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ABSTRACT 
Fourier transform imaging spectroscopy can be performed with a segmented-aperture telescope or a multiple-telescope 
array using the subaperture piston control mechanisms. Spectrum recovery from intensity measurements is analyzed for 
a general aperture configuration. The spatial transfer functions of the recovered spectral images are shown to vanish 
necessarily at the DC spatial frequency. This poses an interesting image reconstruction problem as the recovered 
spectral data is missing low spatial-frequency content. Results of a band-by-band reconstruction of simulated data are 
presented where the low spatial frequency data is reconstructed by maximizing a sharpness metric based on the spatial 
derivatives of the object estimate. 
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1. INTRODUCTION 
Segmented-aperture telescopes and multiple-telescope arrays (MTA�s) are systems that use a collection of relatively 
small aperture optics to achieve a resolution equivalent to a larger-aperture monolithic system. In a segmented-aperture 
system, the primary is sectioned, while in a multiple-telescope system, light is collected by an array of telescopes and 
imaged to a common plane. Resolutions higher than that of an individual subaperture (one section of the primary or a 
single telescope from the array) can only be achieved if the optical path lengths through each subaperture are equal. 
Thus, such systems have independent optical path-length or piston control mechanisms for each subaperture. While this 
article concentrates on multiple-telescope arrays, the techniques described apply equally to segmented-aperture systems. 
Figure 1 is an illustration of a MTA having only two subapertures, in which the piston control/path delay mechanisms 
are shown as movable corner mirrors. Such systems offer some advantages over comparable monolithic systems, 
including reduced weight and volume,1 and reduced cost.2 One of the more important technical challenges involved 
with using a segmented-aperture or multiple-telescope system is the phasing of the subapertures. The phase diversity 
technique is one way to accomplish this with the addition of only a beamsplitter and an extra detector to the system.3,4 
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Figure 1. Illustration of a multiple-telescope array having only two subapertures. 
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 Fourier transform spectroscopy is a well-established technique for obtaining spectral information from a series 
of polychromatic intensity measurements.5 Typically, Fourier transform imaging spectroscopy (FTIS) is performed by 
relaying an image through a Michelson interferometer,6 making a series of intensity measurements with various optical 
path differences (OPD�s) between the arms of the interferometer, and recovering the spectral data through post-
processing. In an MTA, the existing path delay lines can be used to introduce the OPD�s required for the spectroscopy. 
Such an implementation is an alternative to the addition of a Michelson interferometer at the back end of the telescope. 
Kendrick et al.7 demonstrated this technique for a two-aperture system imaging an array of point sources. Here, we 
show that the spatial transfer functions for the spectral images from such a system are zero-valued in some finite region 
about the DC spatial frequency,8 which makes imaging extended objects more difficult. This presents an interesting 
image reconstruction problem, as the spectral images are missing low spatial frequency information. We present a 
nonlinear sharpness metric, based on the spatial derivatives of the object estimate, and use this metric to reconstruct the 
missing low spatial frequency content of simulated FTIS data from an MTA. Here, the data is reconstructed 
independently for each spectral band. 
 
 Section 2 presents the basic theory for modeling the intensity measurements in a segmented-aperture telescope 
or MTA, the post-processing steps needed to recover spectral data from the intensity measurements, some noise 
considerations, and the image reconstruction algorithm. Section 3 presents results for a simulation of a six-aperture 
MTA, including a band-by-band reconstruction of the FTIS data. Section 4 is a discussion of the simulation results.  

