Controlling the spectral response in
guided-mode resonance filter design

Samuel T. Thurman and G. Michael Morris

Techniques for controlling spectral width are used in conjunction with thin-film techniques in the design
of guided-mode resonance (GMR) filters to provide simultaneous control over line-shape symmetry,
sideband levels, and spectral width. Several factors that could limit the minimum spectral width are
discussed. We used interference effects for passband shaping by stacking multiple GMR filters on top

of one another. A design is presented for a 200-GHz telecommunications filter along with a tolerance

analysis.
thickness tolerances.
America

Compared with a conventional thin-film filter, the GMR filter has fewer layers and looser
Grating fabrication tolerances are also discussed. © 2003 Optical Society of

OCIS codes: 050.2770, 120.2440, 260.5740, 240.0310.

1. Introduction

Perhaps the most common type of optical filter is the
thin-film filter.! Thin-film filters are used widely as
narrowband filters in laser cavities, light modulators,
and optical telecommunication components. Some
advantages of thin-film optics are high efficiency and
versatility. However, narrowband filters with sub-
nanometer passbands are difficult to fabricate. For
example, thin-film filters for wavelength division
multiplexing (WDM) applications often have more
than a hundred individual layers with stringent tol-
erances on each layer.2 Guided-mode resonance
(GMR) filters are a new class of narrowband filters
that could be important in a number of applications.
Suggested applications include laser cavity reflec-
tors,34 polarizers,® light modulators,> biosensors,®
and WDM filters.” One advantage of GMR filters is
that they operate on a resonance effect, which can be
exhibited by relatively simple structures. Thus, it
might be possible to replace a many-layered thin-film
filter with a GMR filter that has much fewer layers.

The resonance effect is associated with leaky
modes that are supported by GMR structures. All
the structures that we consider in this paper have a
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waveguide layer and a grating layer. In the absence
of the grating, the waveguide would support a true
bound mode. However, the mode becomes leaky
when the grating layer is added, as energy is coupled
out of the waveguide into radiation modes. Con-
versely, energy could be coupled from an incident
plane wave into the waveguide. At resonance, en-
ergy from an incident plane wave is coupled into a
leaky mode and then back into one or more radiation
modes. The coupling is highly sensitive to the wave-
length of light and angle of incidence, and a sharp
resonant peak might be observed in the reflected light
when either of these parameters is varied.

GMR filters have been studied for several years,
yet their versatility has not been fully realized. To
make GMR filters for practical applications, one
needs to exercise control over the various features
of a filter’s spectral response, such as symmetry,
sideband suppression, spectral width, and pass-
band shape. Although researchers have investi-
gated various factors affecting symmetry and
sideband suppression®? spectral width,10-14 and
passband shape,'5 analytic design methods for si-
multaneous control over all these features have not
been developed. Tibuleac and Magnusson'é pre-
sented designs based on a numerical routine that
demonstrated control over symmetry, sideband lev-
els, and passband width. This paper presents an-
alytic design methods for controlling all four of
these line-shape features simultaneously. In Sec-
tion 2 we discuss control over symmetry and side-
band suppression based on an improved version of
the thin-film design method.®17 In Section 3 we
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present examples that integrate techniques for con-
trolling spectral width into the thin-film design
method, demonstrating simultaneous control over
symmetry, sideband suppression, and spectral
width. Also, several factors that could limit the
minimum spectral width are discussed. In Section
4 we present a technique for added control over the
passband shape based on interference effects,'> and
a 200-GHz WDM filter is presented as an example.
Section 5 discusses the fabrication tolerances for
the 200-GHz filter and shows that the thickness
tolerances for the GMR filter are much looser than
those for a conventional thin-film design. Grating
tolerances and efficiency requirements are dis-
cussed also. Rigorous coupled-wave analysis
(RCWA)18.19 is used to calculate the spectral re-
sponse for all the GMR filters in this paper. A
waveguide perturbation method2° is used to inves-
tigate the relationship between specific design pa-
rameters and spectral width. All the examples in
this paper are one-dimensional structures that op-
erate with TE-polarized light (electric field perpen-
dicular to the grating vector in a classical
mounting). However, the principles that we
present might be applied to structures that operate
with TM-polarized light and two-dimensional struc-
tures, which could be made polarization indepen-
dent.

