. As such, the his-
ogram of both quantities should be statistically equiva-
ent. If p�x� is known, and we have a suitable set of basis
unctions �k�x�, then the results of Section 2 can be used
o formulate an inequality that is satisfied when the two
istograms are statistically equivalent as

 ĉk − ck

�k

 � 	, ∀ k � �1,2, . . . ,K�, �10�

here each ĉk is calculated as

ĉk =
1

MN �
m=1

M

�
n=1

N

�k��̂�m,n��, �11�

k and �k are calculated numerically via Eqs. (5) and (9),
espectively, using J=MN, and 	 is a parameter. In prac-
ice, 	 is chosen to be the absolute value of the furthest
utlier that would be expected for a set of K independent
ealizations of a normally distributed random variable.
or example, 	=4 is a conservative value for K=50, since
he probability of Eq. (10) not being satisfied is given by

1 − �
−	

	 1

�2

exp�− x2

2 �dx�K

= 1 − erf� 	

�2
��K

= 0.32 % , �12�

here erf�x� is the error function.
The NH regularization term �NH�	� is formulated from

elations (10) as a penalty function7 of the form

�NH�	� = �
k=1

K

�� ĉk − ck

	�k
� , �13�

here ��x� is a smooth continuous function defined as

��x� = �
0 for �x� � 1

��x� − 1�2

2
for 1  �x� � 2

�x� − 3/2 for �x� � 2

. �14�

hus, �NH�	�=0 when Eqs. (10) are satisfied, and �NH�	�
rows increasingly large as these equations are violated.
e use this particular form of ��x� based on personal

reference for mixed L1–L2 metrics over plain L2 met-
ics, but other forms of ��x� are acceptable. In the case
here a reconstruction f̂�m ,n� is sought by minimizing

ome metric, regularization is achieved by adding �NH�	�
o the metric.

. SIMULATION EXAMPLES
his section compares reconstruction results from simu-

ated data using: (i) a Wiener-Helstrom filter8,9 and an it-
rative reconstruction algorithm (ii) unregularized, (iii)
egularized by stopping, and (iv) regularized by the NH
erm. The Wiener–Helstom reconstruction is given by

f̂�m,n� = w�m,n� * g�m,n�, �15�

here w�m ,n� is the Wiener-Helstrom filter kernel given
y the inverse discrete Fourier transform (DFT) of
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W�u,v� =
S*�u,v�

�S�u,v��2 + C
�noise�u,v�

�object�u,v�

, �16�

here �u ,v� are spatial frequency sample indices, S�u ,v�
s the DFT of s�m ,n�, C is a parameter that can be ad-
usted to trade off image sharpness and noise suppres-
ion, and �noise�u ,v� and �object�u ,v� are the power spec-
ra of ��m ,n� and f�m ,n�, respectively. In our
mplementation,9 �noise�u ,v�=�noise is assumed to be a
onstant and

�object�u,v� = ��2A2 for ��u,v� = 0

A2�−2� for ��u,v� � 0
, �17�

here ��u ,v� is the radial spatial frequency coordinate.
he parameters �noise, A, and � are determined from the
FT of the noisy image G�u ,v� by minimizing the follow-

ng cost function:

e = �
u=1

��u,v��0

M

�
v=1

N 1

��u,v�� �G�u,v��2

�S�u,v��2�object�u,v� + �noise

+ ln��S�u,v��2�object�u,v� + �noise�� . �18�

The iterative algorithm uses a conjugate-gradient rou-
ine to find a f̂�m ,n� that minimizes the normalized mean-
quare error metric �NMSE given by

�NMSE =
1

MN �
m=1

M

�
n=1

N

�̂2�m,n�. �19�

ince ��m ,n� is normalized to have unit variance, a recon-
truction that is consistent with the noise statistics will
esult in �NMSE�1. This suggests a regularization
cheme based on stopping the iterations as soon as
NMSE1. For regularization using the NH term, we

orm a new metric ��	 ,w� defined as

��	,�� = �NMSE + ��NH�	�, �20�

here � is a weighting parameter. Following the standard
mplementation of penalty functions,7 one would start an
lgorithm with a small � and gradually increase � until
he constraints are satisfied (within some tolerable error).
n the case where the metric and penalty function are
oth convex (with respect to the search parameters), it
ay be possible to simply use a predetermined, fixed

alue for �. However, it is easy to show that �NH�	� is
onconvex with respect to �̂�m ,n�. Thus, we take the ap-
roach of increasing � as iterations progress. In general,
he starting value for �, the prescription for increasing �,
nd the optimization routine employed affect the conver-
ence of an algorithm and therefore have a role in the
egularization of f̂�m ,n�. We suggest starting with a � suf-
ciently small to allow the algorithm to find a f̂�m ,n� that