2. THEORY 

2.1. Measurements 
The modeling is based on the simplified refractive system shown in Figure 2. This system contains: (i) an object plane 
with spatial coordinates (xo, yo), (ii) a collimating lens with focal length fo, (iii) a pupil plane, with spatial coordinates 
(ξ,η), containing the subapertures and corresponding path-delay elements of the telescope, (iv) an imaging lens with 
focal length fi, and (v) an image plane with spatial coordinates (x,y). The object is assumed to be polychromatic and 
spatially incoherent with a spectral density So(xo,yo,ν), where ν is the optical frequency. The magnification of the system 
is M = �fi/fo. In general there may be any number of subapertures, of which the path-delays can be controlled 
independently. Here, we only consider the case where the subapertures are divided into two groups: during the 
measurements the subapertures in the first group have zero path delay, while those in the second have a common path 
delay. The scalar field transmission functions in the pupil plane for the for each group of subapertures are written as 
T1(ξ,η) and T2(ξ,η), respectively, where the system is assumed to be aberration-free and the effect of the path delay 
elements are left out of the transmission functions by definition. The path delay for the second group of subapertures is 
written as cτ, where c is the speed of light and τ is an equivalent time delay variable. 
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Figure 2. Simplified refractive model of a segmented-aperture or multiple-telescope system. 

 Making paraxial approximations,9 the image intensity I(x,y,τ) is given by the standard incoherent imaging 
equation for polychromatic light, i.e., 
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where the image intensity is written explicitly as a function of the time delay variable, κ = λ2/π for a perfectly 
incoherent object, x′ = Mxo, y′ = Myo, and h(xi,yi,ν,τ) is the normalized monochromatic point spread function (PSF) of 
the optical system, which can be written as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1,1 1,2 2,1 2,2, , , , , , , exp 2 , , exp 2 , ,ν τ = ν + ν − πντ + ν πντ + νi i i i i i i i i ih x y h x y h x y i h x y i h x y , (2) 

where the terms hp,q(xi,yi,ν) are referred to as spectral point spread functions (SPSF�s) and defined as 
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is the coherent impulse response for the pth subaperture group. 
 
 For FTIS, the image intensity is measured over a range of time delays τ. The measured data set, which has two 
spatial coordinates and a time-delay coordinate, will be referred to as the raw data cube. The data in this cube represents 
a measured fringe packet along the τ-dimension at each spatial coordinate (xi,yi). 

2.2. Spectral data 
Spectral data is recovered from the raw data cube by the standard Fourier technique: (i) subtracting the bias from the 
fringe packet at each point in the image plane, and (ii) Fourier transforming the τ-dimension to ν′. Starting from Eq. (1) 
and using an infinite continuous Fourier transform, the spectral image can be written as 
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Note that this equation represents a set of spectral images given by a magnified version of the object spectral density 
convolved spatially with the SPSF�s at each optical frequency. By definition, the object spectral density is real-valued, 
non negative, and non-zero only for positive frequencies. However, the quantity in Eq. (5) can be non-zero for negative 
frequencies, and the definition of the SPSF�s [see Eq. (3)] implies that the spectral data is complex-valued in general. 
Since the intensity measurements are real-valued, the spectral data possesses Hermitian symmetry about ν′ = 0:    
Si(x,y,�ν′) = Si

*(x,y,ν′). Si(x,y,ν′) can be referred to as the complex-valued spectral image cube. 
 
 Transforming the spectral image cube into the spatial frequency domain yields 
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where Gi(fx,fy,ν′) and Go(fx,fy,ν′) are the two-dimensional spatial Fourier transforms of Si(x,y,ν′) and So(x,y,ν′), 
respectively, and the terms Hp,q(fx,fy,ν′) are spectral optical transfer functions (SOTF�s) defined as 
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where !  represents a two-dimensional cross-correlation with respect to the spatial frequency variables. Note that the 
SOTF�s in Eq. (7) are given by the cross-correlations of the two subaperture groups. Furthermore, the SOTF�s vanish 
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necessarily at the DC spatial frequency, since the subapertures are physically non-overlapping in the pupil plane. In an 
actual system, there will be a minimum distance between subapertures, and the SOTF�s will vanish in some finite region 
around DC. Thus, the DC and some low spatial-frequency components will be missing from the FTIS data. Gi(fx,fy,ν′) is 
referred to as the spectral/spatial-frequency cube. 