2. Symmetry and Sideband Suppression

In 1994 Wang and Magnusson® showed that it is
useful to look at a GMR filter as an effective thin-film
stack. They used an effective medium theory (EMT)
to model a grating layer as a homogeneous thin-film
layer having some effective index of refraction.
Then they chose various layer thicknesses for a filter
based on traditional thin-film techniques in an effort
to achieve a symmetric spectral response with low
sidebands. We refer to this method of choosing the
layer thicknesses as the thin-film design method.
The principle for inducing symmetry and suppressing
sidebands in the thin-film method is to design the
effective thin-film stack to be antireflective at the
resonant wavelength. In 2000, Hegedus and Net-
terfield® suggested that the thin-film method is inad-
equate for designing symmetric filters. They cited
several filter examples based on the thin-film method
that were not symmetric on a logarithmic scale.
They suggested a numerically intensive design
method based on rigorous modeling as an alternative.
However, as we have shown,17 the results of the thin-
film method are dependent on the effective-index
model used for the grating layer.

In 1956, Rytov2! developed an EMT for finely strat-
ified media and derived a transcendental equation
relating the effective index to the physical parame-
ters of a stratified medium and the wavelength of
light. Rytov’s theory can be applied to the grating
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Fig. 1. Tllustration of a three-layer GMR filter; n, n,, n,, and n,
are the indices of the substrate, layer 1, layer 2, and the cover
region; d,, dy, and d3 are the layer thicknesses; ngy,; and ng, rep-
resent the high and low indices of the grating layer; A is the grating
period; ' is the grating fill factor, and 6 is the angle of incidence.

problem and written in the following form for TE-
polarized light:

(n® = ner?)"? tan[m(ny” — ne)*FA/N]
= _(nlo — Negr )1/2 tal’l[’.‘T(n’lo — N
X (1=F)A/N], O

where n;; and n,, are the high and low indices of
refraction for the grating, n 4 is the effective index of
refraction, fis the fill factor or duty cycle of the grat-
ing, A is the grating period, and A is the wavelength
of light. For a specified grating, this equation must
be solved numerically to determine the effective in-
dex. In the limit of long wavelength (A/N — 0), Eq.
(1) reduces to an analytic expression for the effective
index:

2)1/2

Negr = [ frn® + (1 — Finy,2]"2. 2)

Equation (1) will be referred to as the exact
effective-index model, whereas Eq. (2) will be referred
to as the zeroth-order effective-index model. In all
the examples cited by Hegedus and Netterfield, the
zeroth-order effective-index model was used with the
thin-film method, even though the period-to-
wavelength ratios were rather large (A/\ = 0.6). In
such cases when a long-wavelength approximation is
not well justified, it is more appropriate to use the
exact effective-index model.1?

Consider the design of a three-layer GMR filter
based on the geometry shown in Fig. 1. In this ex-
ample, layer 1 is a subwaveguide layer, layer 2 is a
waveguide layer, and layer 3 is a grating. The grat-
ing layer couples light from an incident plane wave
into a leaky mode that is localized to the waveguide
layer. The purpose of the subwaveguide layer is to
reduce the sidebands by improving the antireflective
properties of the effective thin-film stack. Using the
thin-film method, we chose the layer thicknesses to
make the effective thin-film stack antireflective at
the resonant wavelength. Figure 2 compares the
spectral response for two filters based on the thin-
film method. The dashed curve represents a filter
based on the zeroth-order effective-index model.
Note that errors in the effective index for the grating
lead to asymmetry in the spectral response. This
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Fig. 2. Spectral response for two three-layer GMR filters. Both
filters are based on the thin-film method: the dashed curve rep-
resents a filter taken from Fig. 3 of Ref. 4, which is based on the
zeroth-order effective-index model with f = 50%; the solid curve
represents a filter based on the exact effective-index model with /=
42%. The remaining design parameters are the same for both
filters: ng, = 1.453,n, = 2.005, ny, = 2.106, n4,; = 1.490, ng, = n,.
=1.000,d; = 106 nm, d, = 101 nm, d; = 168 nm, A = 483 nm, and
0 = 0 deg.

design was cited by Hegedus and Netterfield as an
example of when the thin-film method failed. The
solid curve in Fig. 2 represents a design based on the
exact effective-index model. The grating fill factor
was adjusted for this filter until the effective index
was equal to the index that was used to design the
filter. Note that the results of the thin-film method
might be improved by use of the appropriate
effective-index model. It is noted that the EMT is
approximate and as a result filters based on the thin-
film method sometimes exhibit asymmetry, espe-
cially when the resonant peak is narrow. As we
show in Section 3, such asymmetry might be removed
by adjustment of the grating depth and/or fill factor.
Also, it is noted that Lorentzian-like behavior near
resonance sets a lower bound on the sideband levels.

