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The ability to retrieve the complex-valued, generalized pupil function of an imaging system from under-
sampled measurements of the defocused system point spread function (PSF) is examined through numerical
simulations. The ability to do so degrades as the detector pixel pitch increases when using a fixed number of
PSF measurements. Two strategies for obtaining better results with undersampled data are demonstrated us-
ing additional PSF measurements with (i) random shifts due to system pointing fluctuations and (ii) interme-
diate amounts of defocus. © 2009 Optical Society of America
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1. INTRODUCTION

Complex pupil retrieval is the method of estimating the
generalized pupil function P(¢,7) (both amplitude and
phase) of an imaging system from diverse measurements
of the system point spread function (PSF) s(x,y,d) [1-5].
When defocus is used for the diversity, these two quanti-
ties are related by [6]
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where (¢, 7) are pupil coordinates, (x,y) are transverse
spatial coordinates, \ is the wavelength of light, f is the
system focal length, D is the encircled pupil diameter, and
d is the amount of peak-to-valley defocus across the pupil
of the system in units of wavelengths. The in-focus image
plane location corresponds to d=0. In complex pupil re-
trieval, P(£,7) is estimated from measurements of
s(x,y,d;) made in a number of defocus planes indexed by
ke{1,2,...,K}. One approach for doing this is to use an
iterative nonlinear optimization algorithm to find the
P(&, ) that minimizes/maximizes a data consistency met-
ric, which quantifies the agreement between the com-
puted PSFs and the corresponding measured PSF data.

Let g, Tepresent the measured PSF data, which is
related to s(x,y,d;) by

8mnk = gm,n,k + f f S(x —Xky _yk’dk)

Xhq(nAx —x,mAy —y)dxdy, (2)
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where {,,, , ; is noise, h4(x,y) is the detector-pixel impulse
response function, Ax is the detector pixel pitch, and
me{-N/2,(2-N)/2,...,(N-2)/2} and ne{-N/2,(2
-N)/2,...,(N-2)/2} are detector-pixel indices for even N.
In practice, misregistrations (xj,y,) can originate from
line-of-sight pointing fluctuations or misalignment of the
defocusing mechanism, assumed here to be constant dur-
ing any one exposure. The 2D discrete Fourier transform
(DFT) of g, 15
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(3)

can be written in terms of continuous Fourier transforms
as [7]
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where Z,, , , is the 2D DFT of ¢, ,, z, S(u,v,d}) is the OTF
for the kth PSF, Hy(u,v) is the 2D continuous Fourier
transform of hg4(x,y), sinc(x)=sin(mx)/(mx), Au=1/(NAx),
and the summations over « and B account for aliasing.
The sinc functions in Eq. (4) account for the finite extent
of the measurements along the x and y dimensions. As
long as the measured PSFs fit well within the area of the
detector array, it is reasonable to approximate these sinc
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functions as Dirac delta functions such that Eq. (4) can be
written as

1
f—_
NAx?

x> > Slp - aN)Au,(q - BN)Au,d}]

a=—o0 f=—x

Grak=Zpgr

—i12mAu
Xexp T[fck(p - aN) +3(q - BN)]

XHq[(p - aN)Au, (g - BN)Au]. (5)

The Nyquist criterion [8,9] for adequately sampling
s(x,y,d) is Ax<1/B, where B is the bandwidth of
s(x,y,d) along one dimension, i.e., B=2f;,, where f
=D/(\)) is the diffraction-limited cutoff spatial frequency
for intensity detection. When the Nyquist criterion is sat-
isfied, only the a=B8=0 summation terms contribute to
Gpqp» for p and qe{-N/2,(2-N)/2,...,(N-2)/2}, and
Eq. (5) reduces to an unaliased version of the continuous
Fourier transform, i.e.,

1
Gp,q,k = Zp,q,k + WS@AuanU,dk)
—-i12mAu . .
Xexp T(xkp +91q) |Ha(pAu,qAu). (6)

When the Nyquist condition is not satisfied, G, ;. is cor-
rupted by aliasing artifacts. Many imaging systems oper-
ate in this regime for reasons explained in [10]. Thus,
when using complex pupil retrieval to characterize as-
built imaging systems, one is likely to encounter aliasing.

