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In field retrieval, the amplitude and phase of the generalized pupil function for an optical system are estimated
from multiple defocused measurements of the system point-spread function. A baseline field reconstruction al-
gorithm optimizing a data consistency metric is described. Additionally, two metrics specifically designed to
incorporate a priori knowledge about pupil amplitude for hard-edged and uniformly illuminated aperture sys-
tems are given. Experimental results demonstrate the benefit of using these amplitude metrics in addition to
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1. INTRODUCTION

In wavefront sensing by phase retrieval, the phase of the
generalized pupil function for an optical system is esti-
mated from a measurement of the system point-spread
function (PSF) and knowledge of the pupil amplitude
[1,2]. For special aperture shapes, both the pupil ampli-
tude and phase can be retrieved from one PSF measure-
ment and full [3] or partial [4] knowledge of the aperture
shape. In phase-diverse phase retrieval, multiple PSF
measurements with diverse amounts of defocus (or an-
other known phase function) are used to avoid algorithm
convergence problems associated with local minima and
improve the fidelity of the retrieved phase [5-7].
Although it is computationally intensive, phase re-
trieval has a number of practical advantages over other
wavefront sensing techniques. Interferometric methods
require either a reference wavefront or an autocollimation
flat having the same dimensions as the system entrance
pupil, while phase retrieval does not. Shack—Hartman
wavefront sensors cannot work with discontinuous wave-
fronts from segmented- or sparse-aperture telescopes,
while phase retrieval can. Because of these and other con-
siderations, phase retrieval is the planned approach for
wavefront sensing on the James Webb Space Telescope
[8]. Additionally, multiple PSF measurements can be used
to jointly estimate both the pupil phase and amplitude
[9-14]. Here, this approach is referred to as field re-
trieval. In conventional phase diversity (PD), multiple
focus-diverse images of an extended, incoherent object are
used to jointly reconstruct the object and estimate the pu-
pil phase [5]. Like field retrieval, however, PD can be used
to additionally estimate the pupil amplitude [15,16].
There are a number of scenarios in which knowledge of
the pupil amplitude may be incomplete, requiring some
level of pupil amplitude estimation. In [4], the orientation
of obscuring secondary-mirror support struts and
primary-mirror mounting pads and the location of the re-
lay lens obscurations for the Hubble Space Telescope were
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determined from one PSF measurement and an initial
guess of an annular aperture for the pupil amplitude.
When the pupil amplitude was unknown because of scin-
tillation caused by imaging through atmospheric turbu-
lence, higher-quality pupil phase estimates from PD were
obtained by simultaneously estimating the pupil ampli-
tude in [15]. In [14,16], computer simulations were used
to investigate the use of field retrieval in determining the
plate scale and the pupil geometry of sparse-aperture op-
tical systems. The thesis of this paper is that the quality
of pupil amplitude estimates from field retrieval can be
improved through the use of amplitude metrics that in-
corporate a priori knowledge about hard-edged or uni-
formly illuminated apertures.

In Section 2, a baseline field retrieval algorithm is de-
scribed. In Section 3, two amplitude metrics designed to
incorporate a priori knowledge for hard-edged and uni-
formly illuminated pupils are proposed as enhancements
to the baseline algorithm. Section 4 describes an experi-
ment in which PSF measurements were made for an op-
tical system with various pupil masks. In Section 5, field
retrieval results obtained from these measurements are
presented. These results demonstrate the benefits of us-
ing the amplitude metrics. Section 6 is a summary. Ap-
pendix A contains equations useful for implementing this
field retrieval approach.

2. BASELINE ALGORITHM

In this section, a physical model for the PSF measure-
ments as a function of the pupil amplitude and phase, the
defocus distances, and the transverse detector shifts is
outlined. Also, a data consistency metric based on the nor-
malized mean-squared error between the physical model
and the actual measurements is formulated. Additionally,
a sieve method for regularizing a baseline algorithm
based on optimization of the data consistency metric is
described.

