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Amplitude metrics for field retrieval with
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In field retrieval, the amplitude and phase of the generalized pupil function for an optical system are estimated
from multiple defocused measurements of the system point-spread function. A baseline field reconstruction al-
gorithm optimizing a data consistency metric is described. Additionally, two metrics specifically designed to
incorporate a priori knowledge about pupil amplitude for hard-edged and uniformly illuminated aperture sys-
tems are given. Experimental results demonstrate the benefit of using these amplitude metrics in addition to
the baseline metric. © 2009 Optical Society of America
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. INTRODUCTION
n wavefront sensing by phase retrieval, the phase of the
eneralized pupil function for an optical system is esti-
ated from a measurement of the system point-spread

unction (PSF) and knowledge of the pupil amplitude
1,2]. For special aperture shapes, both the pupil ampli-
ude and phase can be retrieved from one PSF measure-
ent and full [3] or partial [4] knowledge of the aperture

hape. In phase-diverse phase retrieval, multiple PSF
easurements with diverse amounts of defocus (or an-

ther known phase function) are used to avoid algorithm
onvergence problems associated with local minima and
mprove the fidelity of the retrieved phase [5–7].

Although it is computationally intensive, phase re-
rieval has a number of practical advantages over other
avefront sensing techniques. Interferometric methods

equire either a reference wavefront or an autocollimation
at having the same dimensions as the system entrance
upil, while phase retrieval does not. Shack–Hartman
avefront sensors cannot work with discontinuous wave-

ronts from segmented- or sparse-aperture telescopes,
hile phase retrieval can. Because of these and other con-

iderations, phase retrieval is the planned approach for
avefront sensing on the James Webb Space Telescope

8]. Additionally, multiple PSF measurements can be used
o jointly estimate both the pupil phase and amplitude
9–14]. Here, this approach is referred to as field re-
rieval. In conventional phase diversity (PD), multiple
ocus-diverse images of an extended, incoherent object are
sed to jointly reconstruct the object and estimate the pu-
il phase [5]. Like field retrieval, however, PD can be used
o additionally estimate the pupil amplitude [15,16].

There are a number of scenarios in which knowledge of
he pupil amplitude may be incomplete, requiring some
evel of pupil amplitude estimation. In [4], the orientation
f obscuring secondary-mirror support struts and
rimary-mirror mounting pads and the location of the re-
ay lens obscurations for the Hubble Space Telescope were
1084-7529/09/030700-10/$15.00 © 2
etermined from one PSF measurement and an initial
uess of an annular aperture for the pupil amplitude.
hen the pupil amplitude was unknown because of scin-

illation caused by imaging through atmospheric turbu-
ence, higher-quality pupil phase estimates from PD were
btained by simultaneously estimating the pupil ampli-
ude in [15]. In [14,16], computer simulations were used
o investigate the use of field retrieval in determining the
late scale and the pupil geometry of sparse-aperture op-
ical systems. The thesis of this paper is that the quality
f pupil amplitude estimates from field retrieval can be
mproved through the use of amplitude metrics that in-
orporate a priori knowledge about hard-edged or uni-
ormly illuminated apertures.

In Section 2, a baseline field retrieval algorithm is de-
cribed. In Section 3, two amplitude metrics designed to
ncorporate a priori knowledge for hard-edged and uni-
ormly illuminated pupils are proposed as enhancements
o the baseline algorithm. Section 4 describes an experi-
ent in which PSF measurements were made for an op-

ical system with various pupil masks. In Section 5, field
etrieval results obtained from these measurements are
resented. These results demonstrate the benefits of us-
ng the amplitude metrics. Section 6 is a summary. Ap-
endix A contains equations useful for implementing this
eld retrieval approach.

. BASELINE ALGORITHM
n this section, a physical model for the PSF measure-
ents as a function of the pupil amplitude and phase, the

efocus distances, and the transverse detector shifts is
utlined. Also, a data consistency metric based on the nor-
alized mean-squared error between the physical model

nd the actual measurements is formulated. Additionally,
sieve method for regularizing a baseline algorithm

ased on optimization of the data consistency metric is
escribed.
009 Optical Society of America
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. Physical Model
ur physical model is based on the 4F system shown in
ig. 1. Given estimates for the amplitude Â�m ,n� and the
hase �̂�m ,n� for a generalized pupil function, the optical
eld in the pupil plane can be written as

