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We derive a regularization term for iterative image reconstruction algorithms based on the histogram of the
residual difference between a forward-model image of a given object estimate and noisy image data. The term
can be used to constrain this residual histogram to be statistically equivalent to the expected noise histogram,
preventing overfitting of noise in a reconstruction. Reconstruction results from simulated imagery are pre-
sented for the cases of Gaussian and quantization noise. © 2007 Optical Society of America
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1. INTRODUCTION

The typical image reconstruction problem can be stated
as follows. Let m{1,2,...,M}and n e{1,2,...,N} be in-
teger sample indices on a two-dimensional Cartesian grid.
For a space-invariant optical system, the noisy image
g(m,n) of a spatially incoherent object f(m ,n) can be mod-
eled as

g(m,n) =s(m,n) * f(m,n) + e(m,n), (1)

where s(m,n) is the point-spread function (PSF) of the op-
tical system, the * symbol represents a discrete two-
dimensional convolution, and e(m ,n) represents a statis-
tically independent realization of additive noise at each
sample point. Given g(m,n) and s(m,n), and statistical
knowledge of e(m ,n), we wish to reconstruct an object es-
timate f(m ).

It is well known that the image reconstruction problem
is ill posed, making regularization necessary to prevent
overfitting of noise by many reconstruction algorithms.
Here, we consider iterative reconstruction algorithms
that use a nonlinear optimization routine, e.g., conjugate

gradient, to find a reconstruction ]A”(m,n) that maximizes
or minimizes some metric, e.g., a likelihood metric. One
regularization approach is to stop iterating when some
convergence criteria are met.! Another approach is to in-
clude a term in the metric that prevents overfitting of
noise by incorporating a priori information about either
f(m,n) or e(m,n). The maximum entropy metric? incorpo-
rates knowledge that f(m ,n) must be nonnegative and the
average over all possible objects is uniformly gray. The
maximum residual likelihood metric® incorporates knowl-
edge that €(m,n) has no spatial structure.

Intuitively, the quality of f(m,n) is expected to increase
as more a priori information about f(m,n) and/or e(m,n)
is included in the reconstruction algorithm. Here, we de-
rive a regularization term that incorporates a priori
knowledge of the histogram of y(m ,n), the normalized re-
sidual difference between a forward-model image of an
object estimate and noisy image data given by
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s(m,n) * fim,n) - g(m,n)

X(m,n) = p— ; 2

where o(m,n) is the standard deviation of e(m,n) at
sample (m,n). The regularization term provides a means
of quantifying the difference between the y(m,n) histo-
gram and one expected from the statistics of y(m,n)
=e(m,n)/o(m,n). Regularization can be achieved by us-
ing this noise histogram (NH) term to constrain the
x(m,n) histogram to be statistically equivalent to one ex-
pected from the noise statistics. This NH term differs
from the “exact error fitting” statistic of Bryan and
Skilling,* which also incorporates a priori knowledge of
the residual histogram, in that the NH term is based on
an orthonormal expansion of the probability density func-
tion (PDF) of x(m,n), whereas Bryan and Skilling’s met-
ric is based on the statistics of the sorted residuals. Also,
Bryan and Skilling formulated their metric for Gaussian
noise, whereas the NH term is more generally applicable
to other types of noise.

Section 2 contains a review of PDF estimation using or-
thogonal expansions, upon which the NH term is based.
Section 3 gives the formulation of the NH regularization
term. Section 4 contains reconstruction results from
simulated imagery for the cases of Gaussian and quanti-
zation noise. Conclusions are given in Section 5.

2. PROBABILITY DENSITY FUNCTION
ESTIMATION

This section is a review of the technique of PDF estima-
tion using orthonormal expansions from Refs. 5 and 6
that is needed for the derivation of the NH term in Sec-
tion 3. Given J independent realizations of a random vari-
able, x; for j e {1,2,...,J}, with an unknown PDF p(x), we
wish to form an estimate p(x) of the PDF. When applied to
the image reconstruction problem, {x;} represents the nor-
malized residual y(m,n). For a set of appropriately cho-
sen basis functions, #,(x) for ke{1,2,...,K}, the true
PDF can be expressed as the sum
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K
) =, cpilplx), (3)
k=1

where ¢, are expansion coefficients and ¢,(x) are basis
functions that satisfy the orthonormality condition

f () iy (x)dx = 8, 4, (4)

where g, ; is the Kronecker delta function. The coefficients
¢}, are given by

Ch =f P (x)p(x)dx = (¢ (x)), (5)

where the angle brackets indicate an expectation value.
Suppose we wish to find a PDF estimate of the same form
as Eq. (3), i.e.,