© 2009 Optical Society of America
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A. Physical Model
Our physical model is based on the 4F system shown in
Fig. 1. Given estimates for the amplitude A(m,n) and the

phase ¢(m ,n) for a generalized pupil function, the optical
field in the pupil plane can be written as

E_(m,n) = A(m,n)explid(m,n)], (1)

where me{-M/2,2-M)/2,...,(M-2)/2} and n
e{-N/2,(2-N)/2,...,(IN-2)/2} are pupil plane sample
indices, and M and N are the number of samples along
the two Cartesian directions. Nonnegativity and normal-
ization of the pupil amplitude are ensured by parameter-

izing A(m,n) in terms of a dummy function B(m,n):

) MN|B(m,n)|
Am,n)= —. (2)

> Bom',n)|

(m',n")

The optical field in the nominal focal plane Ef(p,q) is

given by the discrete Fourier transform (DFT) of Ep(m ,n),
ie.,

. . 1 .
Edp,q) =DFT[E,]=—= >, E,(m,n)
’ \"MN<rn2,n) ’

. mp nq
Xexp —127 ﬁ-'-ﬁ , (3)

where pe{-M/2,2-M)/2,...,(M-2)/2} and ¢
e{-N/2,(2-N)/2,...,(N-2)/2} are focal plane sample
indices. Equation (3) is a discrete approximation of the
standard Fourier transform-based equation for propaga-
tion between the pupil and the focal plane of a 4F optical
system [17]. The focal plane sample spacings A, and A,
are chosen to be equal to the detector pixel pitch Ay, i.e.,
A,=A,=A4. Thus, the pupil plane sample spacings are
given by A,=1/(MA,)=1/(M1y) and A,=1/(NA,)
=1/(NAy) in units of spatial frequency and \fA,, and \fA,,
in units of physical length, where \ is the optical wave-
length and f is the lens focal length.

An angular spectrum propagator can be used to propa-

gate Ef(p ,q) from the back focal plane of the final lens to
the various defocus measurement planes. f]f(m,n), the
angular spectrum of Ef(p,q), is given by

G = ——3 Eipsq) [ 2 (pm qn)}
m,n) = —— ,Qexp| —i27m| — +— | |.
\’MN(p,q) M N
)

The angular spectrum propagated to the kth defocus/
measurement plane Uj(m,n) is given by

Poi Lens Pupil Mask Lens
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4
<
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Fig. 1. Diagram of 4F system used for experiment.
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. . 1
Uy(m,n) = Uf(m,n)exp<i27r2k \/ﬁ -m2A2 — nzAi) ,
(5)

where Z, is the distance between the nominal focal plane
and the kth defocus plane, and phase constants are ig-
nored. The optical field in the kth defocus plane is given
by Ek(p ,q) =IDFT[f]k]. The computed intensity in the kth
defocus plane is given by

L(p,q) = |E4(p,q)2. (6)

The detector impulse response and possible misregis-
trations of each frame of data are modeled in the Fourier
domain. The detector transfer function is modeled as

o =sine| o Jine| 2 (M)
a(m,n) =sinc Nn sinc Mm s

where f; is the area fill factor of the detector and it is as-
sumed that the detector pixels are square.
The transfer function for a coordinate shift is defined as

H ( ) 9 mﬁs,k nés,k (8)
m,n) =exp| - + )
s,k\IM, exXp| —iam M N

where p; and ¢, are the transverse shifts along the
Cartesian axes in units of pixels. Hyq(m,n) and H, 5(m ,n)
are included in the physical model by first computing
fk(m,n), the DFT of fk(p,q), multiplying by the transfer
functions,

&r(m,n) = Hy j(m,n)Hg(m,n)fy(m,n), 9)

and computing the inverse DFT to arrive at the modeled
PSF G4(p,q)-

B. Data Consistency Metric

The agreement between ék(p,q) and a set of actual PSF
measurements G(p,q) can be quantified using a
weighted normalized mean-squared error (NMSE) metric
[2,18], defined as

« | > Wp.0)[aGi,9) - Gi(p, )P

.= 12 (p,q)
d_ _— b
Kia > W(0,q)G2(p,q)
(p,q)

(10)

where the coefficients «;,, which minimize the value of ®4
for any given Gk(p,q), are given by

2 Wk(P>Q)ék(p,Q)Gk(p,Q)

,q)
=21 , (11)

> Wilp,)G2(p,q)
(p,9)

and Wy(p,q) is a weighting function. Inserting Eq. (11)
into Eq. (10) and simplifying yields



702 J. Opt. Soc. Am. A/Vol. 26, No. 3/March 2009

p [E Wk<p,q>ék<p,q)Gk<p,q>]2
‘Dd -1- i (p,9) .
Ko [E Wk(p,q>G£<p,q>][E Wk<p,q>é;§<p,q>}
»,q) (p,q)