Êp�m,n� = Â�m,n�exp�i�̂�m,n��, �1�

here m� �−M /2 , �2−M� /2 , . . . , �M−2� /2� and n
�−N /2 , �2−N� /2 , . . . , �N−2� /2� are pupil plane sample

ndices, and M and N are the number of samples along
he two Cartesian directions. Nonnegativity and normal-
zation of the pupil amplitude are ensured by parameter-
zing Â�m ,n� in terms of a dummy function B̂�m ,n�:

Â�m,n� =
MN�B̂�m,n��

�
�m�,n��

�B̂�m�,n���
. �2�

The optical field in the nominal focal plane Êf�p ,q� is
iven by the discrete Fourier transform (DFT) of Êp�m ,n�,
.e.,

Êf�p,q� = DFT�Êp� =
1

	MN
�

�m,n�
Êp�m,n�

�exp
− i2��mp

M
+

nq

N � , �3�

here p� �−M /2 , �2−M� /2 , . . . , �M−2� /2� and q
�−N /2 , �2−N� /2 , . . . , �N−2� /2� are focal plane sample

ndices. Equation (3) is a discrete approximation of the
tandard Fourier transform-based equation for propaga-
ion between the pupil and the focal plane of a 4F optical
ystem [17]. The focal plane sample spacings �p and �q
re chosen to be equal to the detector pixel pitch �d, i.e.,
p=�q=�d. Thus, the pupil plane sample spacings are
iven by �m=1/ �M�p�=1/ �M�d� and �n=1/ �N�q�
1/ �N�d� in units of spatial frequency and �f�m and �f�n

n units of physical length, where � is the optical wave-
ength and f is the lens focal length.

An angular spectrum propagator can be used to propa-
ate Êf�p ,q� from the back focal plane of the final lens to
he various defocus measurement planes. Ûf�m ,n�, the
ngular spectrum of Êf�p ,q�, is given by

Ûf�m,n� =
1

	MN
�
�p,q�

Êf�p,q�exp
− i2��pm

M
+

qn

N � .

�4�

he angular spectrum propagated to the kth defocus/
easurement plane Ûk�m ,n� is given by

Lens LensPupil Mask
Point
Source

CCD

f fff zk

Fig. 1. Diagram of 4F system used for experiment.
Ûk�m,n� = Ûf�m,n�exp�i2�ẑk	 1

�2 − m2�m
2 − n2�n

2� ,

�5�

here ẑk is the distance between the nominal focal plane
nd the kth defocus plane, and phase constants are ig-
ored. The optical field in the kth defocus plane is given
y Êk�p ,q�=IDFT�Ûk�. The computed intensity in the kth
efocus plane is given by

Îk�p,q� = �Êk�p,q��2. �6�

The detector impulse response and possible misregis-
rations of each frame of data are modeled in the Fourier
omain. The detector transfer function is modeled as

Hd�m,n� = sinc�	fd

N
n�sinc�	fd

M
m� , �7�

here fd is the area fill factor of the detector and it is as-
umed that the detector pixels are square.

The transfer function for a coordinate shift is defined as

Hs,k�m,n� = exp
− i2��mp̂s,k

M
+

nq̂s,k

N � , �8�

here p̂s,k and q̂s,k are the transverse shifts along the
artesian axes in units of pixels. Hd�m ,n� and Hs,k�m ,n�
re included in the physical model by first computing

k�m ,n�, the DFT of Îk�p ,q�, multiplying by the transfer
unctions,

ĝk�m,n� = Hs,k�m,n�Hd�m,n�f̂k�m,n�, �9�

nd computing the inverse DFT to arrive at the modeled
SF Ĝk�p ,q�.

. Data Consistency Metric
he agreement between Ĝk�p ,q� and a set of actual PSF
easurements Gk�p ,q� can be quantified using a
eighted normalized mean-squared error (NMSE) metric

2,18], defined as

�d =
1

K�
k=1

K � �
�p,q�

Wk�p,q���kĜk�p,q� − Gk�p,q��2

�
�p,q�

Wk�p,q�Gk
2�p,q� � ,

�10�

here the coefficients �k, which minimize the value of �d

or any given Ĝk�p ,q�, are given by

�k =

�
�p,q�

Wk�p,q�Ĝk�p,q�Gk�p,q�

�
�p,q�

Wk�p,q�Ĝk
2�p,q�

, �11�

nd Wk�p ,q� is a weighting function. Inserting Eq. (11)
nto Eq. (10) and simplifying yields
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�d = 1 −
1

K�
k=1

K 
�
�p,q�

Wk�p,q�Ĝk�p,q�Gk�p,q�2


�
�p,q�

Wk�p,q�Gk
2�p,q�
�

�p,q�
Wk�p,q�Ĝk

2�p,q� .