2.3. Noise 
In a real system, the intensity measurements are sampled, there is noise in the measurements, and discrete Fourier 
transforms (DFT�s) are used instead of continuous transforms. While the noise may come from various sources, usually 
it is assumed that the noise includes both Poisson (photon) noise and Gaussian detector noise. Even if the noise in the 
measurements is dominated by Poisson noise, the noise in the real and imaginary parts of the complex-valued spectral 
images is spatially independent and Gaussian since it is a linear combination of many random variables (through the 
DFT operation). In general, the noise in the spectral images is spatially non-uniform due to the Poisson noise 
component in the measured data. The noise in the spectral/spatial-frequency cube is Gaussian, nearly uncorrelated, and 
approximately uniform in the spatial frequency dimensions. 

2.4. Band-by-band image reconstruction 
The FTIS images obtained from a segmented-aperture telescope or MTA require a nonlinear image reconstruction 
algorithm, since low spatial frequency information is missing from the data. Linear algorithms, such as the Wiener-
Helstrom filter,10 can only restore measured spatial frequencies, i.e., where the SOTF�s terms are non-zero, while 
nonlinear algorithms offer the ability to fill-in missing data based on various assumptions about the object. Here, we 
describe a nonlinear algorithm that we used for band-by-band reconstructions of simulated FTIS data in Sec. 3. 
 
 Our approach is to formulate the image reconstruction problem as a constrained optimization, in which an 
objective function is minimized or maximized subject to constraints that ensure that the solution is consistent with the 
measured data and prior information. Example objective functions include entropy,11 maximum likelihood,12,13 and 
various sharpness metrics.14,15 We have had success filling-in missing low spatial frequencies by maximizing the 
following derivative-based sharpness metric 
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where gest(m,n,l) represents a discrete estimate of the object spectral density, the integers m ∈  [1,M] and n ∈  [1,N] are 
spatial samples in the x- and y-directions, l is a particular spectral sample, and σg is a normalization constant. This 
metric is related to Muller and Buffington�s14 sharpness metric S4 in that it is based on the spatial derivatives of the 
object estimate. Note that individual terms in the summation are maximized when the finite-difference derivatives of the 
object estimate in the x- or the y-directions are zero, or at least small compared to σg. Thus, the maximization of this 
metric implies a particular assumption about the scene, i.e., the scene consists of regions that are spatially uniform. We 
find that this metric changes with respect to the derivative (finite difference) values most rapidly when the magnitude of 
the derivative is near σg. Hence, the metric puts most emphasis on reducing these derivatives and cares less about very 
large magnitude derivatives. 
 
 To formulate a data-consistency constraint, we let Gest(u,v,l) represent the two-dimensional spatial DFT of 
gest(m,n,l), where u ∈  [1,M] and v ∈  [1,N] are spatial frequency samples in the fx- and fy-directions. Then, we define the 
following constraint function for each spectral band 
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where H2,1(u,v,l) is a discrete version of the SOTF H2,1(fx,fy,ν′), Gi(u,v,l) are the measured samples of the spectral/ 
spatial-frequency cube, σ2 is the variance of the noise in the real and imaginary parts of the spectral/spatial-frequency 
cube, and K is the number of spatial frequency components for which H2,1(u,v,l) is non-zero. Note that we are only 
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reconstructing the data for positive frequencies (ν′  > 0), and therefore Eq. (9) only contains the SOTF term H2,1(fx,fy,ν′) 
and not H1,2(fx,fy,ν′). Also, note that for Cl ≥ 0, Gest(u,v,l) agrees on average with the measured spatial frequency data to 
within the standard deviation of the noise. Thus, the agreement between the reconstruction and the measurements is 
reasonable when the constraint is satisfied. In the context of the optimization problem, the constraint Cl ≥ 0 defines a set 
of feasible solutions over which a chosen metric is to be minimized or maximized. In practice, we solve the constrained 
optimization problem by incorporating the constraint into a sequence of new objective functions as a quadratic penalty 
function,16 which are solved by a conjugate-gradient17,18 routine with analytically calculated gradients. 
 