(12)

The value of @4 is interpreted as the square of the frac-

tional error between ék(p,q) and G.(p,q), i.e., Pg=1 cor-
responds to complete disagreement, ®3=0 corresponds to
exact agreement, and ®3=0.0025 corresponds to an aver-
age root-mean-square (RMS) error of 5%. The baseline
field retrieval approach is to use a conjugate-gradient
(CG) nonlinear optimization routine to minimize ®4 with

respeCt to B(m7n)7 (%(m,n), ék’ ﬁs,k: and és,k‘

C. Regularization
In many inverse problems, the incorporation of some sort
of regularization against noise and artifacts is desirable.
In conventional phase retrieval and PD, parameterization
of the pupil phase as an expansion over a set of basis
functions, e.g., Zernike polynomials, is a convenient and
effective method for doing this [5]. In this approach, regu-
larization is achieved by effectively reducing the solution
space for ¢(m,n) to some submanifold that is spanned by
the basis functions within MN-dimensional space. The
choice of an appropriate set of basis functions, however, is
uncertain when the pupil itself is uncertain in Eq. (1).
Another regularization approach, which will be used
here, is the method of sieves [15,19,20]. In the CG rou-
tine, ®4 is minimized by iteratively picking a direction
within the solution space and performing a line search.
The progress of the algorithm through the solution space
to a final solution is thus determined in part by the rule
for picking the search direction on each iteration. Nor-
mally, the search direction in a CG algorithm is a linear
combination of the gradient of ®4 for the current and pre-
vious iterations. The method of sieves involves modifying
this rule by replacing the gradient components

oby/ aé(m,n) and ddy/ ddp(m ,n) with spatially smoothed

versions of these quantities, i.e., dd4/ &B(m ,n) is replaced
by

O
—s(m-m',n-n'), (13)
(m' "y 0B(m',n'")

where s(m,n) is a smoothing kernel, and the gradient
component d®4/dd(m ,n) is replaced with an analogously
smoothed quantity. If s(m,n) is a low-pass smoothing ker-
nel, e.g., a 2-D Gaussian, this approach causes the CG
routine to converge on the coarse spatial features of
B(m,n) and ¢(m,n) more quickly than on the fine spatial
features, which helps the algorithm avoid problems with
local minima and reduces high-spatial-frequency noise.
The results obtained in Section 5 were obtained using a
Gaussian smoothing kernel with a FWHM of three pixels

for s(m ,n) applied to both é’(I)d/&fZ(m ,n) and o®4/dd(m ,n)
for the first 100 iterations and to dd4/ ddp(m ,n) thereafter.
There were approximately 60 pupil samples across the
25.4 mm diameter circular aperture in the retrieval re-
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sults. A FWHM value of three pixels was chosen to limit
the retrieved pupil amplitude and phase initially to spa-
tial frequencies less than or equal to =10 cycles per aper-
ture. After the first 100 iterations, the smoothing was ap-
plied to d®4/dd(m,n), because we expected the pupil

phase to be smooth, but not applied to #by/dB(m ,n) to al-
low the algorithm to retrieve the sharp aperture edges of
the pupil amplitude.

3. AMPLITUDE METRICS

The two amplitude metrics described here are meant to
incorporate specific knowledge about hard-edged or uni-
formly illuminated apertures into the field retrieval algo-
rithm. The metrics are defined as

1 .
Dy(ky) = W(E) ITA(m,n), K] (14)
and
Dy(kp) = >, WE ITA(m,n) = A(m + p,n + 7),x5] ¢,
(u,meD (m,n)
(15)
where
2 8
- + , x| =<3k
Dlx,x) =\ 3k 27«3 27x* , (16)
1, x| > 3k

(u,m) are sample shift indices belonging to D
={(0,1),(1,0),(1,1),(1,-1)}, and «; and x4 are adjustable
parameters. Figure 2 shows a plot of I'(x, «) along with
I'(x,x) and T"”(x, k), the first and second partial deriva-
tives of I'(x, k) with respect to x.