3. Spectral Width

As mentioned in Section 1, the resonance effect is
associated with a leaky mode supported by the GMR
structure. The propagation coefficient of a leaky
mode is complex and can be written as

where B, and vy are purely real and i is the imaginary
number. The imaginary part of the propagation co-
efficient v is interpreted as the loss of the leaky mode.
It is generally understood that the spectral width of a
resonant peak is proportional to this loss parame-
ter.1922  Norton et al.12 showed that, for a resonance
associated with a single leaky mode, the full spectral
width at half-maximum is approximately given by

ANpwaM = 7\0A'Y/"T > 4)

where )\ is the resonant wavelength, A is the grating
period, and v is determined at the resonant wave-

length. Therefore, to control spectral width, one
must be able to control the loss of the leaky mode.

Many of the factors used to control the loss also
affect other spectral features. For example, Fano©
considered loss that is due to material absorption and
predicted that an increase in absorption would lead to
an increase in the spectral width. Although this is
true, increasing the absorption comes at the price of
decreased peak efficiency. Norton et al. showed how
the grating depth!2 and grating modulation!3 contrib-
ute to coupling loss and affect the spectral width.
However, these parameters also play key roles in the
determination of spectral symmetry and sideband
suppression. Here we are interested in combining
techniques for controlling spectral width with the
thin-film method, which is used for controlling sym-
metry and sideband levels. We accomplished this by
designing the effective thin-film stack with some
layer thickness that might be varied to control the
coupling loss of the leaky mode while maintaining the
antireflective properties of the stack. At first, it
might seem difficult to design a filter that meets
these requirements, but in practice it is actually quite
simple.

Recently, Levy-Yurista and Friesem!4 showed that
a buffer layer introduced between the grating and the
waveguide layers could be used to control spectral
width. We consider a structure similar to theirs but
examine conditions for preserving symmetry and
sideband suppression as the spectral width is ad-
justed. The three-layer filter geometry shown in
Fig. 1 will be used. Now, layer 1 is the waveguide
layer, and layer 2 is a buffer layer. The leaky mode
is still localized in the waveguide layer, but the thick-
ness of the buffer layer controls the coupling loss of
the leaky mode. If the buffer layer thickness is in-
creased, the grating is pushed farther away from the
waveguide layer, lowering the coupling loss and pro-
ducing a narrower spectral width. The conditions
for preserving symmetry and sideband suppression
can be met by designing the grating layer as a
quarter-wave antireflection layer between the cover
region and the buffer layer, making the waveguide
layer half-wave, and matching the indices of the
buffer and the substrate materials. Figure 3 shows
the spectral response for such a series of GMR filters
with various buffer layer thicknesses. The grating
period was adjusted along with the buffer thickness
to maintain the same resonant wavelength. Note
that the width of the resonant peak decreases as the
buffer layer thickness increases and that symmetry
and sideband suppression are nearly preserved. As
the spectral width becomes narrower, the spectral
response is more sensitive to errors introduced by the
EMT and the line shape becomes asymmetric. Fig-
ure 4 shows the relationship between the spectral
width and the thickness of the buffer layer. Note
that the spectral width is exponentially dependent on
the buffer layer thickness.

The same principles for controlling the spectral re-
sponse can be applied to other filter geometries.
Figure 5 shows a five-layer GMR filter geometry. In
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Fig. 3. Spectral response for a series of three-layer GMR filters
with various buffer layer thicknesses. The solid curve represents
a filter with d, = 0 nm and A = 855 nm; the dashed curve repre-
sents a filter with d, = 150 nm and A = 846 nm; the dotted curve
represents a filter with d, = 300 nm and A = 843 nm; the dash—dot
curve represents a filter with d, = 500 nm and A = 842 nm. The
remaining design parameters are the same for each filter: n, =
ngy = ngpy; = 1.500, ny = 2.000, ng, = n, = 1.000,d; = 388 nm, d; =
317 nm, f = 33%, and 6 = 5 deg.