This paper considers the effect that aliasing has on the
ability to reconstruct P(¢, 7). Section 2 describes a pupil
retrieval algorithm that accounts for undersampling. Sec-
tion 3 presents numerical simulation results that illus-
trate how algorithm performance degrades with under-
sampling when wusing a fixed number of PSF
measurements in a baseline scenario. Section 4 describes
two approaches for improving algorithm performance
with undersampled data by making additional PSF mea-
surements with (i) random misregistrations (xj,y;) or (ii)
intermediate defocus amounts z,. By intermediate defo-
cus amounts, we mean system defocus settings between
those used in the baseline scenario. While other multi-
plexing schemes are possible, we considered these two be-
cause they do not require additional hardware, as the
misregistrations and intermediate defocus amounts can
be realized by changes in the system pointing or focus, re-
spectively. Section 5 is a summary. The algorithm pre-
sented here differs from that of [1] by accounting for the
effects of finite-size pixels and undersampling in the Fou-
rier domain instead of the spatial domain. Furthermore,
the performance limits of both phase and pupil retrieval
are explored for different amounts of undersampling.
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2. PUPIL RETRIEVAL ALGORITHM

A. Data Consistency Metric

Given a particular estimate of the complex pupil function
ﬁ(&, 1), the corresponding PSFs $(x,y,d,) can be com-

puted through Eq. (1), replacing P(¢, ) with i)(g, 7), using
fast Fourier transforms (FFTs) to compute DFT quanti-
ties as

1 (N-2)/2 (N-2)/2
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where Ny=N and Ax;<Ax is a finer PSF sample spacing
that satisfies the Nyquist sampling criterion and NAx
=NAx;. With estimated misregistrations (%,y;), the re-
sulting PSF estimate g,, ,, ; is given by the inverse DFT

1 N-2/2 (N-2)/2 9
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where, allowing for aliasing,
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and S’(pfAu,quu,dk) is computed as the 2D FFT of
$(meAx,nAx,d}). To avoid aliasing artifacts, these compu-
tations require $(x,y,d;) to be sampled at or above the
Nyquist rate, Axy<1/B (which will be finer than the ac-
tual detector-pixel pitch Ax for undersampled measure-
ments), with Ny samples along the xand y directions. To
obtain S(u,v,dk) samples at the appropriate spacing for
use in Eq. (9), the quantities Ax; and N need to satisfy
NiAx;=NAx. In practice, the @« and B8 summations can be

computed with finite limits, since S(u,v,d}) is nonzero

only over a region of width B in the Fourier domain.
The complex pupil retrieval algorithm used here em-

ploys a nonlinear optimization algorithm to iteratively

search for a complex pupil function estimate P(¢,7) that
results in a g, , ; that best matches the measured data
&m.nk The algorithm also jointly estimates the misregis-
trations (xX;,y,). Here, the normalized mean squared error
(NMSE) ® between g,, , » and g,, ,, . is used as a data con-
sistency metric [11]:
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where w,, ,, ;, is a window function that can be used to ig-
nore bad pixels. This equation accounts for arbitrary scal-
ing constants between &, ,; and g, , for each k. The
NMSE can be interpreted as the squared relative RMS er-
ror between 8, , » and g, , 1, i.e., ®=0.01 is equivalent to
a 10% RMS error between &, , , and g, , 1. A conjugate-
gradient routine was used for the optimization algorithm
to obtain the pupil retrieval results shown later.

B. Gradient Expressions
The conjugate-gradient routine requires the gradient of
the objective function with respect to the solution space

E wm’,n’,kgm’,n’,kém’,n’,k
oD 2 (m' ")

N-2)/2 (N-2)/2 ) (10)
2 E wm,n,kgrzn,n,k:||: 2 2 wm,n,kggn,n,ki|

m=-N/2 n=—N/2

variables, i.e., the gradient components /¢ Re[p(g, 7],

éKI)/é’Im[P(g, )], 0®/d%;, and oP/3y;,. Alternatively, we
could optimize over the amplitude and phase values of

13(5, 7 [1,2,5,12]. Efficient analytic computation of the
gradient makes this approach computationally feasible.
The derivation of the gradient equations is straightfor-
ward but lengthy. Since other papers contain these details
for similar algorithms [1,4,5,12], only the steps related to
the undersampling are shown here. Taking the partial de-
rivative of Eq. (10) with respect to the sample values

&mon e yields

E wm’,n’,kgm’,n’,kgm’,n’,k

(m',n")