 Note that the FTIS data does not contain band-by-band information about the DC components of the spectral 
images, and a band-by-band reconstruction using the metric in Eq. (8) and constraint in Eq. (9) will not yield 
meaningful DC components. Here, after such a reconstruction we add DC components to make the reconstructed 
spectral images non negative on a band-by-band basis, since the object spectral density must be non negative. This is 
done, for each l, by subtracting the minimum of gest(m,n,l) from gest(m,n,l). 

3. SIMULATION 
The telescope modeled for the simulation contains six circular subapertures arranged in a hexagonal pattern, as shown 
in Figure 3(a). The subapertures are divided into two groups, one group that has zero path-delay and the other group has 
a common path-delay. The figure shows which subapertures belong to each group. Note that the SOTF terms scale with 
the optical frequency. Figure 3(b) and 3(c) show the SOTF�s for the largest optical frequency used in the simulations. 
Note there is area around DC where the amplitude of the SOTF�s is zero or small. This corresponds to the range of 
spatial frequencies around DC where the FTIS data will be missing or highly attenuated. 
 
 The scene used for the simulation is shown in Figure 4. The scene is composed of the sum of two uniform 
rectangular objects, with different spectral densities, embedded in a dark background. The spectral data is limited to 
optical wavelengths from 400 to 700 nm, or from 430 to 750 THz in frequency units. Simulated intensity measurements 
in units of photons are shown in Figure 5. The interference fringes are oversampled by 20% with OPD increments of 
c∆τ = 167 nm over a range of �10.67 µm < cτ ≤ 10.67 µm with 128 samples. The resulting spectral resolution in the 
FTIS data is ∆ν = 14.1 THz, or 469 cm-1 in wavenumber units, or ∆λ = 14 nm at λ = 550 nm in terms of wavelength. 
The magnitude of the measurements is scaled such that the average number of photons per pixel with zero path delay   
(τ = 0) is 10,000. The only noise included in the simulated measurements is photon noise. 
 
 Complex-valued spectral images are obtained from the intensity measurements by Fourier transforming from 
the τ-domain to the ν′-domain. Figure 6(a) shows the real part of one such spectral image. Notice that the image is zero-
mean since the DC component is missing. The low spatial frequency content of the rectangular objects is missing also, 
but the image contains edge information. Figure 6(b) shows a Wiener-Helstrom reconstruction of the spectral image. 
The Wiener filter has sharpened the edges considerably and filtered out some of the noise, but cannot fill in the missing  

                       
Figure 3. Telescope configuration used for simulations: (a) pupil configuration (subapertures 
with zero path-delay are shown in black, and those with a common path-delay are shown in 
white), (b) SOTF term H1,2(fx,fy, ν′) for FTIS data at ν′  < 0, and (c) SOTF term H2,1(fx,fy, ν′) 
for FTIS data at ν′  > 0. 
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Figure 4. Object for the simulation: (a) spatial slice of the object spectral density at a 
particular optical frequency, (b) spectral density of the square object centered in the middle of 
the scene, and (c) spectral density of the rectangular object below and left of the center of the 
scene. 

 
Figure 5. Simulation results for the raw data cube: (a) noisy image intensity at t = 0, (b) 
sampled fringe packet at m = n = 32, and (c) sampled fringe packet at m = 37 and n = 64. 

 
Figure 6. Simulation results for the spectral image at the same frequency as in Figure 4(a): (a) 
real part of data from the complex-valued spectral image cube (raw image), (b) Wiener-
Helstrom filtered version of (a), and (c) results of nonlinear algorithm and DC restoration. 
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Figure 7. Spectral data at various spatial locations for: the object (solid lines), the real part of 
data from the complex-valued spectral image cube (dashed lines), the Wiener-Helstrom 
filtered data (dotted lines), and the reconstructed data using the nonlinear algorithm without 
the DC restoration (circles) and with the DC restoration (x�s). 

low spatial frequencies. Figure 6(c) shows one band of the band-by-band reconstruction results for maximizing Eq. (8) 
subject to the constraint that Cl ≥ 0, and adding a DC component to make the reconstruction non negative. In this 
reconstruction, the normalization parameter σg for each band was chosen to be equal to 14% of the difference between 
the maximum and minimum values of the corresponding Wiener-filtered image. The initial guess for the optimization 
routine was the real part of the raw spectral image shown in Figure 6(a). As seen in Figure 6(c), the nonlinear algorithm 
has filled in the missing low spatial frequencies quite well. 
 