this example layers 1 and 2 are designed to be anti-
reflective between the substrate and layer 3, which is
a waveguiding layer. This is done by choosing the
thickness of layers 1 and 2 based on a traditional
V-coat design.! Instead of a quarter-wave grating
layer on top of the filter, layers 4 and 5 together are
designed to be antireflective between the cover region
and the waveguide layer in a manner analogous to a
V coat. Here, the thickness of the waveguide layer is

10!
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Fig. 4. Relationship between spectral width and buffer layer
thickness for the series of GMR filters in Fig. 3. The squares
represent data from RCWA calculations and the line represents
calculations based on Eq. (4), where a waveguide perturbation
method? is used to estimate the loss of leaky mode y. The design
parameters are the same as for the filters in Fig. 3.
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Fig. 5. Ilustration of a five-layer GMR filter made up of a V coat,
a waveguide layer, and another V coat that includes a grating
layer.

used to control spectral width. When the waveguide
thickness increases, the leaky mode associated with
the resonance becomes more localized in the
waveguide layer, decreasing the coupling loss and
producing a narrower spectral width. We controlled
symmetry and sideband suppression by designing
layers 4 and 5 as a V coat between the cover region
and the waveguide material and layers 1 and 2 as a
V coat between the waveguide material and the sub-
strate. Figure 6 shows the spectral response for a
series of such GMR filters with various waveguide
thicknesses. For these filters we used the thin-film
method to determine the grating layer thickness, as-
suming the effective index of the grating was 1.250.
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Fig. 6. Spectral response for a series of five-layer GMR filters
based on the geometry of Fig. 5 with various waveguide layer
thicknesses. The solid curve represents a filter with d; = 1000
nm, A = 739 nm, and f = 41.2%; the dashed curve represents a
filter with d; = 1500 nm, A = 727 nm, and f = 41.3%; the dotted
curve represents a filter with d; = 2000 nm, A = 722 nm, and /' =
41.4%. The remaining design parameters are the same for each
filter: ng, = ny = ny = ngy; = 1.500, ny = ngy = 2.000, ng, = n, =
1.000,d, = 64 nm,d, = 86 nm,d, = 186 nm, d; = 160 nm, and 6 =
10 deg.
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Fig. 7. Relationship between spectral width and waveguide layer
thickness for the series of GMR filters in Fig. 6. The squares
represent data from RCWA calculations and the curve represents
calculations based on Eq. (4), where a waveguide perturbation
method?2 is used to estimate the loss of leaky mode y. The design
parameters are the same as for the filters in Fig. 6.

As the waveguide layer thickness was increased, the
grating period was adjusted to maintain the same
resonant wavelength, and the grating fill factor was
adjusted to optimize the performance of the V coat
between the cover and the waveguide material. For
the optimization, RCWA was used to model a struc-
ture consisting of layers 4 and 5 on top of a substrate
consisting of the waveguide material and the grating
fill factor was adjusted to minimize the reflectance.
Note in Fig. 6 that symmetry is preserved as the
spectral width is adjusted even at narrow spectral
widths. Figure 7 shows the relationship between
the spectral width and the thickness of the waveguide
layer.

In practice there is a lower bound on the spectral
width that can be obtained with a GMR filter. Sev-
eral authors0-13.23 have suggested that scattering
and other dissipative losses can limit the width of a
resonant peak. The effect of these losses is to reduce
the peak efficiency and broaden the width of the res-
onance. These effects are minimized when

Ya < Ye s (5)

where v, represents the dissipative losses of the
leaky mode and v, represents the coupling loss. As
the dissipative loss approaches the coupling loss, the
width of the resonance will be larger than expected
and the peak efficiency will drop. A lower bound on
spectral width can be estimated from the dissipative
loss for a typical planar waveguide. IfL isdefined as
the waveguide loss in units of decibels per centimeter,
then

Ya = L/[20 logye(e)]. (6)

Using a typical loss value of L = 1 dB/cm,24 Egs. (4)
and (6) and inequality (5) can be used to calculate a
lower bound on the spectral width as

ANpwaym => 0.0044 nm (7)

Table 1. Estimated Size of GMR Filters for Telecommunication

Applications
Channel Spacing )
—_— Spectral Device
(GHz) (nm) Width (nm) Size (cm)
200 1.6 0.40 0.8
100 0.8 0.20 1.6
50 0.4 0.10 3.1

for a resonant wavelength of A\, = 1550 nm and a
grating period of A = \,/2. In practice, one would
expect the bound on the spectral width to be larger
owing to grating fabrication errors, which have been
neglected here.