98 K 2 52
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where compressed notation has been used for the double summations over all the samples m’ and n’. Using the chain rule

and Eq. (6), the partial derivatives with respect to the real and imaginary parts of the Fourier-domain samples Gu,v,k can
be written as

I I 1 W-22 (N-2)/2 %
GI P = - +1 - =— ~ exp{ (mp+nq):|. (12)
P Re(Ggp)  Am(Gyyy) N miNeniNz B N

Note that this expression is valid for |p| and |q|=N/2 by the periodicity of the DFT. Using the chain rule again with Eq.
(9) gives the desired partial derivative with respect to x:
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Likewise, the partial derivative with respect to y, is
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Applying the chain rule again and using Eq. (9) yields

e P oD
S"(peAu,qiAu,dy) = +1
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. 12mAu

JRe[S(peAu,qiAu,dy)]

Expressions for d®/dRe[P(&, 7)] and @/ Im[P(¢, 7)] can
be obtained by repeated use of the chain rule with the

specific equations used to compute S(f,, fy»2p) from P(¢, 7).
The details of doing this are contained elsewhere
[1,4,5,12].

3. NUMERICAL SIMULATIONS

A. System Model

Numerical simulations were used to examine the perfor-
mance of the pupil retrieval algorithm as the PSF sam-
pling changes. A model of the James Webb Space Tele-
scope (JWST) [13] was used as the optical system for the
simulations. Table 1 lists the basic system parameters.
The primary mirror is made up of 18 hexagonal segments.
The gaps between segments can be seen in the amplitude
of the pupil function for the telescope, shown in Fig. 1(a).
The secondary mirror support struts are also visible in
Fig. 1(a). The phase of the telescope pupil function is pro-
portional to the wavefront aberration function. The wave-
front aberration function used for the simulations is
shown in Fig. 1(b). These aberrations are composed of
random segment figure errors and segment piston, tip,
and tilt misalignments.

In practice, the focal plane of the main telescope assem-
bly is reimaged through various instruments in the sci-
ence package. Suppose the telescope or one such instru-
ment has a pupil mask (conjugate to the primary mirror
of the telescope) to help suppress stray light. Figure 2(a)
shows an example of such a mask that has the same over-
all shape as the primary mirror but is slightly larger to
allow for small misalignments. The net system pupil func-
tion is then the product of the (demagnified) pupil of the

Table 1. Numerical Simulation Parameters

Parameter Value
Encircled diameter of primary mirror, D 6.69 m
Focal length, f 131.4 m

F-number 19.6

Wavelength, \ 2.12 pm
PSF sample spacing, Ax; 19.8 um
Detector pixel pitch, Ax 19.8 to 104.1 um
Detector sampling ratio, @ 0.4 to 2.1
Detector read noise (standard deviation) 5 photons

Average number of photons per PSF 107 photons

measurement

Peak-to-valley defocus for PSF -1\ to +1N
measurements

PSF misregistrations, (x;,y;) 5Ax

(standard deviation)

JIm[S (pAu,qAu,dy,)]

= Gpqqph OXP & k(P — o) +34(q - BN)] ¢ X Hyl(p

(15)

[
primary mirror and the pupil mask. For the simulations,
suppose there is a substantial misalignment of the pupil
mask, as indicated by Fig. 2(b). Figure 2(c) shows the re-
sulting amplitude of the pupil function P(¢,7) for the
overall system. Figure 2(d) shows the wavefront error for
the overall system. The peak-to-valley wavefront error is
0.78\, and the RMS wavefront error is 0.12\. In the ab-
sence of other diagnostic instruments, a complex pupil re-
trieval algorithm can be used to reconstruct P(¢, ) from
PSF measurements to provide knowledge of the misalign-
ment of the pupil mask and the combined aberrations of
the system.

(a) (b)

Fig. 1. (Color online) (a) Pupil function amplitude and (b) wave-
front aberration function (in units of wavelengths) for the
segmented-aperture telescope in the simulations.

(a)

©
Fig. 2. (Color online) (a) Pupil mask used in conjunction with
the segmented aperture of Fig. 1, (b) overlay of (gray curve) the
segmented aperture and (black curve) the misaligned pupil

mask, and the net system (c) pupil function amplitude and (b)
wavefront aberration function.

(d)
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(@ (b)
©

Fig. 3. Simulated PSF measurements for d,=-1\ of defocus
and (a) Ax=20.8 um, (b) Ax=41.6 um, and (c) Ax=69.4 um. The
corresponding detector sampling ratios for (a), (b), and (c) are
Q=2.0, 1.0, and 0.6.