�12�

he value of �d is interpreted as the square of the frac-
ional error between Ĝk�p ,q� and Gk�p ,q�, i.e., �d=1 cor-
esponds to complete disagreement, �d=0 corresponds to
xact agreement, and �d=0.0025 corresponds to an aver-
ge root-mean-square (RMS) error of 5%. The baseline
eld retrieval approach is to use a conjugate-gradient
CG) nonlinear optimization routine to minimize �d with
espect to B̂�m ,n�, �̂�m ,n�, ẑk, p̂s,k, and q̂s,k.

. Regularization
n many inverse problems, the incorporation of some sort
f regularization against noise and artifacts is desirable.
n conventional phase retrieval and PD, parameterization
f the pupil phase as an expansion over a set of basis
unctions, e.g., Zernike polynomials, is a convenient and
ffective method for doing this [5]. In this approach, regu-
arization is achieved by effectively reducing the solution
pace for �̂�m ,n� to some submanifold that is spanned by
he basis functions within MN-dimensional space. The
hoice of an appropriate set of basis functions, however, is
ncertain when the pupil itself is uncertain in Eq. (1).
Another regularization approach, which will be used

ere, is the method of sieves [15,19,20]. In the CG rou-
ine, �d is minimized by iteratively picking a direction
ithin the solution space and performing a line search.
he progress of the algorithm through the solution space
o a final solution is thus determined in part by the rule
or picking the search direction on each iteration. Nor-
ally, the search direction in a CG algorithm is a linear

ombination of the gradient of �d for the current and pre-
ious iterations. The method of sieves involves modifying
his rule by replacing the gradient components
�d /�B̂�m ,n� and ��d /��̂�m ,n� with spatially smoothed
ersions of these quantities, i.e., ��d /�B̂�m ,n� is replaced
y

�
�m�,n��

��d

�B̂�m�,n��
s�m − m�,n − n��, �13�

here s�m ,n� is a smoothing kernel, and the gradient
omponent ��d /��̂�m ,n� is replaced with an analogously
moothed quantity. If s�m ,n� is a low-pass smoothing ker-
el, e.g., a 2-D Gaussian, this approach causes the CG
outine to converge on the coarse spatial features of
ˆ �m ,n� and �̂�m ,n� more quickly than on the fine spatial
eatures, which helps the algorithm avoid problems with
ocal minima and reduces high-spatial-frequency noise.

The results obtained in Section 5 were obtained using a
aussian smoothing kernel with a FWHM of three pixels

or s�m ,n� applied to both ��d /�B̂�m ,n� and ��d /��̂�m ,n�
or the first 100 iterations and to ��d /��̂�m ,n� thereafter.
here were approximately 60 pupil samples across the
5.4 mm diameter circular aperture in the retrieval re-
ults. A FWHM value of three pixels was chosen to limit
he retrieved pupil amplitude and phase initially to spa-
ial frequencies less than or equal to �10 cycles per aper-
ure. After the first 100 iterations, the smoothing was ap-
lied to ��d /��̂�m ,n�, because we expected the pupil
hase to be smooth, but not applied to ��d /�B̂�m ,n� to al-
ow the algorithm to retrieve the sharp aperture edges of
he pupil amplitude.

. AMPLITUDE METRICS
he two amplitude metrics described here are meant to

ncorporate specific knowledge about hard-edged or uni-
ormly illuminated apertures into the field retrieval algo-
ithm. The metrics are defined as

�1��1� =
1

MN �
�m,n�

	�Â�m,n�,�1� �14�

nd

�2��2� = �
�
,���D

� 1

MN �
�m,n�

	�Â�m,n� − Â�m + 
,n + ��,�2�� ,

�15�

here

	�x,�� = �
2�x�2

3�2 −
8�x�3

27�3 +
�x�4

27�4 , �x� � 3�

1, �x�  3�
� , �16�


 ,�� are sample shift indices belonging to D
��0,1� , �1,0� , �1,1� , �1,−1��, and �1 and �2 are adjustable
arameters. Figure 2 shows a plot of 	�x ,�� along with
��x ,�� and 	��x ,��, the first and second partial deriva-
ives of 	�x ,�� with respect to x.