s reasonably close to a f̂�m ,n� that would be obtained
ithout the penalty function. In the case where the pen-
lty function is nonconvex, starting with too large a � may
esult in a f̂�m ,n� that satisfies the constraints, but is far
rom a minimum of the unregularized metric. In the case
here the unregularized metric is convex, this ensures

hat the final f̂�m ,n� will be fairly close to the global mini-
um of the unregularized metric. While Ref. 7 suggests

ncreasing � by approximately a factor of 10 after the op-
imization algorithm has met convergence criteria for the
revious value of �, we take the approach of increasing �
y a more modest factor, say 2, after running a fixed num-
er of iterations, say 10 or 15, for the previous value of �.
his approach reduces the number of iterations per � by
liminating the need to meet convergence criteria for each
, which typically requires a significant number of itera-
ions that result in very little progress through the solu-
ion space. However, this approach requires a larger num-
er of � values to obtain a f̂�m ,n� that satisfies the
onstraints, since � is increased by a more modest factor.
t should be noted that increasing � by too large a factor
ay cause the algorithm to stray off in the solution space,

way from any minimum of the unregularized metric that
e tried to approach by starting with a sufficiently small
. An analytic expression for the gradient of ��	 ,w� with
espect to the f̂�m ,n� sample values is given in Appendix

ig. 1. Object f�m ,n� used for simulations: (a) whole 256�256
bject and (b) zoomed subsection shown for comparison with re-
onstruction results.
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. The simulations used the 256�256 object shown in
ig. 1(a) for f�m ,n�, and a Nyquist-sampled PSF, s�m ,n�,

or an optical system with a circular aperture having the
hase error shown in Fig. 2, which is a simulated phase
creen10 for atmospheric turbulence with D /r0=2. The re-
onstruction results are compared numerically using the
esulting values of �NMSE, �NH�	�, and the minimum nor-
alized root-mean-square (NRMS) error E defined by Eq.

13) of Ref. 11, which measures the difference between
�m ,n� and f�m ,n�. The following subsections contain re-
onstruction results for cases of Gaussian and quantiza-
ion noise.

Fig. 2. Pupil phase error in units of waves.

ig. 3. (a) Noisy image g�m ,n� of object shown in Fig. 2 with
aussian additive noise with �=2 (compared with mean image
alue of 50), and (b) the histogram of ��m ,n� and the ideal his-
ogram of a normally distributed random variable.
. Gaussian Noise
igure 3(a) shows the simulated noisy image g�m ,n�,
hich includes Gaussian noise having a standard devia-

ion �=1/�12 as compared with a mean value of 50 for
�m ,n�* f�m ,n�. This � was chosen to yield the same
ignal-to-noise ratio as the quantization noise case con-
idered in Subsection 4.B. Figure 3(b) shows the histo-
ram of ��m ,n� in comparison with the ideal histogram.
or Gaussian noise, the PDF of ��m ,n� is

p�x� = 1/�2
 exp�− x2/2�. �21�

s such, a natural choice for the orthogonal functions
k�x� are the Hermite–Gauss functions, i.e.,

Fig. 4. Plot of the first four basis functions �k�x�.

ig. 5. Wiener–Helstrom reconstruction for Gaussian noise: (a)
�m ,n�, (b) histogram of �̂�m ,n�.
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�k�x� = �kHk−1�x�exp�− x2/2�, �22�

here Hk�x� is the kth order Hermite polynomial as de-
ned in Ref. 12 and �k is a normalization constant. The
rst four �k�x� are shown in Fig. 4. For the case of regu-

arization by the NH term, �NH�	� was calculated using
=25 basis functions with 	=4. Iterations started with a
eighting parameter value of �=10−4, which was in-

reased by a factor of 2 after every 10 iterations. This ap-
roach of steadily increasing � allows the algorithm to
uickly find a reconstruction with a small �NMSE value
hile gradually increasing the effect of �NH�	� until the

onstraints in Eq. (10) are adequately satisfied. The start-
ng value of � and the number of iterations per � were
hosen to allow the algorithm to obtain a �NMSE�1
ithin the first 2–3 values of �.
Figures 5–8 show the various reconstructions and the

orresponding histograms of �̂�m ,n�, while Table 1 lists
he total number of iterations and the numerical values of