PSF measurements were simulated by computing PSFs
corresponding to the pupil function shown in Fig. 2 for de-
focus amounts d;,={-1,0,1}\ peak-to-valley of wavefront
defocus across the full width of the primary mirror.
Larger amounts of defocus are optimal for phase retrieval
[14], but this smaller defocus was used to make the prob-
lem more challenging. The PSFs were then simulated ac-
cording to Eqgs. (7)—(9) and corrupted by noise to yield the
PSF measurements g,, , ;. The detector pixel impulse re-
sponse was hg(x,y)=rect(x/Ax)rect(y/Ax), where rect(x)
=1 for |x|<1/2 and=0 otherwise. The noise £, ,, was a
combination of zero-mean Poisson-distributed shot noise
and Gaussian-distributed read noise. The shot noise sta-
tistics were based on the average total number of photons
per PSF measurement plane of 107 photons. Each PSF
measurement was shifted by a random misregistration
(x1,yr). Figure 3 shows simulated PSF measurements at
various detector pixel pitch values. Notice that as Ax in-
creases there are fewer samples across the bright portion
of each PSF and the fine scale details of the PSF are lost.

B. Complex Pupil Retrieval Results
For each value of the detector pixel pitch Ax, a pupil func-

tion estimate 13(5,7;) was obtained from the simulated

S. T. Thurman and J. R. Fienup

Fig. 4. Initial pupil function estimate used for the retrieval
algorithm.

PSF measurements g,, ,; using the complex pupil re-
trieval algorithm described in Subsection 2.A. The algo-
rithm also jointly estimated the PSF misregistrations
(%5,7¥3). The initial estimate used for the amplitude of
P(g, 7) is shown in Fig. 4, while the centroid of each PSF
was used for the initial estimates of the (%,,73)s. A
conjugate-gradient optimization routine was used to it-
eratively search for a 13(5 ,77) that minimized the data con-
sistency metric ®. On each iteration, the conjugate-
gradient algorithm would update f’(g, 7) based on the
gradient components ob/ ﬁRe[lA’(f , ] and
ob/ &Im[ﬁ(g, 7)]. Additionally, knowledge of the pupil
function extent was incorporated into the algorithm by
multiplying these gradient components by a window func-

tion W(¢&, ) that is equal to unity for p<0.5D, zero for p
=0.525D, and

W(& 7) = cos¥0.57(p — 0.5D)/(0.025D)], (16)

for 0.5D<p<0.525D, where p=\&+7%. This W(£,7) is

equal to the initial estimate for f)(f, 7) shown in Fig. 4.
This approach does not allow the algorithm to update

P(¢, ) for pupil samples where W(¢, 7)=0, which ensures
that the pupil estimate will have approximately the cor-
rect width. Results were obtained by running the algo-
rithm for 2,000 and 10,000 iterations.

Two metrics were used to quantify the performance of
the complex pupil retrieval algorithm: (i) the normalized

(RMS) error E of P(f, 7), and (ii)) (RMS) error o of

arg[ls(g , )] for samples within the support of the true pu-
pil function. The first metric is computed as

2 |c expligy + it (& - &) +it (- 1) 1P(&~ &, 1~ mp) - P(&, n)?

(&m)

E?= min
(C#o,tg,tﬂ,fo,"]o)

; 17

> 1P n)?

(&n)
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where ¢, ¢, t; t,, &, and 7y are parameters that account
for an arbitrary multiplicative scaling factor; piston, tip,
and tilt phase terms; and horizontal and vertical transla-

tions, respectively, in ﬁ’(&, n) [11]. E is interpreted as the
relative error for the retrieved pupil function; i.e., E

=0.15 corresponds to a relative error of 15% in P(&, 7).
The summations in Eq. (17) are over all of the (&, %) pupil
plane samples. The second metric is computed as

expligg +ityé+ it,m]f’(f— &0, 1= 1)
P(¢,7) ’
(18)

1
0'2=]72 arg2

X(&mex

where the summation includes pupil plane samples only
within the set y={(&, ):|P(¢, )|>0.05} and N, is the num-

ber of samples in y. For reference, a 13(5, 7) with a com-
pletely random phase error uniformly distributed over
[-, 7] would yield o=m/\3=0.29\.