K

px) =D, ), (6)
k=1

where ¢, are the expansion coefficients for p(x). Equation
(5) suggests that the coefficients ¢, can be estimated from
{x;} using the sample-mean formula, i.e.,

==, ACHE (7

J=1

S|

Using well known results from statistics, coefficients ¢,
calculated in this manner have mean values u; and vari-
ances o’,% given by

e = (Cp) =y, (8)

(D) —cp

J

TR =D - (2= (9)

The PDF for each ¢, is Gaussian with mean value ¢;, and
standard deviation o, by the central limit theorem, re-
gardless of the form of p(x) (assuming both ¢;, and o}, exist
and are finite). Finally, the equations in this section are
valid for a general p(x).

3. REGULARIZATION TERM

In this section we use the results of Section 2 to formulate
the NH regularization term. Suppose that the PDF of
e(m,n), the noise in an image at each pixel, has the same
distribution with the exception of a scaling of the stan-
dard deviation o(m,n). Then the normalized noise x(m,n)
is equivalent to MN independent realizations of a unit-
variance random variable having a PDF p(x). By inspec-
tion of Eqgs. (1) and (2), the normalized residual y(m,n)
can be viewed as an estimate of y(m,n). As such, the his-
togram of both quantities should be statistically equiva-
lent. If p(x) is known, and we have a suitable set of basis
functions ¢ (x), then the results of Section 2 can be used
to formulate an inequality that is satisfied when the two
histograms are statistically equivalent as
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cr—ca

=«x, Vkell2, .. K], (10)

Ok
where each ¢, is calculated as
1

M N
MNE > wlkim,n)l, (11)

m= =1

k=

—
S

¢;, and oy, are calculated numerically via Eqgs. (5) and (9),
respectively, using J=MN, and « is a parameter. In prac-
tice, x is chosen to be the absolute value of the furthest
outlier that would be expected for a set of K independent
realizations of a normally distributed random variable.
For example, k=4 is a conservative value for K=50, since
the probability of Eq. (10) not being satisfied is given by

ko1 _x2 K
1- ——exp| — |dx
U\% p( 2) ]
K K
=1-|erfl = =0.32% , (12)
V2

where erf(x) is the error function.
The NH regularization term ®yy(«) is formulated from
relations (10) as a penalty function’ of the form

LEESS qs(ck_ck) (13)

KOy,

where ¢(x) is a smooth continuous function defined as

0 for |x| =1
(|Jx[ - 1)?

&(x) = — for 1 <l|x|=2, (14)
x| - 8/2 for |x| > 2

Thus, ®yp(x)=0 when Egs. (10) are satisfied, and ®yp(x)
grows increasingly large as these equations are violated.
We use this particular form of ¢(x) based on personal
preference for mixed L1-L2 metrics over plain L2 met-
rics, but other forms of ¢(x) are acceptable. In the case

where a reconstruction f(m,n) is sought by minimizing
some metric, regularization is achieved by adding ®yy(«)
to the metric.

4. SIMULATION EXAMPLES

This section compares reconstruction results from simu-
lated data using: (i) a Wiener-Helstrom filter®® and an it-
erative reconstruction algorithm (ii) unregularized, (iii)
regularized by stopping, and (iv) regularized by the NH
term. The Wiener—Helstom reconstruction is given by

fim,n) = w(m,n) * g(m,n), (15)

where w(m,n) is the Wiener-Helstrom filter kernel given
by the inverse discrete Fourier transform (DFT) of
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S*(u,v)
cI)noise(u,v) ’

q)object(u,v)

W(u,v) =

(16)
S, v)*+C

where (u,v) are spatial frequency sample indices, S(u,v)
is the DFT of s(m,n), C is a parameter that can be ad-
justed to trade off image sharpness and noise suppres-
sion, and ®,,;5(u,v) and P,y (u,v) are the power spec-
tra of e(m,n) and f(m,n), respectively. In our
implementation,? ®,,;.,(u,0)=®,,is is assumed to be a
constant and