NMSE, �NH�	�, and E for the true object [calculated using
�m ,n�= f�m ,n�], g�m ,n�, and each reconstruction f̂�m ,n�.
ach reconstruction is displayed on the same gray scale
s Fig. 1(b). The Wiener–Helstrom reconstruction, shown
n Fig. 5(a), exhibits some high-spatial-frequency corre-
ated noise. This is because the Wiener-Helstrom recon-
truction is formed by boosting the spatial-frequency com-
onents of the noisy image to compensate for the optical
ransfer function of the system, while taking into account
he signal-to-noise ratio in the spatial-frequency domain.
n this process, higher spatial frequencies are boosted

ig. 6. Iterative reconstruction for Gaussian noise, unregular-
zed: (a) f̂�m ,n�, (b) histogram of �̂�m ,n�.
ore than low spatial frequencies, yielding high-spatial-
requency colored noise in the reconstruction. That the

iener–Helstrom reconstruction is inconsistent with the
oise statistics is evident from Fig. 5(b), which shows that
he �̂�m ,n� histogram is narrower than expected and by
ata from Table 1, which indicate that �NMSE=0.4783 is
ess than unity and �NH�	�=57.28 is relatively large.

A value of the Wiener–Helstrom filter parameter of C
1 typically yields the lowest reconstruction error E, but
alone is not the best indicator of overall image quality.
can be increased to reduce the amplitude of the colored

oise at the expense of the image sharpness, or C can be
educed to increase both image sharpness and the noise
mplitude. While Ref. 9 suggests that image analysts pre-
er a value of C=0.2 on average, we chose a value of 0.5 as
tradeoff between image sharpness and noise amplitude.
The unregularized iterative reconstruction shown in

ig. 6(a) exhibits excessive amounts of high-spatial-
requency noise because the algorithm tends to overfit the
oise, which results in a small value of �NMSE=0.3149,

arge values of �NH�	�=105.9 and E=0.1092, and a
ˆ �m ,n� histogram that is much narrower than expected.

hen regularized by stopping as soon as �NMSE1, the
econstruction, shown in Fig. 7(a), yields numerical val-
es of �NMSE=0.9980 and �NH�	�=2.078, and a �̂�m ,n�
istogram that are all consistent with the noise statistics,
s well as a reasonably low reconstruction error of E
0.0748, but the reconstruction is much less sharp than
ny of the other reconstructions. Stopping the algorithm
hen �NMSE�1 ensures that the resulting �̂�m ,n� will

ig. 7. Iterative reconstruction for Gaussian noise, regularized
y stopping when � 1: (a) f̂�m ,n�, (b) histogram of �̂�m ,n�.
NMSE
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ave the appropriate variance, but does not ensure that
ˆ �m ,n� will have the appropriate distribution. For rea-
ons we do not completely understand, the regularization
mposed by the conjugate gradient minimization routine
ends to yield a �̂�m ,n� with a Gaussian distribution (see
lso the reconstruction results for quantization noise).
Additionally, the use of conjugate gradient with �NMSE

ends to converge on the low spatial frequencies of f̂�m ,n�
ather quickly, but requires more iterations to converge
n the high spatial frequencies. Thus, while �̂�m ,n� is
onsistent with the expected noise histogram, the recon-
truction is not very sharp. Figure 8(a) shows the itera-
ive reconstruction regularized by �NH�	�, for which

NMSE=0.9190, �NH�	�=0.1369, the �̂�m ,n� histogram
re consistent with the noise statistics, and the recon-
truction error E=0.0683 is low. Comparing the Wiener–
elstrom and NH regularized iterative reconstructions

losely, with reference to f�m ,n� in Fig. 1, the NH-

Table 1. Reconstruction

Algorithm Regularization

rue object None
oisy Image None
iener–Helstrom Filter parameter C=0.5

NMSE None

NMSE Stopping when �NMSE1

NMSE ��NH�	�

aIdeal values for the metrics � and � �	� and the reconstruction error E

ig. 8. Iterative reconstruction for Gaussian noise, regularized
y �NH: (a) f̂�m ,n�, (b) histogram of �̂�m ,n�.
NMSE NH NM
egularized reconstruction appears slightly less sharp,
ut the amplitude of the colored noise appears consider-
bly smaller.
Figure 9 shows plots of the values of �NMSE, �NH�	�,

nd E as a function of the iteration number for the vari-
us reconstruction algorithms. Referring to Fig. 9(a), no-
ice that, without the �NH�	� regularization term, �NMSE
ecreases monotonically with each iteration, but with the
egularization term �NMSE eventually settles on a value
ear unity, which is consistent with the noise statistics.
eferring to Fig. 9(b), notice that E decreases rapidly
ith the first few iterations. Without the NH regulariza-