Since the sum of Â�m ,n� is a conserved quantity due to
q. (2), the effect of using �1 can be partially understood
sing the second derivative rule explained in [21]. Mini-
izing �1 will tend to compress the histogram of Â�m ,n�

or values Â�m ,n���1, since 	��x ,��0 for �x���, and
tretch the histogram for values �1� Â�m ,n��3�1, since
��x ,���0 for ��x�3�. The first derivative 	��x ,�� also

4 2 0 2 4
-1

-0. 5

0

0.5

1

1.5

2

x/κ

Γ(x,κ)

κΓ′(x,κ)

κ
2
Γ′′(x,κ)

Fig. 2. Plot of 	�x ,��, 	 �x ,��, and 	 �x ,��.
� �
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lays a role in determining the effect of �1. Since
��x ,��0 for �x��3�, use of �1 always tends to reduce
he values of Â�m ,n��3�1, as long as there are some val-
es of Â�m ,n�3�1 that can be increased to conserve the
um of Â�m ,n�. Note that the values of �1 are insensitive
o changes in values of Â�m ,n�3�1, since both 	��x ,��
nd 	��x ,��=0 for �x�3�. For a hard-edged aperture,

ˆ �m ,n� should equal zero for points �m ,n� outside the
rue support of the pupil. While use of �d may yield small
alues of Â�m ,n� in these regions of the pupil plane,

ˆ �m ,n� will often be nonzero there due to noise in the
ata Gk�p ,q�, even with regularization. Additional itera-
ions with both �d and �1, using an appropriately chosen
alue of �1, can further reduce the already small but non-
ero values of Â�m ,n�, hopefully leading to a better esti-
ate Â�m ,n�.
We explored a number of different functions 	�x ,��,

nd the results shown here are for the form given by Eq.
16). Previously, we used 	�x ,��=x2 / ��2+x2� [22], which is
ery similar to the form in Eq. (16) with the exception
hat 	��x ,��=2�2x / �x2+�2�2 and 	��x ,��=2�2��2

3x2� / �x2+�2�3 do not equal zero for �x���. Because of
his, minimizing �1 with this form of 	�x ,�� will not drive
alues of Â�m ,n���1 to zero. Instead the histogram of

ˆ �m ,n���1 will be compressed about some small, non-
ero value ��1 that is in equilibrium with the small pen-
lty associated with increasing values of Â�m ,n���1. The
orm of 	�x ,�� in Eq. (16), with 	��x ,��=	��x ,��=0 for x

3�, is such that values of Â�m ,n���1 can be driven to
ero through use of �1 by increasing values of values of

ˆ �m ,n�3�1 without penalty. Equation (16) also has the
andy feature of a continuous second derivative for all x
xcept x=0.

Since �Â�m ,n�− Â�m+
 ,n+��� is not a conserved quan-
ity, the effect of minimizing �2 can be understood by con-
idering 	��x ,��. �2 is minimized by reducing the magni-
ude of the differences between neighboring samples of
ˆ �m ,n�, with the value of �2 being most sensitive to
hanges in values of �Â�m ,n�− Â�m+
 ,n+���=�2. Similar
o �1, the value of �2 is insensitive to values of �Â�m ,n�
Â�m+
 ,n+���3�2, since 	��x ,��=0 for �x�3�. For a
niformly illuminated aperture, Â�m ,n� should be piece-
ise constant. Use of �d alone generally will not yield a
iecewise constant Â�m ,n�, again due to noise if nothing
lse. Additional iterations with �d and �2, with an appro-
riately chosen �2, can yield a more piecewise constant

Table 1. Details of Vario

stimate Starting Guess

1 Â�m ,n�=1 and �̂�m ,n�=0
2 Â1�m ,n� and �̂1�m ,n�
3 Â1�m ,n� and �̂1�m ,n� �

4 Â1�m ,n� and �̂1�m ,n� �

5 Â1�m ,n� and �̂1�m ,n� �d+�1
ˆ �m ,n� by reducing small differences between neighbor-
ng samples while preserving sharp edges for which
Â�m ,n�− Â�m+
 ,n+�����2. Section 5 provides more de-
ails on choosing the values of �1 and �2.