V242 for p(u,v) =0

, 17
A%p72«  for p(u,v) # 0 an

cDobject(u ’ U) =

where p(u,v) is the radial spatial frequency coordinate.
The parameters ®@,,;s, A, and a are determined from the
DFT of the noisy image G(u,v) by minimizing the follow-
ing cost function:

% % 1 G0

e =

u=1l =1 p(u, U) |S(uyv)|2q)object(u7v) + q)noise
p(u,v)#0
+ 1n[|S(u,U)|2(Dabject(uav) + (I)noise] . (18)

The iterative algorithm uses a conjugate-gradient rou-

tine to find a f(m ,n) that minimizes the normalized mean-
square error metric Pyysg given by

1 M N
DnmsE = WE >, (m,n). (19)

m=1n=1

Since x(m,n) is normalized to have unit variance, a recon-
struction that is consistent with the noise statistics will
result in dyysg=1. This suggests a regularization
scheme based on stopping the iterations as soon as
dyvse<1. For regularization using the NH term, we
form a new metric ®(«,w) defined as

D(x,\) = Pyygg + APyp(K), (20)

where \ is a weighting parameter. Following the standard
implementation of penalty functions,” one would start an
algorithm with a small A and gradually increase A until
the constraints are satisfied (within some tolerable error).
In the case where the metric and penalty function are
both convex (with respect to the search parameters), it
may be possible to simply use a predetermined, fixed
value for . However, it is easy to show that ®yp(x) is
nonconvex with respect to y(m,n). Thus, we take the ap-
proach of increasing \ as iterations progress. In general,
the starting value for \, the prescription for increasing \,
and the optimization routine employed affect the conver-
gence of an algorithm and therefore have a role in the

regularization of flm,n). We suggest starting with a \ suf-
ficiently small to allow the algorithm to find a }A‘(m ,n) that

is reasonably close to a ]A”(m,n) that would be obtained
without the penalty function. In the case where the pen-
alty function is nonconvex, starting with too large a A may

result in a f'(m ,n) that satisfies the constraints, but is far
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from a minimum of the unregularized metric. In the case
where the unregularized metric is convex, this ensures

that the final f(m ,n) will be fairly close to the global mini-
mum of the unregularized metric. While Ref. 7 suggests
increasing \ by approximately a factor of 10 after the op-
timization algorithm has met convergence criteria for the
previous value of \, we take the approach of increasing \
by a more modest factor, say 2, after running a fixed num-
ber of iterations, say 10 or 15, for the previous value of \.
This approach reduces the number of iterations per A by
eliminating the need to meet convergence criteria for each
\, which typically requires a significant number of itera-
tions that result in very little progress through the solu-
tion space. However, this approach requires a larger num-

ber of N values to obtain a f(m ,n) that satisfies the
constraints, since \ is increased by a more modest factor.
It should be noted that increasing \ by too large a factor
may cause the algorithm to stray off in the solution space,
away from any minimum of the unregularized metric that
we tried to approach by starting with a sufficiently small
\. An analytic expression for the gradient of ®(«,w) with

respect to the f(m,n) sample values is given in Appendix

Fig. 1. Object f(m,n) used for simulations: (a) whole 256 X 256
object and (b) zoomed subsection shown for comparison with re-
construction results.
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Fig. 2. Pupil phase error in units of waves.
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Fig. 3. (a) Noisy image g(m,n) of object shown in Fig. 2 with
Gaussian additive noise with =2 (compared with mean image
value of 50), and (b) the histogram of y(m,n) and the ideal his-
togram of a normally distributed random variable.

A. The simulations used the 256 X 256 object shown in
Fig. 1(a) for f{(m,n), and a Nyquist-sampled PSF, s(m,n),
for an optical system with a circular aperture having the
phase error shown in Fig. 2, which is a simulated phase
screen’® for atmospheric turbulence with D/ry=2. The re-
construction results are compared numerically using the
resulting values of ®yyse, Pyp(x), and the minimum nor-
malized root-mean-square (NRMS) error E defined by Eq.
(13) of Ref. 11, which measures the difference between
f(m,n) and f(m,n). The following subsections contain re-
construction results for cases of Gaussian and quantiza-
tion noise.
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A. Gaussian Noise