Another factor that can limit the minimum spec-
tral width is finite grating and beam size. The effect
of finite size is to lower the efficiency and broaden the
spectral width. Saarinen et al.,2> estimated that the
number of grating periods required to make the ef-
fects of finite grating size negligible is given by

where N is the number of grating periods and C is a
proportionality constant of the order of unity.
Therefore, the required width of grating area w can
be written by use of Eq. (4) as

w = ANo/ANpwam = 7/, 9

when C = 1. This expression is in agreement with
other approximate models26-28 for the effect of finite
grating size and experiments2? for single leaky-mode
filters. Avrutsky and Sychugov?3 investigated the
effects of finite beam size and found that the beam
diameter should satisfy the following relation:

ay>1, (10)

where a is the beam diameter. From their results,
peak efficiencies greater than 90% can be obtained
when a y =~ 5 for a Gaussian beam.

Consider a GMR filter with a spectral width equal
to the lower bound given in Eq. (7). According to
relation (9) and inequality (10), the grating area
should be at least 27 cm wide and it should be used
with beams of the order of 43 cm in diameter. Thus,
the effects of finite grating area and beam size can be
more significant than the effects of dissipative losses.

An important application for narrowband filters is
in optical telecommunication systems. Table 1
shows the estimated device size for GMR filters for
WDM applications. The device sizes are estimated
as the sum of the finite grating and beam size criteria,
assuming the resonance is associated with a single
leaky mode, A\, = 1550 nm, and A = \,/2, i.e., size =
w + a, where w is calculated from relation (9) and a
is calculated from a v = 5 by use of Eq. (4). In the
50-GHz case, the GMR filter should be larger than 1
in. (2.54 cm) in diameter, which might be a limiting
factor when packaging issues are considered.

The finite beam size criterion can also be linked to
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the angular tolerances for GMR filters. Norton et
al.’2 showed that the angular width of a resonant
peak is approximately given by

AB = N\yy/(w cosh), 11

under the same assumptions that accompany Eq. (4),
i.e., the resonance is associated with a single leaky
mode. The angular divergence of a Gaussian
beam?? is given by

30 = 4N/(ma), (12)

where a is the diameter of the beam waist. An ob-
vious condition for high efficiency is that the beam
divergence be much less than the angular width for
the filter, i.e., 80 << A8. Using Eqgs. (11) and (12), we
can write this condition as

(13)

which agrees with the condition given above for a in
inequality (10). Thus, if the angular width of the
resonance can be increased, smaller device sizes
might be possible. Lemarchand et al.3° and Jacob et
al.31 have reported on increasing the angular width of
GMR filters operating at normal incidence. Such
effects are based on interactions between forward-
propagating and backpropagating leaky modes.

a > 4 cos/vy,

4. Passband Shaping

The spectral response of a GMR filter near resonance
is characterized by Lorentzian-like behavior. This
is a general characteristic of forced oscillating sys-
tems near resonance,32 such as damped mechanical
oscillators and RLC electric circuits. A Lorentzian
line shape is characterized by a narrow rounded peak
with rather slow sideband transitions. Many appli-
cations require a more rectangular spectral response,
i.e., a flatter passband with sharper sideband transi-
tions. Interference effects are often used for pass-
band shaping in the design of traditional thin-film
filters. A single-cavity Fabry—Perot filter is a classic
thin-film design for a narrowband filter. However,
the spectral response for a single-cavity filter has a
narrow peak with slow sideband transitions, making
it unsuitable for many applications. The transmit-
ted and reflected fields from a Fabry—Perot filter un-
dergo a 180-deg phase shift through the passband.
This phase shift is exploited by stacking multiple
Fabry—Perot filters on top of one another such that
multiple reflections interfere constructively inside
the passband and destructively outside the passband.
The result is a more rectangular passband for the
stacked filter.1:2