. EXPERIMENT
igure 1 shows the layout of the 4F optical system that
as used for the experiment. A 5 
m diameter pinhole il-

uminated by a focused HeNe ��=632.8 nm� laser beam
as used as a point source. The two identical lenses

Newport NPAC 091) had a focal length of f=500 mm. The
upil plane contained a slide mount in which various am-
litude masks were placed to define the aperture stop of
he system. The amplitude masks were made by using a
ole-punch or die-cutting tool to cut out various patterns

n black cardstock. Figure 3 shows digital scans of each
mplitude mask used in the experiment. For each ampli-
ude mask, a number of PSF measurements were re-
orded with an 8-bit CCD camera (Imaging Source
MK21BF04). The camera was mounted on a manual

ranslation stage to allow PSF measurements to be made
n various defocus planes with nominal defocus distances
f zk= �−4,−2,0,2,4� mm. The detector pixel pitch was
d=5.6 
m.
The encircled diameter of the amplitude masks was

imited to no more than D=25.4 mm, such that the mini-

eld Retrieval Estimates

ic Iterations Result

500 Â1�m ,n� and �̂1�m ,n�
250 Â2�m ,n� and �̂2�m ,n�

1��1� 250 Â3�m ,n� and �̂3�m ,n�
2��2� 250 Â4�m ,n� and �̂4�m ,n�

�2�2��2� 250 Â5�m ,n� and �̂5�m ,n�

(a) (b)

(c) (d)

ig. 3. Digital scans of the pupil amplitude masks used in the
xperiment: (a) circle, (b) spiral, (c) nine-aperture triarm, and (d)
ine-aperture Golay.
us Fi

Metr

�d

�d

d+�1�

d+�2�

�1��1�+
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um detector sampling ratio Q=�f /D�d=2.22 was large
nough to ensure that the PSF measurements were
ampled above the Nyquist limit [23]. In addition to the
SF measurements, a number of dark and flat-field

rames were recorded for detector calibration. The field
etrieval data Gk�p ,q� were obtained by averaging 10 PSF
easurements from each defocus plane and applying a

ark subtraction and flat-field correction obtained from
he detector calibration. Additionally, a constant term was
ubtracted from each PSF to account for an unknown de-
ector bias. The weighting function Wk�p ,q� was not used,
.e., Wk�p ,q�=1.

. FIELD RETRIEVAL RESULTS
esults are presented for the five different estimation ap-
roaches listed in Table 1. The initial guess for the first

Table 2. Metric Values for Each Field Retrieval
Result with the Circular Pupil Maska

Estimate �d �1��1� �2��2�

1 0.0013 0.1596 0.0995
2 0.0013 0.1596 0.0995
3 0.0013 0.1521 0.0660
4 0.0016 0.1520 0.0340
5 0.0017 0.1516 0.0351

aUsing �1=1, �1=1, �2=0.25, and �2=1.
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ig. 4. (Color online) Field retrieval results for the circular pu-
il mask: (a) Â1�m ,n�, (b) Â2�m ,n�, (c) Â3�m ,n�, (d) Â4�m ,n�, (e)

ˆ
5�m ,n�, and (f) �̂5�m ,n� (in units of radians) with piston tip, tilt,
nd focus terms removed. Note that �̂5�m ,n� is shown only
ithin the aperture at points where Â5�m ,n��1.
stimate was Â�m ,n�=1, �̂�m ,n�=0, and the nominal val-
es for ẑk. Starting guesses for p̂s,k, and q̂s,k were obtained

rom the centroid of each measured PSF. Point-by-point
stimates Â1�m ,n� and �̂1�m ,n� were obtained after 500
G iterations with just �d. The second estimate was ob-

ained by running an additional 250 CG iterations. Esti-
ates 3, 4, and 5 were obtained by starting with Â1�m ,n�

nd �̂1�m ,n� and running 250 CG iterations with �1, �2,
nd both �1 and �2, respectively, in addition to �d. The
arameters �1 and �2 were picked for each pupil mask by
nspection of Â1�m ,n�, based on knowledge of how �1 in-
uences the histogram of Â�m ,n� and how the effect of �2

epends on the differences between neighboring Â�m ,n�
amples (see Section 3). The values of the weighting pa-
ameters �1 and �2, however, were chosen by trial and er-
or to balance the effect of each amplitude metric with the
ata consistency metric. When the weighting parameter
s too small, the amplitude metrics have only a minor in-
uence on pupil retrieval results, yielding no benefit from
1 or �2. If the weighting parameter is too large, the am-
litude metrics dominate, yielding retrieval results with
oor data consistency. Several values of �1 and �2 were
ried for each pupil mask to determine the appropriate
alues between these two extremes.