ion term, E reaches a minimum value at an iteration
hen �NMSE�1 (note that Table 1 indicates that �NMSE
ecreases below unity on iteration 17), but then increases
s the algorithm continues to fit noise with each iteration.
ith the NH regularization term, E does not increase ap-

reciably after reaching a minimum value. The Wiener–
elstrom filter has a computational advantage in that it
chieves a reconstruction error E equivalent to the mini-

lts for Gaussian Noise

tions �NMSE
a �NH�	�a Ea

0 0.9981 0 0
0 106.3 231.0 0.1547
0 0.4783 57.28 0.0666
0 0.3149 105.9 0.1092
7 0.9980 2.078 0.0748
0 0.9190 0.1369 0.0683

=1, � �	�=0, and E=0.

ig. 9. Minimum NRMS error in each reconstruction statistics
s a function of iteration number for Gaussian noise.
Resu

Itera

10
1

10

are �
 SE NH
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um value for the iterative algorithms with no iterations.
lternatively, an iterative algorithm has the ability to in-
lude additional information about the noise statistics or
bject and accurately model nonlinear aspects of an imag-
ng system.

. Quantization Noise
he quantization noise case is included to highlight cer-
ain aspects of the �NH�	� regularization term. To create
n image with quantization noise, a noiseless image of
�m ,n� was rounded to integer values. Figure 10 shows
he noisy quantized image along with a histogram of
�m ,n�, where �=1/�12. For quantization noise, the PDF
f ��m ,n� is

p�x� = �
1

�12
for �x� �

�12

2

0 for �x� �
�12

2

. �23�

lthough the functions in Eq. (22) may not be the most
fficient for expanding p�x� in a series of the form of Eq.
3), they can be used to evaluate the NH regularization
erm. Figures 11–14 show reconstruction results using
ach algorithm, Table 2 lists numerical details for the
rue object and each reconstruction, and Fig. 15 is a graph
f the metric values and reconstruction error versus itera-
ion number for each algorithm. The iterative algorithm
egularized by the NH term (using K=25 basis functions

ig. 10. (a) Noisy image g�m ,n� of object shown in Fig. 2 quan-
ized to integer values ��=1/�12�, (b) histogram of ��m ,n� and
he ideal histogram for a uniform distribution.
nd 	=4) started with a weighting parameter value of �
10−4, which was increased by a factor of 2 after every 15

terations. While these reconstruction results are very
imilar to the reconstruction results obtained for Gauss-
an noise, there are some important differences. In Figs.
1–13 notice that each of the �̂�m ,n� histograms basically
as a Gaussian shape. The histogram in Fig. 13(b) is es-
ecially interesting, because regularization of the itera-
ive algorithm by stopping the iterations as soon as

NMSE1 results in a �̂�m ,n� with the appropriate vari-
nce having a Gaussian-like distribution, which appears
o be the result of regularization imposed by the minimi-
ation routine, as mentioned earlier. In comparison, no-
ice that the �̂�m ,n� histogram for the NH-regularized re-
onstruction, shown in Fig. 14(b), agrees well with the
deal histogram expected from the noise statistics. This is

result of the fact that �NH�	� incorporates information
bout the higher-order moments of �̂�m ,n� through the
k�x� functions and the ck coefficients. The Gibb’s ringing
rtifacts in the �̂�m ,n� in Fig. 14(b) are due to the fact
hat the discontinuous PDF in Eq. (23) cannot be com-
letely described by an expansion using the continuous
unctions in Eq. (22).

. CONCLUSIONS
e have derived a regularization term for image recon-

truction that penalizes reconstructions for which the re-
idual histogram is statistically inconsistent with that ex-
ected from the noise statistics. Simulation results

ig. 11. Wiener–Helstrom reconstruction for quantization
oise: (a) f̂�m ,n�, (b) histogram of �̂�m ,n�.
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emonstrate regularization for both Gaussian and quan-
ization noise cases. In general, the regularization term
an accommodate any zero-mean noise source for which
he noise PDF at each image pixel is the same except for a
caling of the standard deviation. Thus, the method can
andle the case of photon noise only in the limit that the
ossion distribution for the noise at each pixel can be
odeled as a Gaussian distribution, which is a reasonable

pproximation when the minimum single-pixel photon
ount for an image is on the order of 20 or more photons
see Appendix A). This approach avoids the problems with
onregularized algorithms of overfitting the noise and not
nowing when to stop the iterations. While we only dis-
ussed image reconstruction with a known system PSF,
he regularization term is directly applicable to the prob-
em of jointly estimating the PSF and the object.