Figure 3(a) shows the simulated noisy image g(m,n),
which includes Gaussian noise having a standard devia-
tion o= 1/\@ as compared with a mean value of 50 for
s(m,n)*f(m,n). This o was chosen to yield the same
signal-to-noise ratio as the quantization noise case con-
sidered in Subsection 4.B. Figure 3(b) shows the histo-
gram of y(m,n) in comparison with the ideal histogram.
For Gaussian noise, the PDF of x(m,n) is

px) =1/\27 exp(- x%/2). (21)

As such, a natural choice for the orthogonal functions
Jr,(x) are the Hermite—Gauss functions, i.e.,
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(b)
Fig. 5. Wiener—Helstrom reconstruction for Gaussian noise: (a)

fim,n), (b) histogram of ¥(m,n).
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(b)
Fig. 6. Iterative reconstruction for Gaussian noise, unregular-

ized: (a) f(m,n), (b) histogram of y(m,n).

(%) = aHy_y (x)exp(= x7/2), (22)

where H,(x) is the kth order Hermite polynomial as de-
fined in Ref. 12 and «; is a normalization constant. The
first four ¢,(x) are shown in Fig. 4. For the case of regu-
larization by the NH term, ®yy(«) was calculated using
K =25 basis functions with x=4. Iterations started with a
weighting parameter value of A=10"%, which was in-
creased by a factor of 2 after every 10 iterations. This ap-
proach of steadily increasing N\ allows the algorithm to
quickly find a reconstruction with a small ®yysg value
while gradually increasing the effect of ®yp(x) until the
constraints in Eq. (10) are adequately satisfied. The start-
ing value of A and the number of iterations per \ were
chosen to allow the algorithm to obtain a Pyysg=1
within the first 2-3 values of \.

Figures 5-8 show the various reconstructions and the
corresponding histograms of x(m,n), while Table 1 lists
the total number of iterations and the numerical values of
dyyses Prrlk), and E for the true object [calculated using
f(m,n) =f(m,n)], g(m,n), and each reconstruction f(m,n).
Each reconstruction is displayed on the same gray scale
as Fig. 1(b). The Wiener—Helstrom reconstruction, shown
in Fig. 5(a), exhibits some high-spatial-frequency corre-
lated noise. This is because the Wiener-Helstrom recon-
struction is formed by boosting the spatial-frequency com-
ponents of the noisy image to compensate for the optical
transfer function of the system, while taking into account
the signal-to-noise ratio in the spatial-frequency domain.
In this process, higher spatial frequencies are boosted
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more than low spatial frequencies, yielding high-spatial-
frequency colored noise in the reconstruction. That the
Wiener-Helstrom reconstruction is inconsistent with the
noise statistics is evident from Fig. 5(b), which shows that
the y(m,n) histogram is narrower than expected and by
data from Table 1, which indicate that ®yysg=0.4783 is
less than unity and ®yp(x)=57.28 is relatively large.

A value of the Wiener—Helstrom filter parameter of C
=1 typically yields the lowest reconstruction error E, but
E alone is not the best indicator of overall image quality.
C can be increased to reduce the amplitude of the colored
noise at the expense of the image sharpness, or C can be
reduced to increase both image sharpness and the noise
amplitude. While Ref. 9 suggests that image analysts pre-
fer a value of C=0.2 on average, we chose a value of 0.5 as
a tradeoff between image sharpness and noise amplitude.

The unregularized iterative reconstruction shown in
Fig. 6(a) exhibits excessive amounts of high-spatial-
frequency noise because the algorithm tends to overfit the
noise, which results in a small value of ®ypgp=0.3149,
large values of ®yp(x)=105.9 and E=0.1092, and a
x(m,n) histogram that is much narrower than expected.
When regularized by stopping as soon as ®yysg<1, the
reconstruction, shown in Fig. 7(a), yields numerical val-
ues of Oyyge=0.9980 and Pyp(x)=2.078, and a x(m,n)
histogram that are all consistent with the noise statistics,
as well as a reasonably low reconstruction error of E
=0.0748, but the reconstruction is much less sharp than
any of the other reconstructions. Stopping the algorithm
when ®yysg=1 ensures that the resulting y(m,n) will