Figure 5 shows how F' and o varied with the detector
pixel pitch Ax or the sampling ratio @ =\f/DAx. Phase re-
trieval results obtained using knowledge of the true pupil
amplitude are also shown for comparison. These plots
clearly indicate the degradation of the estimated pupil
quantities associated with undersampling. For complex
pupil retrieval, the quality of the estimated phase was

Pixel Pitch Ax [um]

1100 60 40 30 25 20
—6— 2,000 iterations
- 0.8 -==%--=- 10,000 iterations
5 ———— Phase Retrieval
LE 0.6
2
ks 0.4
&
021 D
ol— . . .
0.5 1 1.5 2
Sampling Ratio Q
(a)
Pixel Pitch Ax [um]
100 60 40 30 25 20
§ 0.15
<
2
©
g 0.1
=
m
2
<
= 0.05
%)
2
ol— . . .
0.5 1 1.5 2
Sampling Ratio Q
(b)

Fig. 5. Complex pupil retrieval results for the baseline scenario
using three PSF measurements versus the detector sampling ra-
tio after (open circles) 2,000 iterations and (x’s) 10,000 iterations.
Phase retrieval results are also shown for comparison.
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better than \/20 RMS down to about @=1. Figure 6
shows images of the retrieved pupil amplitude and phase
(across the true aperture) at different values of @. For
®@=2, the results were excellent. For @=1, the retrieved
amplitude had the correct coarse features but appears
rather noisy; nevertheless, the retrieved phase was quite
good. The results were poor for @=0.6. For phase re-
trieval (assuming the pupil amplitude is known), on the
other hand, the retrieved phase was better than \/20
RMS for values of @ down to almost 0.6.

Among the factors that contribute to the drop in perfor-
mance with increasing Ax (decreasing @), two interdepen-
dent effects of are particular interest. First, there are
fewer measurement samples across the bright portion of
the PSF as Ax increases, as illustrated in Fig. 3. This
makes the inverse problem more difficult, as there are
fewer samples from which to retrieve the same number of
pupil samples. Second, aliasing artifacts lead to ambigu-
ities in the data. Once the fine spatial details of the PSF
are aliased to lower spatial frequencies, it is not always
possible to sort out the coarse and fine details of the true
PSF from the data. Because the amount of aliasing in-
creases as the number of samples decreases, these effects
are not separable for the scenario considered here. Sec-
tion 4 demonstrates two strategies that address these is-
sues to improve complex pupil retrieval performance at
smaller values of @.

Fig. 6. (Color online) Retrieved (left column) pupil amplitude
and (right column) wavefront aberration functions for (top row)
®@=2.0, (middle row) @=1.0, and (bottom row) @=0.6 for the
baseline scenario using three PSF measurements.
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4. IMPROVED PERFORMANCE

A. Random Misregistrations

The generalized sampling theorem [15] states that a
band-limited signal can be reconstructed from a set of
aliased measurements (i.e., that do not satisfy the Ny-
quist sampling criterion), provided that (i) there are
enough measurement sets and (ii) the sample locations
for the various measurement sets are nonredundant. This
theorem is the basis of multiframe detector superresolu-
tion algorithms that process a number of aliased images
of the same scene to yield a single dealiased image with
enhanced spatial resolution [16]. The same principle can
be used to overcome problems with aliasing for pupil re-
trieval by recording multiple PSF measurements with
random misregistrations (x;,y;) at each defocus setting.
Figure 7 shows the complex pupil retrieval results ob-
tained using four PSF measurements at each defocus set-
ting as before for a total of K=12 PSF measurements (all
of the other simulation parameters were the same as for
the results shown in Fig. 5). This corresponds to using
random pointing fluctuations of the system to acquire ad-
ditional PSF measurements with nonredundant sam-
pling. As expected, the quality of the estimated pupil
quantities was improved at smaller values of @ in com-
parison with Fig. 5. Using the extra PSF measurements
enabled the pupil phase to be estimated with A/20 RMS
error down to @=0.7. Figure 8 shows example images of
the retrieved pupil amplitude and phase for @ =2, 1, and
0.6. In this case, the results for @=1 appear almost as

Pixel Pitch Ax [um]

1100 60 40 30 25 20
—6— 2,000 iterations
- 0.8§ -=-=%--- 10,000 iterations
‘g‘ ———— Phase Retrieval
m
o
B
=
Q
(=2
ol— . . .
0.5 1 1.5 2
Sampling Ratio O
(a)
Pixel Pitch Ax [um]
100 60 40 30 25 20
§ 0.15
<
2
©
g 0.l
=)
23]
2
<
£ 0.05
%)
2
0
0.5 1 1.5 2
Sampling Ratio O
(b)

Fig. 7. Same as Fig. 5 except for the scenario using 12 PSF mea-
surements (4 measurements with random pointing fluctuations
at each of 3 defocus settings).