Field retrieval results for the circular pupil mask ob-
ained using just three defocus planes �zk= �−4,0,4� mm�
re given in Fig. 4 and Table 2. Figure 4(a) shows that the
upil amplitude estimate obtained after 500 iterations
ith �d agrees fairly well with the circular pupil mask

hown in Fig. 3(a), but the nonzero values for Â1�m ,n�
utside the support of the circular aperture and the spa-
ial structure within the aperture are not representative
f the true pupil amplitude. Figure 4(b) shows that these
eatures remain after an additional 250 iterations with

d.
From Fig. 4(a), it appears that the maximum of

ˆ
1�m ,n� outside the support of the circular aperture �1,
hile the average value within the aperture appears to be
6. Based on these observations and the properties of
1��1� discussed in Section 3, use of �1��1� with �1=1 (in
ddition to �d) should reduce the amplitude of Â�m ,n�
utside the aperture support and have only a minor influ-
nce inside the aperture, where Â1�m ,n���1, thus pre-
erving the hard edge of the aperture. Figure 4(c) shows
hat this result is achieved for Â3�m ,n�. A value of �1=1,
etermined by trial and error, was used to obtain this re-
ult. For �1�1, the relative weighting of �1 to �d in the
ombined objective function was too small to yield the de-
ired result. For �1�1, the relative weighting of �1 was
oo large, resulting in an amplitude estimate with near-
ero values inside the aperture.

Figure 5 shows histograms of Â1�m ,n� and Â3�m ,n� to
etter illustrate the effect of using �1��1�, which com-
ressed the histogram of retrieved amplitude values less
han �1=1, driving them to zero. Use of �1��1� also
tretched or spread out the histogram for amplitude val-
es between �1 and 3�1, resulting in an Â3�m ,n� with
nly two samples in this range. While �1��1� basically ig-
ores amplitude values greater than 3� , the values of
1
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ˆ
3�m ,n� in this range are shifted to slightly larger values

o conserve the sum of the retrieved amplitude values.
From Fig. 4(a) it also appears that the amplitude fluc-

uations of Â1�m ,n� within the aperture are �1. Based on
his observation and the properties of �2��2� described in
ection 3, use of �2��2� with �2=1 (in addition to �d)

(a) (b)

(c) (d)

(e) (f)

ig. 6. Comparison between measured and modeled PSFs using
ˆ

5�m ,n� and �̂5�m ,n� for the circular pupil mask. Measured
SFs Gk�p ,q� are shown in the left-hand column and modeled
SFs Ĝk�p ,q� are shown in the right-hand column. The defocus
istances for each PSF are (a), (b) −4 mm; (c), (d) 0 mm; and (e),
f) 4 mm.
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ig. 5. Histograms of the retrieved pupil amplitude for the cir-
ular pupil mask: dashed curve, Â1�m ,n� and solid curve
ˆ

3�m ,n�. The scale for the vertical axis is logarithmic.
hould reduce these amplitude fluctuations while main-
aining a sharp aperture edge, yielding an Â�m ,n� that is
ore representative of a hard-edged, uniformly illumi-
ated pupil. Figure 4(d) shows that this is the result for

ˆ
4�m ,n�, obtained using �2=0.25. Also, note in Fig. 4(d)

hat the variation of Â4�m ,n� outside the support of the
ircular aperture has been reduced by the use of �2, but
here remain regions where Â4�m ,n� is nonzero outside
he aperture. Table 2 indicates that while the value of �2
s reduced by this procedure, the value of �d increases.
his is not entirely unexpected, since use of �d alone has
greater ability to fit noise in the data. Figure 4(e) shows

hat use of both �1 and �2 yields a piecewise uniform am-
litude estimate with near-zero amplitude outside the ap-
rture support for Â5�m ,n�. Figure 4(f) shows the pupil
hase estimate �̂5�m ,n� for this case with piston, tip, tilt,
nd focus terms removed. For comparison, Fig. 6 shows
oth the measured PSFs Gk�p ,q� and the modeled PSFs

Table 3. Metric Values for Each Field Retrieval
Result with the Spiral Pupil Maska