Since the sum of A(m,n) is a conserved quantity due to
Eq. (2), the effect of using ®; can be partially understood
using the second derivative rule explained in [21]. Mini-

mizing ®; will tend to compress the histogram of A(m ,n)
for values A(m,n)<;<1, since I"(x,x)>0 for |x|<k, and

stretch the histogram for values «; <A(m,n)<3f<1, since
I'"(x, k) <0 for k<x<3k. The first derivative I''(x, k) also

2 - : .
I'(x,k)
1.5¢ — — = skI"(x,K)
AR KT (x, )

Fig. 2. Plot of I'(x, k), I''(x, k), and I"(x, ).
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plays a role in determining the effect of ®;. Since
I'(x,x)>0 for |x| <3k, use of ®; always tends to reduce
the values of A(m ,n)<3kq, as long as there are some val-
ues of A(m,n) >3k, that can be increased to conserve the
sum of A(m ,n). Note that the values of ®; are insensitive
to changes in values of A(m,n)>3;<1, since both I''(x, k)
and I'"(x,x)=0 for |x|>3«. For a hard-edged aperture,
A(m,n) should equal zero for points (m,n) outside the
true support of the pupil. While use of &34 may yield small
values of A(m ,n) in these regions of the pupil plane,
A(m,n) will often be nonzero there due to noise in the
data G,(p,q), even with regularization. Additional itera-
tions with both ®4 and ®{, using an appropriately chosen
value of «q, can further reduce the already small but non-
zero values of A(m,n), hopefully leading to a better esti-
mate A(m ).

We explored a number of different functions I'(x, x),
and the results shown here are for the form given by Eq.
(16). Previously, we used I'(x, ) =x2/ (k% +x2) [22], which is
very similar to the form in Eq. (16) with the exception
that  TI'(x,x)=2x2c/(x%+k%)? and  I(x,x)=2k2(k>
—3x2)/(x®+«2)® do not equal zero for |x|> k. Because of
this, minimizing ®; with this form of I'(x, k) will not drive
values of A(m,n)<;<1 to zero. Instead the histogram of
A(m,n)<K1 will be compressed about some small, non-
zero value <k; that is in equilibrium with the small pen-
alty associated with increasing values of A(m ,n)>kq. The
form of I'(x, k) in Eq. (16), with T (x,x)=1"(x,x)=0 for x
>3k, is such that values of A(m,n)< k1 can be driven to
zero through use of ®; by increasing values of values of
A(m,n) >3k, without penalty. Equation (16) also has the
handy feature of a continuous second derivative for all x
except x=0.

Since |A(m,n)-A(m+u,n+7)| is not a conserved quan-
tity, the effect of minimizing ®4 can be understood by con-
sidering I''(x, k). ®4 is minimized by reducing the magni-
tude of the differences between neighboring samples of
A(m,n), with the value of ®, being most sensitive to
changes in values of |A(m ) —A(m+u,n+ 7)| = k9. Similar
to @4, the value of @, is insensitive to values of |A(m,n)
—A(m+u,n+n)|>3ky, since I''(x,x)=0 for |x|>3«. For a
uniformly illuminated aperture, A(m,n) should be piece-
wise constant. Use of ®4 alone generally will not yield a
piecewise constant A(m,n), again due to noise if nothing

else. Additional iterations with ®4 and ®,, with an appro-
priately chosen ko, can yield a more piecewise constant
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(@) (b)
(©) (d)
Fig. 3. Digital scans of the pupil amplitude masks used in the

experiment: (a) circle, (b) spiral, (c) nine-aperture triarm, and (d)
nine-aperture Golay.

A(m,n) by reducing small differences between neighbor-
ing samples while preserving sharp edges for which

|A(m,n)—A(m+,u,n+ 7)|> Ky. Section 5 provides more de-
tails on choosing the values of «; and «y.

4. EXPERIMENT

Figure 1 shows the layout of the 4F optical system that
was used for the experiment. A 5 um diameter pinhole il-
luminated by a focused HeNe (A=632.8 nm) laser beam
was used as a point source. The two identical lenses
(Newport NPAC 091) had a focal length of /=500 mm. The
pupil plane contained a slide mount in which various am-
plitude masks were placed to define the aperture stop of
the system. The amplitude masks were made by using a
hole-punch or die-cutting tool to cut out various patterns
in black cardstock. Figure 3 shows digital scans of each
amplitude mask used in the experiment. For each ampli-
tude mask, a number of PSF measurements were re-
corded with an 8-bit CCD camera (Imaging Source
DMK21BF04). The camera was mounted on a manual
translation stage to allow PSF measurements to be made
in various defocus planes with nominal defocus distances
of z,={-4,-2,0,2,4} mm. The detector pixel pitch was
Aq=5.6 um.