(=}

6 -4 -2 0 2 4 6

(b)
Fig. 7. Iterative reconstruction for Gaussian noise, regularized
by stopping when ®yysp<1: (a) f(m,n), (b) histogram of x(m,n).
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have the appropriate variance, but does not ensure that
x(m,n) will have the appropriate distribution. For rea-
sons we do not completely understand, the regularization
imposed by the conjugate gradient minimization routine
tends to yield a y(m,n) with a Gaussian distribution (see
also the reconstruction results for quantization noise).
Additionally, the use of conjugate gradient with ®xusk

tends to converge on the low spatial frequencies of ]A“(m,n)
rather quickly, but requires more iterations to converge
on the high spatial frequencies. Thus, while x(m,n) is
consistent with the expected noise histogram, the recon-
struction is not very sharp. Figure 8(a) shows the itera-
tive reconstruction regularized by ®Pyp(k), for which
Dyvse=0.9190, Pyp(x)=0.1369, the x(m,n) histogram
are consistent with the noise statistics, and the recon-
struction error E=0.0683 is low. Comparing the Wiener—
Helstrom and NH regularized iterative reconstructions
closely, with reference to f(m,n) in Fig. 1, the NH-
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regularized reconstruction appears slightly less sharp,
but the amplitude of the colored noise appears consider-
ably smaller.

Figure 9 shows plots of the values of ®xysp, Pyu(x),
and E as a function of the iteration number for the vari-
ous reconstruction algorithms. Referring to Fig. 9(a), no-
tice that, without the ®yy(k) regularization term, ®yysg
decreases monotonically with each iteration, but with the
regularization term Pyysg eventually settles on a value
near unity, which is consistent with the noise statistics.
Referring to Fig. 9(b), notice that E decreases rapidly
with the first few iterations. Without the NH regulariza-
tion term, E reaches a minimum value at an iteration
when ®yygg~1 (note that Table 1 indicates that ®yusk
decreases below unity on iteration 17), but then increases
as the algorithm continues to fit noise with each iteration.
With the NH regularization term, E does not increase ap-
preciably after reaching a minimum value. The Wiener—
Helstrom filter has a computational advantage in that it
achieves a reconstruction error E equivalent to the mini-

. .
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Fig. 8.

(b)

2 4 6

Iterative reconstruction for Gaussian noise, regularized
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by ®xp: (@) fm,n), (b) histogram of (m,n).

Table 1. Reconstruction Results for Gaussian Noise

as a function of iteration number for Gaussian noise.

Algorithm Regularization Iterations Pyuse” D) E®
True object None 0 0.9981 0 0
Noisy Image None 0 106.3 231.0 0.1547
Wiener—Helstrom Filter parameter C=0.5 0 0.4783 57.28 0.0666
Dyyse None 100 0.3149 105.9 0.1092
PnysE NDyp(x) 100 0.9190 0.1369 0.0683

“Ideal values for the metrics ®yysg and Pyy(k) and the reconstruction error E are @ yysp=1, Pnu(x)=0, and E=0.
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Fig. 10. (a) Noisy image g(m,n) of object shown in Fig. 2 quan-
tized to integer values (o=1/y12), (b) histogram of x(m,n) and
the ideal histogram for a uniform distribution.

mum value for the iterative algorithms with no iterations.
Alternatively, an iterative algorithm has the ability to in-
clude additional information about the noise statistics or
object and accurately model nonlinear aspects of an imag-
ing system.

B. Quantization Noise

The quantization noise case is included to highlight cer-
tain aspects of the ®dyy(k) regularization term. To create
an image with quantization noise, a noiseless image of
f(m,n) was rounded to integer values. Figure 10 shows
the noisy quantized image along with a histogram of
x(m,n), where o=1/ \/ﬁ. For quantization noise, the PDF
of x(m,n) is

1 V12

—  for |x|=—
2

0 for |x| > —

plx) = (23)

ﬁ‘m
Do

[N}

Although the functions in Eq. (22) may not be the most
efficient for expanding p(x) in a series of the form of Eq.
(3), they can be used to evaluate the NH regularization
term. Figures 11-14 show reconstruction results using
each algorithm, Table 2 lists numerical details for the
true object and each reconstruction, and Fig. 15 is a graph
of the metric values and reconstruction error versus itera-
tion number for each algorithm. The iterative algorithm
regularized by the NH term (using K=25 basis functions
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and k=4) started with a weighting parameter value of A
=104, which was increased by a factor of 2 after every 15
iterations. While these reconstruction results are very
similar to the reconstruction results obtained for Gauss-
ian noise, there are some important differences. In Figs.
11-13 notice that each of the y(m,n) histograms basically
has a Gaussian shape. The histogram in Fig. 13(b) is es-
pecially interesting, because regularization of the itera-
tive algorithm by stopping the iterations as soon as
dyyvse <1 results in a y(m,n) with the appropriate vari-
ance having a Gaussian-like distribution, which appears
to be the result of regularization imposed by the minimi-
zation routine, as mentioned earlier. In comparison, no-
tice that the y(m,n) histogram for the NH-regularized re-
construction, shown in Fig. 14(b), agrees well with the
ideal histogram expected from the noise statistics. This is
a result of the fact that ®yp(x) incorporates information
about the higher-order moments of y(m,n) through the
i, (x) functions and the ¢;, coefficients. The Gibb’s ringing
artifacts in the y(m,n) in Fig. 14(b) are due to the fact
that the discontinuous PDF in Eq. (23) cannot be com-
pletely described by an expansion using the continuous
functions in Eq. (22).