Estimate �d �1��1� �2��2�

1 0.0066 0.0742 0.1282
2 0.0051 0.0711 0.1408
3 0.0044 0.0280 0.0723
4 0.0069 0.0613 0.0147
5 0.0070 0.0251 0.0375

aUsing �1=2, �1=4, �2=0.3, and �2=4.
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ig. 7. (Color online) Same as Fig. 4, except for the spiral pupil
ask.
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ˆ
k�p ,q� based on Â5�m ,n� and �̂5�m ,n�. Visually, the
SFs appear to agree well. Based on the value of �d given

n Table 2 for estimate 5, the RMS difference between the
easured and modeled data is about 5%.
Table 3 and Figs. 7 and 8 show field retrieval results for

he spiral pupil mask obtained from three PSF measure-
ents with defocus amounts of −4, 0, and 4 mm. For this

ase, the pupil amplitude estimates obtained with just �d,
hown in Figs. 7(a) and 7(b), are rather noisy with many
onzero samples outside the support of the true aperture.
isually, the amplitude estimates obtained with use of �1
nd both �1 and �2, shown in Figs. 7(c) and 7(e), respec-
ively, better match the true pupil amplitude distribution
hown in Fig. 3(b). Use of �2 alone did not improve the
mplitude estimate much, as is shown in Fig. 7(d). The re-
rieved pupil phase shown in Fig. 7(f) is nearly constant
ithin the aperture, as expected.
Field retrieval results for the triarm and Golay pupil
asks are given in Tables 4 and 5 and Figs. 9–12. These

esults were obtained using five PSF measurements with
efocus amounts of −4,−2, 0, 2, and 4 mm. For both cases,
he visual agreement between Â�m ,n� and the digital
can of each pupil mask is improved by the use of the am-
litude metrics versus use of just �d. While use of the am-
litude metrics generally yields an Â�m ,n� that appears
etter visually, the value of �d typically increases, indi-
ating a loss in data consistency. As mentioned above, this
s not unexpected, as �d can more easily fit noise in the
ata when used alone than when used in conjunction with

and/or � . For the spiral and Golay apertures, how-

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Same as Fig. 6, except for the spiral pupil mask.
1 2
ver, use of �1 resulted in a lower �d than use of just �d.
his suggests that use of the amplitude metrics has the
dditional benefit of avoiding convergence problems asso-
iated with local minima of �d in some cases.

While only three defocus positions were needed to ob-
ain good results for the circular and spiral pupil masks,
ve defocus positions were needed for the sparse triarm
nd circular pupil masks. This may be due to a combina-
ion of effects associated with a limited capture range of
he field retrieval algorithm and the initial guess for the
upil function. This claim is supported by the fact that we
ould obtain good results for the triarm and Golay pupil
asks using five defocus positions for the first 100 itera-

ions and only three defocus positions for the remaining
terations, while we did not obtain good results starting
ith only three defocus positions.

. SUMMARY
wo metrics for incorporating a priori knowledge of hard-
dged and uniformly illuminated pupil functions were
mplemented into a field retrieval algorithm. Experimen-
al results indicate that use of these metrics in addition to

baseline data consistency metric yield amplitude esti-
ates that appear to be more representative of the true

upil amplitude than does use of just the data consistency
etric. The results also suggest that the amplitude met-

ics have the additional benefit of reducing convergence
roblems associated with local minima of the data consis-
ency metric.

PPENDIX A: METRIC DERIVATIVES
or the nonlinear optimization algorithm, it is useful to
ave expressions for the partial derivatives of �d, �1��1�,
nd �2��2�, with respect to B̂�m ,n�, �̂�m ,n�, ẑk, p̂s,k, and

ˆ s,k. The derivatives of �d are obtained by first taking the
artial derivative of �d, given by Eq. (12), with respect to

ˆ
k�p ,q�

��d

�Ĝk�p,q�

2

K

Wk�p,q�
 �
�p�,q��

Wk�p�,q��Ĝk�p�,q��Gk�p�,q��

 �

�p�,q��

Wk�p�,q��Gk
2�p�,q��
 �

�p�,q��

Wk�p�,q��Ĝk
2�p�,q��2

��Ĝk�p,q�
 �
�p�,q��

Wk�p�,q��Ĝk�p�,q��Gk�p�,q��

− Gk�p,q�
�
�p,q�

Wk�p�,q��Ĝk
2�p�,q��� . �A1�

To simplify later expressions, we define
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ĝk
†�m,n� =

��d

� Re�ĝk�m,n��
+ i

��d

� Im�ĝk�m,n��

=
1

	MN
�
�p,q�

��d

�Ĝk�p,q�
exp
− i2��mp

M
+

nq

N � .

�A2�

sing this expression along with Eqs. (8) and (9), two of

Table 4. Metric Values for Each Field Retrieval
Result with the Triarm Pupil Maska

Estimate �d �1��1� �2��2�

1 0.0052 0.0407 0.1012
2 0.0042 0.0401 0.1045
3 0.0047 0.0265 0.0869
4 0.0087 0.0374 0.0581
5 0.0059 0.0300 0.0624

aUsing �1=5, �1=5, �2=0.6, and �2=5.