S. T. Thurman and J. R. Fienup

Fig. 8. (Color online) Retrieved (right column) pupil amplitude
and (left column) wavefront aberration functions for (top row)
®Q=2.0, (middle row) @=1.0, and (bottom row) @=0.6 using 12
PSF measurements (4 measurements with random pointing fluc-
tuations at each of 3 defocus settings).

good as the results obtained for @=2 using only three
PSF measurements (see Fig. 6). Ideally, one would expect
these results to be equivalent based on the generalized
sampling theorem, but there is an additional signal-to-
noise ratio penalty associated with the detector transfer
function Hy(u,v) at higher spatial frequencies for aliased
data. The results for @ =0.6 shown in Fig. 8 are about
equivalent to the results obtained for @=1 using fewer
PSFs shown in Fig. 6. The results of phase retrieval ben-
efited as well, although not by as much.

B. Intermediate Defocus Values

Another strategy for improving the performance of the
pupil retrieval algorithm is to make additional PSF mea-
surements at intermediate defocus settings with no mis-
registrations. While the generalized sampling theorem is
not directly applicable to this scenario, the additional
measurements contain nonredundant information (due to
intermediate defocus amounts) that should mitigate
aliasing effects. Figure 9 shows the complex pupil
retrieval results obtained from a set of K=12 PSF
measurements with defocus values of {+1/6,
+1/3,+1/2,+2/3,+5/6,+1} \ peak-to-valley across the
full width of the primary. The algorithm used knowledge
that the misregistrations were zero, and the misregistra-
tion parameters were not optimized. These results are
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Pixel Pitch Ax [um]
11 00 60 40 30 25 20

—6— 2,000 iterations

& --=%--- 10,000 iterations
g ———— Phase Retrieval
m
o
K=
=
Q
7
D
ol— . . .
0.5 1 1.5 2
Sampling Ratio O
(a)
Pixel Pitch Ax [um]
100 60 40 30 25 20
§ 0.15
<
2
o q
8 01 "
=
m
2
<
£ 0.05
%)
2
O 1 1 1 1
0.5 1 1.5 2
Sampling Ratio O
(b)

Fig. 9. Same as Fig. 5 except for scenario using 12 PSF mea-
surements at intermediate defocus values with no
misregistrations.

comparable to the random misregistration case and are
better than the case of using three PSF measurements at
only three defocus settings.

The fact that the defocus results are practically equiva-
lent to the misregistration case suggests that the gener-
alized sampling theorem is more widely applicable to
measurement scenarios involving nonlinear transforma-
tions. By this we mean that it appears to be possible to
reconstruct a bandlimited signal from aliased measure-
ments, provided that there are a sufficient number of non-
redundant measurements, even if the measurements in-
volve nonlinear operations. A proof of this is beyond the
scope of this paper.

5. SUMMARY

Complex pupil retrieval can be used to estimate the
complex-valued pupil function (amplitude and phase) of
an imaging system from PSF measurements made in
various defocus planes. For a fixed number of PSF mea-
surements, the quality of the retrieved pupil amplitude
and phase deteriorates as the detector pixel pitch in-

Vol. 26, No. 12/December 2009/J. Opt. Soc. Am. A 2647

creases and the detector sampling ratio @ decreases. Two
contributing factors were noted in this regard. First,
there are fewer measurement samples across the bright
portion of the PSF for larger pixels and, thus, less data to
use for retrieving the pupil function. Second, aliasing ar-
tifacts can introduce ambiguities in the data. Two strate-
gies were demonstrated for improving the pupil retrieval
results by collecting additional PSF data with either (i)
misregistrations produced by random pointing fluctua-
tions or (ii) intermediate amounts of defocus (or both).
Each of these methods substantially improved the recon-
structions. Another approach, not considered here, is to
incorporate additional knowledge about the pupil func-
tion into the pupil retrieval algorithm [5].
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