The encircled diameter of the amplitude masks was
limited to no more than D=25.4 mm, such that the mini-

Table 1. Details of Various Field Retrieval Estimates

Estimate Starting Guess Metric Iterations Result
1 A(m,n):l and ¢(m,n)=0 ®q 500 Al(m,n) and ¢,(m,n)
2 Ay(m,n) and ¢y(m,n) Dy 250 Ay(m,n) and ¢y(m,n)
3 Ay(m,n) and ¢y(m,n) Dg+2Py(xy) 250 Ag(m,n) and ¢g(m,n)
4 Al(m,n) and ¢, (m,n) D g+ Ny Py(x5) 250 A4(m,n) and ¢4(m,n)
5 A,(m,n) and ¢,(m,n) Dg+ N P1(r1) +NgPo(o) 250 Ag(m,n) and ¢s(m,n)
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Fig. 4. (Color online) Field retrieval results for the circular pu-
pil mask: (a) A,(m,n), (b) Ay(m,n), (c) Ag(m,n), (d) Ay(m,n), (e)
A;,(m ,n), and () (2)5(m ,n) (in units of radians) with piston tip, tilt,

(e)

and focus terms removed. Note that <3>5(m,n) is shown only
within the aperture at points where A5(m,n) > K.

Table 2. Metric Values for Each Field Retrieval
Result with the Circular Pupil Mask®

Estimate Dy Dy(kq) Dy(ky)
1 0.0013 0.1596 0.0995
2 0.0013 0.1596 0.0995
3 0.0013 0.1521 0.0660
4 0.0016 0.1520 0.0340
5 0.0017 0.1516 0.0351

“Using \;=1, k=1, \,=0.25, and r,=1.

mum detector sampling ratio @ =\f/DA3=2.22 was large
enough to ensure that the PSF measurements were
sampled above the Nyquist limit [23]. In addition to the
PSF measurements, a number of dark and flat-field
frames were recorded for detector calibration. The field
retrieval data G1(p,q) were obtained by averaging 10 PSF
measurements from each defocus plane and applying a
dark subtraction and flat-field correction obtained from
the detector calibration. Additionally, a constant term was
subtracted from each PSF to account for an unknown de-
tector bias. The weighting function W,(p,q) was not used,
i.e., Wk(p ,q) =1.

5. FIELD RETRIEVAL RESULTS

Results are presented for the five different estimation ap-
proaches listed in Table 1. The initial guess for the first
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estimate was A(m ,n)=1, &(m ,n)=0, and the nominal val-
ues for Z;,. Starting guesses for p; ;, and ¢, , were obtained
from the centroid of each measured PSF. Point-by-point

estimates Al(m,n) and (251(m,n) were obtained after 500
CG iterations with just ®4. The second estimate was ob-
tained by running an additional 250 CG iterations. Esti-

mates 3, 4, and 5 were obtained by starting with Al(m ,n)
and ¢;(m,n) and running 250 CG iterations with ®;, ®,,
and both ®; and ®,, respectively, in addition to ®4. The
parameters x; and «y were picked for each pupil mask by

inspection of A;(m,n), based on knowledge of how @, in-
fluences the histogram of A(m ,n) and how the effect of ®,

depends on the differences between neighboring A(m,n)
samples (see Section 3). The values of the weighting pa-
rameters \; and Ay, however, were chosen by trial and er-
ror to balance the effect of each amplitude metric with the
data consistency metric. When the weighting parameter
is too small, the amplitude metrics have only a minor in-
fluence on pupil retrieval results, yielding no benefit from
@, or ®,. If the weighting parameter is too large, the am-
plitude metrics dominate, yielding retrieval results with
poor data consistency. Several values of \; and Ny were
tried for each pupil mask to determine the appropriate
values between these two extremes.