 Figure 7 shows spectral data at various spatial locations for: the object, the real part of the complex-valued 
spectral images, the Wiener filtered images, and the results of the nonlinear algorithm with and without the DC 
restoration. Figure 7(a) shows data for a point near an edge of one of the rectangles in the scene, while Figure 7(b) and 
7(c) show spectral data for points that are not close to an edge. In each of the graphs, notice that the amplitude of the 
complex-valued raw spectral data is small compared to the object data, even in Figure 7(a), since the amplitude of the 
SOTF is small (maximum value = 0.33). The Wiener-Helstrom filter sharpens the spatial edges of the data, increasing 
the amplitude of the data near edges, but cannot reconstruct the data away from edges, due to the missing low spatial 
frequency data. The nonlinear algorithm does well at restoring all of the low spatial frequencies, except the DC 
components. Only after restoring the DC components does the reconstructed data agree well with the object data. 

4. DISCUSSION 
Fourier transform imaging spectroscopy can be performed with a segmented-aperture telescope or MTA by introducing 
path delays between various subapertures, using existing optical path length control mechanisms. Unlike the 
conventional optical transfer function, which is given by the autocorrelation of the entire pupil function for the 
telescope, the SOTF�s for the resulting spectral images are given by the cross correlation between pupil functions for 
subaperture groups with different path delays. Since the subapertures do not physically overlap, these transfer functions 
vanish at the DC spatial frequency and are typically zero-valued in some finite area around DC. Thus, the resulting 
spectral images are missing low spatial frequency information, which cannot be restored by a linear reconstruction. We 
have shown that missing low spatial frequencies (except for DC) can be restored by maximizing a nonlinear sharpness 
metric involving the spatial derivatives of the object estimate. The DC components were restored by enforcing a non-
negativity condition for the reconstruction on a band-by-band basis after maximizing the sharpness metric. Agreement 
between the reconstructed and the object data was best after the DC components were restored. 
 
 The use of the derivative-based sharpness metric implies a particular assumption about the scene, namely that 
it is composed of objects that are fairly uniform in the spatial dimensions. This is certainly true for the object data used 
in our simulation. We have had some success when applying the same algorithm to imagery of natural scenes. In 
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experimenting with the metric, we have found that the ability to successfully restore the missing low spatial frequencies 
is dependent on noise, the size of the area of missing spatial frequencies around DC, and the choice of the normalization 
constant σg. We have yet to quantify the sensitivities of the metric to these factors. 
 
 So far we have only reconstructed FTIS data on a band-by-band basis, starting with the recovered spectral 
images, which do not contain any low spatial frequency information. Improved performance can be expected by 
reconstructing the whole cube simultaneously. The raw intensity measurements contain polychromatic, low spatial-
frequency information that is not in the recovered spectral images. Since this data is polychromatic, it can only be 
incorporated into the reconstruction as a constraint for the whole cube. In the simulation of Sec. 3, the total number of 
photons in any one intensity measurement is 1.64 × 108, whereas the total number of photons in the reconstructed cube 
is 1.94 × 108, which should be the same by energy conservation. When the whole cube is reconstructed simultaneously, 
additional constraints involving the polychromatic low spatial-frequency data and a non negativity condition should 
yield a more accurate reconstruction of the DC components and low spatial frequencies for each spectral band. 
Reconstructing the whole cube at once will have the additional benefit of deconvolving the data in the spectral 
dimension. 
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