Similarly, interference effects can be used for pass-
band shaping with GMR filters. Jacob et al.1®
showed that stacking identical GMR filters together,
such that multiple reflections interfere constructively
at the design wavelength, results in a more rectan-
gular passband. However, strong sidelobes form
when more than two filters are stacked together this
way. We have found that the sidelobes can be elim-
inated, at least for the case of a four-filter stack, by
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Fig. 8. Illustration of a stack of four GMR filters. Each filter is
identical and made up of a V coat, a waveguide layer, and an
antireflective grating layer. d,;, d,s, d.3, and d,, represent the
thicknesses of the spacer layers between the filters. An addi-
tional V coat is on top of the stack. The design parameters are n
=Ny =Ny, = Nye = 1.500,n, = ng = nyy,; = ny; = 2.000, n, = 1.000,
d; =64 nm,d, = 85 nm, d; = 1027 nm, d, = 238 nm, A = 769 nm,
f=30%,d,; = 1520 nm, d., = 1808 nm, d ;5 = 1520 nm, d, = 600
nm, d,; = 292 nm, d,, = 195 nm, and 6 = 5 deg.

adjustment of the spacing between filters. Specifi-
cally, the spacing between the second and the third
filters is increased by a quarter wave. Figure 8 il-
lustrates a stack of four identical GMR filters de-
signed as a 200-GHz WDM filter. Figure 9 shows
the spectral response for the stacked GMR filter of
Fig. 8. For comparison, Fig. 9 also shows the spec-
tral response of a conventional 200-GHz WDM thin-
film filter taken from Ref. 2. Note that spectral
responses are nearly equivalent. The performance
specifications for the filters require that the spectral
width be at least 0.7 nm at —0.3 dB and less than 2.5
nm at —20 dB.

We designed the GMR filter by first constructing
a single symmetric GMR filter with the appropriate
spectral width using the techniques described in
the previous sections. Then, several of these fil-
ters were stacked together. The spacing between
filters was determined in a manner analogous to
that of Jacob et al.,®> with the exception that the
spacing between the middle pair of filters was in-
creased by a quarter wave. This change elimi-
nates the sidelobes, allowing the filter to meet the
design specifications. Finally, a V coat was added
to the top of the stack and the cover region was set
to air. The spacers are thick enough such that
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Fig.9. Spectral response of two 200-GHz WDM filters. The solid
curve represents the stacked GMR filter of Fig. 9, which operates
in reflection, whereas the dashed curve represents a three-cavity
Fabry—Perot thin-film filter, which operates in transmission. The
design of the thin-film filter is taken from Ref. 2: A |LH (HL)” 6H
(LH)” L (HL)” 6H (LH)” L. (HL)? 6H (LH)"| G, where L = 303.51 nm,
H = 94.4 nm, each H and L represents a quarter-wave layer of the
high- and low-index materials, and the indices of refraction are n,
= 1.000, n; = 1.444, ny = 2.100, and ng; = 1.500. The design
wavelength is A\, = 1550 nm and the angle of incidence is 6 = 0 deg.
The dotted lines indicate the filter specifications.

neighboring GMR filters do not perturb the leaky-
mode propagation coefficients.

5. Fabrication Tolerances

It is important to consider fabrication tolerances for
narrowband filters. Often, thin-film WDM filters
have extremely tight tolerances. Macleod’s toler-
ance analysis for the 90-layer thin-film filter of Fig. 9
yielded random thickness tolerances of 0.003% with-
out compensation.2 This corresponds to absolute
tolerances of 0.006 and 0.008 nm on the quarter-wave
H and L layers, respectively, which are impossible to
meet. However, since most of the layers are quarter
wave, optical monitoring can be used during fabrica-
tion to compensate for thickness errors in lower lay-
ers.

We present a tolerance analysis of the stacked
GMR filter for comparison. Table 2 shows the tol-
erances for each design parameter, whereas Fig. 10
shows the effect of fabrication errors on the spectral
response. Although the nominal values for each
GMR filter in the stack are identical, all the errors
were applied to each layer independently, with the
exception of the grating period. The period was the
same for each grating layer because of limitations in
our implementation of RCWA. Note that the thick-
ness tolerances for the GMR filter are much looser
than those for the thin-film filter. It is interesting to
note that the primary effect of fabrication errors on
the thin-film filter was to degrade the passband,
whereas the primary effect on the GMR filter was to
degrade the sidebands.