Field retrieval results for the circular pupil mask ob-
tained using just three defocus planes (z,={-4,0,4} mm)
are given in Fig. 4 and Table 2. Figure 4(a) shows that the
pupil amplitude estimate obtained after 500 iterations
with &4 agrees fairly well with the circular pupil mask

shown in Fig. 3(a), but the nonzero values for Al(m,n)
outside the support of the circular aperture and the spa-
tial structure within the aperture are not representative
of the true pupil amplitude. Figure 4(b) shows that these
features remain after an additional 250 iterations with
Dy

From Fig. 4(a), it appears that the maximum of
Al(m,n) outside the support of the circular aperture =1,
while the average value within the aperture appears to be
~6. Based on these observations and the properties of
®,(xq) discussed in Section 3, use of ®;(k;) with k=1 (in

addition to ®4) should reduce the amplitude of A(m ,n)
outside the aperture support and have only a minor influ-

ence inside the aperture, where Al(m,n)>l<1, thus pre-
serving the hard edge of the aperture. Figure 4(c) shows

that this result is achieved for As(m,n). A value of A\;=1,
determined by trial and error, was used to obtain this re-
sult. For A <1, the relative weighting of ®; to ®y in the
combined objective function was too small to yield the de-
sired result. For \{>1, the relative weighting of ®; was
too large, resulting in an amplitude estimate with near-
zero values inside the aperture.

Figure 5 shows histograms ofAl(m,n) and A3(m,n) to
better illustrate the effect of using ®;(«;), which com-
pressed the histogram of retrieved amplitude values less
than «;=1, driving them to zero. Use of ®;(x;) also
stretched or spread out the histogram for amplitude val-
ues between k; and 3k, resulting in an A3(m,n) with
only two samples in this range. While ®;(«;) basically ig-
nores amplitude values greater than 3«;, the values of
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4 F ' ' ' N~
L A (m,n)

Number of Occurances

Pupil Amplitude A
Fig. 5. Histograms of the retrieved pupil amplitude for the cir-
cular pupil mask: dashed curve, Al(m,n) and solid curve
Ag(m,n). The scale for the vertical axis is logarithmic.

A3(m ,n) in this range are shifted to slightly larger values
to conserve the sum of the retrieved amplitude values.
From Fig. 4(a) it also appears that the amplitude fluc-
tuations of Al(m ,n) within the aperture are =1. Based on
this observation and the properties of ®5(xy) described in
Section 3, use of ®g(kg) With xk9=1 (in addition to ®y)

®

Fig. 6. Comparison between measured and modeled PSFs using

A5(m,n) and <3>5(m,n) for the circular pupil mask. Measured
PSFs G,(p,q) are shown in the left-hand column and modeled
PSFs Gk(p,q) are shown in the right-hand column. The defocus
distances for each PSF are (a), (b) =4 mm; (c), (d) 0 mm; and (e),
(f) 4 mm.

Vol. 26, No. 3/March 2009/J. Opt. Soc. Am. A 705

should reduce these amplitude fluctuations while main-
taining a sharp aperture edge, yielding an A(m,n) that is
more representative of a hard-edged, uniformly illumi-
nated pupil. Figure 4(d) shows that this is the result for

A4(m,n), obtained using \y=0.25. Also, note in Fig. 4(d)

that the variation of A4(m,n) outside the support of the
circular aperture has been reduced by the use of ®g, but

there remain regions where A4(m,n) is nonzero outside
the aperture. Table 2 indicates that while the value of ®,
is reduced by this procedure, the value of ®4 increases.
This is not entirely unexpected, since use of ®4 alone has
a greater ability to fit noise in the data. Figure 4(e) shows
that use of both ®; and ®, yields a piecewise uniform am-
plitude estimate with near-zero amplitude outside the ap-

erture support for A5(m,n). Figure 4(f) shows the pupil

phase estimate <2>5(m ,n) for this case with piston, tip, tilt,
and focus terms removed. For comparison, Fig. 6 shows
both the measured PSFs G.(p,q) and the modeled PSF's

Table 3. Metric Values for Each Field Retrieval
Result with the Spiral Pupil Mask”

Estimate Dy D (kq) Dy(ky)
1 0.0066 0.0742 0.1282
2 0.0051 0.0711 0.1408
3 0.0044 0.0280 0.0723
4 0.0069 0.0613 0.0147
5 0.0070 0.0251 0.0375

“Using N\ =2, k=4, \,=0.3, and «,=4.

(e)

Fig. 7. (Color online) Same as Fig. 4, except for the spiral pupil
mask.
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©
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Fig. 8. Same as Fig. 6, except for the spiral pupil mask.