Table 5. Metric Values for Each Field Retrieval
Result with the Golay Pupil Maska

Estimate �d �1��1� �2��2�

1 0.0072 0.0398 0.1060
2 0.0056 0.0391 0.1082
3 0.0051 0.0288 0.0855
4 0.0094 0.0366 0.0689
5 0.0067 0.0306 0.0649

aUsing �1=5, �1=5, �2=0.6, and �2=5.
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ig. 9. (Color online) Same as Fig. 4, except for the triarm pupil
ask.
he desired partial derivatives can be obtained, i.e.,

��d

�p̂s,k
= − Im
 �

�m,n�

2�m

M
ĝk

†�m,n�ĝk
*�m,n� , �A3�

��d

�q̂s,k
= − Im
 �

�m,n�

2�n

N
ĝk

†�m,n�ĝk
*�m,n� . �A4�

Using Eqs. (6) and (9), we can write

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

ig. 10. Same as Fig. 6, except for the triarm pupil mask. The
efocus distances for each PSF are (a), (b) −4 mm; (c), (d) −2 mm;
e), (f) 0 mm; (g), (h) 2 mm; and (i), (j) 4 mm.
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��d

�Îk�p,q�
=

1

	MN
�

�m,n�
f̂k
†�m,n�exp
i2��pm

M
+

qn

N � ,

�A5�

here

f̂k
†�m,n� = Ĥs,k

* �m,n�Hd
*�m,n�ĝk

†�m,n�. �A6�

Again, the following terms are defined to simplify nota-
ion:

ˆ
k
†�p,q� = 2Êk�p,q�

��d

�Îk�p,q�
, �A7�

ˆ
k
†�m,n� =

1

	MN
�
�p,q�

Êk
†�p,q�exp
− i2��mp

M
+

nq

N � . �A8�

sing Eqs. (5) and (A8), we can write one more of the de-
ired partial derivatives,

��d

�ẑk
= Im
 �

�m,n�
2�	 1

�2 − m2�m
2 − n2�n

2Ûk
†�m,n�Ûk

*�m,n� .

�A9�

To continue, we define
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ig. 11. (Color online) Same as Fig. 4, except for the Golay pupil
ask.
Ûf
†�m,n� = �

k
Ûk

†�m,n�exp�− i2�ẑk	 1

�2 − m2�m
2 − n2�n

2� ,

�A10�

Êf
†�p,q� =

1

	MN
�

�m,n�
Ûf

†�m,n�exp
i2��pm

M
+

qn

N � ,

�A11�

Êp
†�m,n� =

1

	MN
�
�p,q�

Êf
†�p,q�exp
i2��mp

M
+

nq

N � . �A12�

sing Eqs. (1) and (A12), we can write the following par-
ial derivatives of �d, i.e.,

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 12. Same as Fig. 10, except for the Golay pupil mask.
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��d

��̂�m,n�
= Im�Êp

†�m,n�Êp
*�m,n��, �A13�

��d

�Â�m,n�
= Re�Êp

†�m,n�exp�− i�̂�m,n���. �A14�

y Eq. (2) and the chain rule, the corresponding partial
erivative with respect to B̂�m ,n� is

��d

�B̂�m,n�
=

sgn�B̂�m,n��

�
�m�,n��

�B̂�m,n��

MN

��d

�Â�m,n�

− �
�m�,n��

��d

�Â�m�,n��
Â�m�,n�� . �A15�

he partial derivatives with respect to B̂�m ,n� are all
hat are needed for �1��1� and �2��2�. Differentiating
qs. (14)–(16) with respect to Â�m ,n� yields

��1��1�

�Â�m,n�
=

1

MN
	��Â�m,n�,�1�, �A16�

��2��2�

�Â�m,n�
= �

�
,���D

1

MN
�	��Â�m,n� − Â�m + 
,n + ��,�2�

− 	��Â�m − 
,n − �� − Â�m,n�,�2��, �A17�

here

	��x,�� = �sgn�x��4�x�

3�2 −
8�x�2

9�3 +
4�x�3

27�4� , �x� � 3�

0, �x�  3�
� .

�A18�

he corresponding partial derivatives with respect to
ˆ �m ,n� are given by Eq. (A15) with �d replaced by �1��1�
nd �2��2�.
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