PPENDIX A
his appendix contains an analytic expression for the par-
ial derivatives of the ��	 ,�� with respect to the sample
alues of a reconstruction f̂�m ,n�. First, the following
efinitions are used to simplify notation

ĝ�m,n� = s�m,n� * f̂�m,n�

= �
m =1

M

�
n =1

N

s�m − m�,n − n��f̂�m�,n��, �A1�

ig. 12. Iterative reconstruction for quantization noise, unregu-
arized: (a) f̂�m ,n�, (b) histogram of �̂�m ,n�.
� �
�k��x� =
d�k�x�

dx
, �A2�

���x� =
d��x�

dx
. �A3�

ifferentiating Eq. (20), we can write

���	,��

� f̂�m,n�
=

��NMSE

� f̂�m,n�
+ �

��NH�	�

� f̂�m,n�
. �A4�

hrough repeated application of the chain rule of differ-
ntiation and Eqs. (2), (11), (13), (19), and (A1)–(A3), one
an show that

��NMSE

� f̂�m,n�
=

2

MN �
m�=1

M

�
n�=1

N

�̂�m�,n��
��̂�m�,n��

� f̂�m,n�

=
2

MN �
m�=1

M

�
n�=1

N �̂�m�,n��

��m�,n��

�ĝ�m�,n��

� f̂�m,n�

=
2

MN �
m�=1

M

�
n�=1

N �̂�m�,n��

��m�,n��
s�m� − m,n� − n�,

�A5�

ig. 13. Iterative reconstruction for quantization noise, regular-
zed by stopping when �NMSE1: (a) f̂�m ,n�, (b) histogram of
ˆ �m ,n�.
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��NH�	�

� f̂�m,n�
= �

k=1

K 1

	�k
��� ĉk − ck

	�k
� � ĉk

� f̂�m,n�

=
1

MN �
m�=1

N

�
n�=1

N

�
k=1

K 1

	�k
��� ĉk − ck

	�k
�

��k���̂�m�,n���
��̂�m�,n��

� f̂�m,n�

=
1

MN �
m�=1

N

�
n�=1

N

�
k=1

K 1

	�k
��� ĉk − ck

	�k
�

��k���̂�m�,n���
1

��m�,n��

�ĝ�m�,n��

� f̂�m,n�

Table 2. Reconstruction R

Algorithm Regularization

rue Object None
oisy Image None
iener–Helstrom Filter parameter C=0.5

NMSE None

NMSE Stopping when �NMSE1

NMSE ��NH�	�

aIdeal values for the metrics � and � �	� and the reconstruction error E

ig. 14. Iterative reconstruction for quantization noise, regular-
zed by �NH: (a) f̂�m ,n�, (b) histogram of �̂�m ,n�.
NMSE NH NM
=
1

MN �
m�=1

N

�
n�=1

N

�
k=1

K 1

	�k
��� ĉk − ck

	�k
�

��k���̂�m�,n���
1

��m�,n��
s�m� − m,n� − n�.

�A6�

or the case of photon noise, the noise standard deviation
�m ,n� is signal dependent and can be estimated by

�̂�m,n� = �ĝ�m,n�, �A7�

n which case

�̂�m,n� =
ĝ�m,n� − g�m,n�

�̂�m,n�
, �A8�

s for Quantization Noise

tions �NMSE
a �NH

a Ea

0 1.0014 0 0
0 106.4 230.7 0.1547
0 0.4487 168.1 0.0677
0 0.2968 207.8 0.1093
7 0.9841 98.08 0.0751
0 0.9761 0.0532 0.0743

=1, � �	�=0, and E=0.

ig. 15. Minimum NRMS error in each reconstruction statistics
s a function of iteration number for quantization noise.
esult

Itera

10
1

15

are �
 SE NH
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��̂�m,n�

�ĝ�m,n�
=

1

�̂�m,n�1 −
�̂�m,n�

2�̂�m,n�� , �A9�

��NH�	�

� f̂�m,n�
=

1

MN �
m�=1

N

�
n�=1

N

�
k=1

K 1

	�k
��� ĉk − ck

	�k
��k���̂�m�,n���

�
1

�̂�m�,n��1 −
�̂�m�,n��

2�̂�m�,n���s�m� − m,n� − n�,

�A10�

nd

��NMSE

� f̂�m,n�
=

2

MN �
m�=1

M

�
n�=1

N �̂�m�,n��

�̂�m,n� 1 −
�̂�m,n�

2�̂�m,n��
�s�m� − m,n� − n�. �A11�
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