Gk(p,q) based on A5(m,n) and <}55(m,n). Visually, the
PSF's appear to agree well. Based on the value of &4 given
in Table 2 for estimate 5, the RMS difference between the
measured and modeled data is about 5%.

Table 3 and Figs. 7 and 8 show field retrieval results for
the spiral pupil mask obtained from three PSF measure-
ments with defocus amounts of —4, 0, and 4 mm. For this
case, the pupil amplitude estimates obtained with just ®q,
shown in Figs. 7(a) and 7(b), are rather noisy with many
nonzero samples outside the support of the true aperture.
Visually, the amplitude estimates obtained with use of ®;
and both ®; and ®5, shown in Figs. 7(c) and 7(e), respec-
tively, better match the true pupil amplitude distribution
shown in Fig. 3(b). Use of &4 alone did not improve the
amplitude estimate much, as is shown in Fig. 7(d). The re-
trieved pupil phase shown in Fig. 7(f) is nearly constant
within the aperture, as expected.

Field retrieval results for the triarm and Golay pupil
masks are given in Tables 4 and 5 and Figs. 9-12. These
results were obtained using five PSF measurements with
defocus amounts of —4,-2, 0, 2, and 4 mm. For both cases,

the visual agreement between A(m ,n) and the digital
scan of each pupil mask is improved by the use of the am-
plitude metrics versus use of just 4. While use of the am-

plitude metrics generally yields an A(m,n) that appears
better visually, the value of ®4 typically increases, indi-
cating a loss in data consistency. As mentioned above, this
is not unexpected, as @4 can more easily fit noise in the
data when used alone than when used in conjunction with
®; and/or ®,. For the spiral and Golay apertures, how-
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ever, use of ®; resulted in a lower ®4 than use of just d,.
This suggests that use of the amplitude metrics has the
additional benefit of avoiding convergence problems asso-
ciated with local minima of ®4 in some cases.

While only three defocus positions were needed to ob-
tain good results for the circular and spiral pupil masks,
five defocus positions were needed for the sparse triarm
and circular pupil masks. This may be due to a combina-
tion of effects associated with a limited capture range of
the field retrieval algorithm and the initial guess for the
pupil function. This claim is supported by the fact that we
could obtain good results for the triarm and Golay pupil
masks using five defocus positions for the first 100 itera-
tions and only three defocus positions for the remaining
iterations, while we did not obtain good results starting
with only three defocus positions.

6. SUMMARY

Two metrics for incorporating a priori knowledge of hard-
edged and uniformly illuminated pupil functions were
implemented into a field retrieval algorithm. Experimen-
tal results indicate that use of these metrics in addition to
a baseline data consistency metric yield amplitude esti-
mates that appear to be more representative of the true
pupil amplitude than does use of just the data consistency
metric. The results also suggest that the amplitude met-
rics have the additional benefit of reducing convergence
problems associated with local minima of the data consis-
tency metric.

APPENDIX A: METRIC DERIVATIVES

For the nonlinear optimization algorithm, it is useful to
have expressions for the partial derivatives of ®4, ®;(xy),
and ®y(ky), with respect to B(m,n), ¢(m,n), 2, Ds,» and
Qs - The derivatives of @4 are obtained by first taking the
partial derivative of ®4, given by Eq. (12), with respect to

Gi(p,q)

Pl
Wk<p,q>[ D Wk<p',q'>ék<p',q'>Gk<p',q'>]
('q"
K[ s Wkoo',q’>G,%<p',q'>H S Wkoo',qvé,%(p',q')r
(r'.q") '.q")

x{ékua,q){ S Wk<p',q')ék@',q»Gk(p',q')]
»'.q")

—Gk<p,q>[2 Wk(p/,q»é;%@',q/)”. (A1)

(p.9)

To simplify later expressions, we define
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oDy ‘ O
dRe[gr(m,n)] i dIm[g(m,n)]

&i(m,n) =

1 dP4 mp nq
= “*E - exp| - 27| —+ — | |.
VMN ,.0) 9G(p,q) M N

(A2)

Using this expression along with Eqgs. (8) and (9), two of

Table 4. Metric Values for Each Field Retrieval
Result with the Triarm Pupil Mask®

Estimate Dy D4(kq) Dy(ky)
1 0.0052 0.0407 0.1012
2 0.0042 0.0401 0.1045
3 0.0047 0.0265 0.0869
4 0.0087 0.0374 0.0581
5 0.0059 0.0300 0.0624

“Using X\;=5, k;=5, X\,=0.6, and «,=5.