5. CONCLUSIONS

We have derived a regularization term for image recon-
struction that penalizes reconstructions for which the re-
sidual histogram is statistically inconsistent with that ex-
pected from the noise statistics. Simulation results

Histogram

-6 =4, 4 6

(b)
Wiener—Helstrom reconstruction for quantization

Fig. 11.
noise: (a) f(m,n), (b) histogram of y(m,n).
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(b)
Fig. 12. Iterative reconstruction for quantization noise, unregu-

larized: (a) ?(m,n), (b) histogram of y(m,n).

demonstrate regularization for both Gaussian and quan-
tization noise cases. In general, the regularization term
can accommodate any zero-mean noise source for which
the noise PDF at each image pixel is the same except for a
scaling of the standard deviation. Thus, the method can
handle the case of photon noise only in the limit that the
Possion distribution for the noise at each pixel can be
modeled as a Gaussian distribution, which is a reasonable
approximation when the minimum single-pixel photon
count for an image is on the order of 20 or more photons
(see Appendix A). This approach avoids the problems with
nonregularized algorithms of overfitting the noise and not
knowing when to stop the iterations. While we only dis-
cussed image reconstruction with a known system PSF,
the regularization term is directly applicable to the prob-
lem of jointly estimating the PSF and the object.

APPENDIX A

This appendix contains an analytic expression for the par-
tial derivatives of the ®(«,\) with respect to the sample

values of a reconstruction ,:“(m,n). First, the following
definitions are used to simplify notation

&(m,n) = s(m,n) * flm,n)
M N

= 2 E s(m—m’,n—n’)f(m’,n’), (A1)

m'=1n'=1
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) = 2 (a2)
l//k X)= dx )
=22 (A3)
@' (x) = F
Differentiating Eq. (20), we can write
aD(k,\) 9D IPNp(k)
K _ NMSE+)\ NH\K . (Ad)

(?f’(m,n) B 0f(m,n) é’]A‘(m,n)

Through repeated application of the chain rule of differ-
entiation and Egs. (2), (11), (13), (19), and (A1)—(A3), one
can show that

bxwse 2 L L okmn)
A—=m2 > xm'n)———
dflm,n) m'=1n'=1 dfm,n)

x(m',n')9g(m',n’")

2

2

M m'=1n'=1 o'(m’,n’) af(m’n)
2
MN “

X(m',n’)

o(m’,n’)

s(m'—=m,n’ —n),

(A5)

Histogram

S

-6 4 4 6

(b)
Fig. 13. Iterative reconstruction for quantization noise, regular-

ized by stopping when ®ynysp<1: (a) fm,n), (b) histogram of
X(m,n).
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Pyu() § [ Cr— Ck) ey,
oftm,n) k1 “or | aftm,n)
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m'=1n'=1k=1 KOk KO
. ax(m’ ")
Xplx(m',n")]———
dflm,n)
1 N N K 1 ék —Cp
== 22—
MN “~ 7 k=1 KOy KOy,
- 1 dag(m’',n")
Xiplx(m',n")]————
alm',n") ofm,n)
2500 X(m.n) |
— — —Ideal
§ 2000
=
& 1500
T 1000
500
0 : . :
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(b)
Fig. 14. TIterative reconstruction for quantization noise, regular-

ized by Oy () f(m,n), (b) histogram of y(m,n).
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1 NN K .
=N D 22—
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) 1
Xip[x(m',n")] — n,)s(m’ —m,n' -n).

o(m,n)=\g(m,n),

in which case

g(m,n
x(m,n) =

’ )_g(man)

o(m,n)

. D
L)
- O

NMSE

NMSE

\MSE for Wiener-Helstrom

w/o Regularization

w/ Regularization

0 50 100
Iteration Number
(a)
. Wiener-Helstrom
(DNMSE w/o Regularization ]
[—— ) w/ Regularization

NMSE

Iteration
(b}

Table 2. Reconstruction Results for Quantization Noise

Number

(A6)

For the case of photon noise, the noise standard deviation
o(m,n) is signal dependent and can be estimated by

(AT)

(A8)

Fig. 15. Minimum NRMS error in each reconstruction statistics
as a function of iteration number for quantization noise.