Even though the thickness tolerances for the GMR
filter can be relatively loose, the presence of embed-
ded grating layers complicates fabrication. Further-

Table 2. Tolerance Analysis of GMR 200-GHz Telecommunication Filter

Relative
Nominal Tolerance Absolute
Parameter Value (%) Tolerance
d,, 195.1 nm 1 2.0 nm
d,s 291.8 nm 1 2.9 nm
dyy 600.4 nm 1 6.0 nm
dgg 1549.6 nm 0.1 1.5 nm
dgo 1808.4 nm 0.2 3.6 nm
dsq 1549.6 nm 0.1 1.5 nm
dy 238.1 nm 0.5 1.2 nm
dg 1027.0 nm 0.02 0.2 nm
d, 85.3 nm 0.5 0.4 nm
d, 63.9 nm 0.5 0.3 nm
A 768.661 nm 0.001 0.008 nm
f 30.01% 0.5 0.15%
a 230.7 nm 0.5 1.2 nm
Grating offset 0 nm — 769 nm

more, the tolerances for the grating period and profile
are tight. One possible method for fabricating the
embedded gratings is ion implantation.?? Ion im-
plantation would produce gratings with smaller in-
dex modulations that are likely to have looser
tolerances on the grating profile. Errors in the fill
factor change the effective index of the grating layer,
but, if the grating modulation is small, the effective-
index will be less sensitive to these errors. The in-
dividual GMR filters in the stack would need to be
redesigned to achieve the same passband width with
a smaller modulation. It is interesting to note from
Table 2 that offsets between gratings are essentially
irrelevant. An intuitive explanation of this is that
all the gratings are subwavelength and effectively act
as homogeneous thin films.

Another important consideration is the required
diffraction efficiency for each of the GMR filters. If
the insertion loss specification is 0.3 dB and there are
four GMR filters in the stack, then each filter should
have a peak efficiency greater than 98%. In 1990,
Gale et al.3* demonstrated a peak efficiency of the

20F -y j oo

Reflectance [dB]

-30

)/

1548 1549 1550 1551 1552
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Fig. 10. Spectral response for an ensemble of GMR filters based
on the design of Fig. 8 with random fabrication errors. Table 2
shows the nominal value and standard deviation for each design
parameter. The dotted lines indicate the filter specifications.
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order of 90% for a one-dimensional embedded GMR
structure operating with TM-polarized light. They
fabricated a surface-relief grating by embossing and
then evaporated material on top of the grating.
More recently Liu et al.35 obtained a peak efficiency of
98% for a one-dimensional structure operating with
TE-polarized light. Peng and Morris3¢ fabricated a
polarization-independent two-dimensional GMR fil-
ter with a peak efficiency of 62%.

6. Conclusion

Guided-mode resonance filters have been suggested
for use in a large number of applications, but so far
their use has been impractical in most cases. Many
applications place requirements on the spectral re-
sponse for a filter that designers have not been able to
meet. As design methods for GMR filters improve,
their use in practical situations becomes more likely.
Here we have shown that techniques for controlling
the spectral width can be used in conjunction with the
thin-film design method, which provides control over
symmetry and sideband levels. Furthermore, one
can take advantage of interference effects for pass-
band shaping.

Several other issues can limit the use of GMR fil-
ters in practice. Dissipative losses, finite grating,
and finite beam size broaden the spectral width and
reduce the peak efficiency for a filter. Dissipative
loss values of the order of a few decibels per centime-
ter, which is typical for a planar waveguide, are neg-
ligible for most applications. However, the loss is
likely to be much higher in GMR filters because of
grating fabrication errors. As the spectral width de-
creases the device size required for acceptable perfor-
mance increases and could eventually become
prohibitive. For example, the required size for a 50-
GHz WDM filter was estimated to be of the order of 3
cm, which might conflict with telecom packaging con-
straints. Smaller device sizes might be possible for
filters that exhibit interactions between forward
propagating and backpropagating leaky modes.

GMR filters have some advantages and disadvan-
tages when compared with conventional thin-film fil-
ters. As an example, we compared GMR and thin-
film designs of a 200-GHz WDM filter. The GMR
design has fewer layers, but at the cost of fabricating
four embedded grating layers. Fewer layers lead to
looser thickness tolerances, but tolerances for the
grating period and profile are tight. The alignment
of each grating relative to the others is irrelevant.

The authors thank Daniel H. Raguin and Tasso
R. M. Sales for their helpful discussions, insights, and
suggestions, as well as their assistance with toleranc-
ing the stacked GMR filter. This research was sup-
ported by Corning, Incorporated.
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