Table 5. Metric Values for Each Field Retrieval
Result with the Golay Pupil Mask®

Estimate Dy D(xq) Dy(ky)
1 0.0072 0.0398 0.1060
2 0.0056 0.0391 0.1082
3 0.0051 0.0288 0.0855
4 0.0094 0.0366 0.0689
5 0.0067 0.0306 0.0649

“Using \;=5, k;=5, \,=0.6, and k,=35.

30
20 20
10 10
0 0

(a)

(©) (d)

(e)

Fig. 9. (Color online) Same as Fig. 4, except for the triarm pupil
mask.
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(@)

Fig. 10. Same as Fig. 6, except for the triarm pupil mask. The
defocus distances for each PSF are (a), (b) -4 mm; (c), (d) -2 mm;
(e), (H 0 mm; (g), (h) 2 mm; and (i), (j) 4 mm.

the desired partial derivatives can be obtained, i.e.,

&q)d 27Tn’L Lt e
ﬁﬁs’;—lm %) — Gimmgmn) |, (A3)
(9(1)(:1 [ 27'rn

=-Im —3i(m,n)g (m,n) |. (A4)
ﬂ(}s’k _(mE,n) N gk gk

Using Eqgs. (6) and (9), we can write
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Fig. 11. (Color online) Same as Fig. 4, except for the Golay pupil
mask.

L e oo )]
- = ,n)exp | — + — ,
ol (p,q) VMN(m,n) am L M N
(A5)
where
fim,n) = H. ,(m,m)H}(m,n)g}(m,n). (A6)

Again, the following terms are defined to simplify nota-
tion:

A A ﬁ(pd
E(p,q) =2Ek<p,q>ﬁj -y (AT)
r\D,q

. 1 . ) mp nq
U,(m,n) = \i%) Ek(p,q)exp{— l27T<M + Nﬂ . (A8)

Using Egs. (5) and (A8), we can write one more of the de-
sired partial derivatives,

IPq 1 2 2777 e
—=Im E 2w\ — —mzAm—rLZAnU,;(m,n)Uk'(m,n) .
072k (m,n) A

(A9)

To continue, we define
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N . 1
U}L(m,n) = 2 U,t(m,n)exp(— 272, \/)\2 - m2A31 - nQA?L) s
k
(A10)
. 1 2 . pm qn
E; ,q) = —FT— U; ,nje 12 —+ — ,
¢(2,q) N t(m,n)exp| i2m YT
(A11)

. 1 mp nq

E;(m,n)zﬁv(pz E}(p,q)exp| i2m st (A12)
,q)

Using Eqgs. (1) and (A12), we can write the following par-

tial derivatives of ®y, i.e.,

(d)

Fig. 12. Same as Fig. 10, except for the Golay pupil mask.
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Dy . -
——— =Im[E](m,n)E*(m,n)], (A13)
dd(m,n) P

oDy . i
——— =Re{Ej(m,n)exp[-id(m,n)]}.  (Al4)
dA(m,n)

By Eq. (2) and the chain rule, the corresponding partial
derivative with respect to E(m ,n) is

Dy sgn[B(m,n)] Dy
= : MN
> |Bom,n)|

(m',n")

ﬁB’(m,n) &A(m,n)

by
- X ——Am',n)|. (Al5)
(m' ') GA(m',n")
The partial derivatives with respect to B(m,n) are all
that are needed for ®;(x;) and ®y(ky). Differentiating

Eqgs. (14)—(16) with respect to A(m,n) yields

IP1(xq) 1 A
— = —T'[A(m,n),x],

- (A16)
dA(m,n) MN

Dy(Ko) 1 A A
- = 2 W{F,[A(m,n)_A(m"'ﬂ’n"' 77)’K2]
dA(m,n)  (wmeD

~T'[A(m - wn - ) -Amn), k.01, (AL7)
where
x| 8l 4fxf
[(rd) = sg‘n(x)(ﬁ oy + W) , lx|=3«k '
0, lx| > 8k
(A18)

The corresponding partial derivatives with respect to
B(m ,n) are given by Eq. (A15) with ®4 replaced by ®(«;)
and CDQ(KQ).
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