Algorithm Regularization Iterations Davse” Ddyy” E°
True Object None 0 1.0014 0 0
Noisy Image None 0 106.4 230.7 0.1547
Wiener—Helstrom Filter parameter C=0.5 0 0.4487 168.1 0.0677
Dyyse None 100 0.2968 207.8 0.1093
Prymse NDyp(x) 150 0.9761 0.0532 0.0743

“Ideal values for the metrics ®yysg and Pyy(k) and the reconstruction error E are @ yysp=1, Pnu(x)=0, and E=0.
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axmmn) 1 { &(m,m}
= 1- ) (Ag)

dg(m,n) N o(m,n) 26(m,n)

&(DNH(K) 1 N N K 1 ék_ck Jea
== 2 > Yilxim',n")]
oftm,n)  MN 2, k1 KO\ KOy
1 x(m',n’)
X 1- s(m'-=m,n’ —n),
o(m’,n') 2a6(m’',n')

(A10)

and

a<1>NMSE_i§ % 5«<m',n'>{1_ S((m,n)l

Fomm) MN, T tmm) [ 260m.n)

Xs(m' -m,n’ —n). (A11)

ACKNOWLEDGMENTS

This work was supported by Lockheed Martin Corpora-
tion. Photo credits for the image used in the simulations
go to Ryan T. DeRosa.

Corresponding author Samuel T. Thurman’s e-mail ad-
dress is thurman@optics.rochester.edu.

Vol. 24, No. 3/March 2007/J. Opt. Soc. Am. A 617

REFERENCES

1.

10.

11.

12.

H. J. Trussell, “Convergence criteria for iterative
restoration methods,” IEEE Trans. Acoust., Speech, Signal
Process. ASSP-31, 129-136 (1983).

B. R. Frieden, Probability, Statistical Optics, and Data
Testing: a Problem Solving Approach (Springer, 2001), pp.
285-286.

R. K. Pina and R. C. Puetter, “Incorporation of spatial
information in Bayesian image reconstruction: the
maximum residual likelihood criterion,” Publ. Astron. Soc.
Pac. 104, 1096-1103 (1992).

R. K. Bryan and J. Skilling, “Deconvolution by maximum
entropy, as illustrated by application to the jet of M87,”
Mon. Not. R. Astron. Soc. 191, 69-79 (1980).

N. N. Cencov, “Evaluation of an unknown distribution
density from observations,” Sov. Math. Dokl. 3, 1559-1562
(1962).

B. R. Frieden, Probability, Statistical Optics, and Data
Testing: a Problem Solving Approach (Springer, 2001), pp.
277-305.

D. M. Ryan, “Penalty and barrier functions,” in Numerical
Methods for Constrained Optimization, P. E. Gill and W.
Murray, eds. (Academic, 1974), pp. 175-190.

C. W. Helstrom, “Image restoration by the method of least
squares,” J. Opt. Soc. Am. 57, 297-303 (1967).

J. R. Fienup, D. Griffith, L. Harrington, A. M. Kowalczyk,
J. J. Miller, and J. A. Mooney, “Comparison of
reconstruction algorithms for images from sparse-aperture
systems,” in Image Reconstruction from Incomplete Data 11,
P. J. Bones, M. A. Fiddy, and R. P. Millane, eds., Proc. SPIE
4792, 1-8 (2002).

N. Roddier, “Atmospheric wavefront simulation using
Zernike polynomials,” Opt. Eng. (Bellingham) 29,
1174-1180 (1990).

J. R. Fienup, “Invariant error metrics for image
reconstruction,” Appl. Opt. 36, 8352-8357 (1997).

G. E. Andrews, R. Askey, and R. Roy, Special Functions
(Cambridge, 1999), Sec. 6.1, pp. 278-282.



