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Abstract. This paper reviews the Gerchberg- Saxton algorithm and varia-
tions thereof that have been used to solve a number of difficult recon-
struction and synthesis problems in optics and related fields. It can be
used on any problem in which only partial information (including both
measurements and constraints) of the wavefront or signal is available in
one domain and other partial information is available in another domain
(usually the Fourier domain). The algorithm combines the information in
both domains to arrive at the complete description of the wavefront or
signal. Various applications are reviewed, including synthesis of Fourier
transform pairs having desirable properties as well as reconstruction
problems. Variations of the algorithm and the convergence properties of
the algorithm are discussed.

1. INTRODUCTION
There exist many problems that are very difficult to solve in
astronomy, x -ray crystallography, electron microscopy, spec-
troscopy, wavefront sensing, holography, particle scattering,
superresolution, radar signal and antenna synthesis, filter design,
and other disciplines that share an important feature. These are
problems that involve the reconstruction or synthesis of a
wavefront (or an object or a signal, etc.) when partial information
or constraints exists in each of two different domains. The second
domain is usually the Fourier transform domain. This paper
describes a method of combining all the available information in
the two domains to arrive at a complete description, thereby solv-
ing the problems.

The problems fall into two general categories: (1) reconstruct the
entire information about a function (an image, wavefront, signal,
etc.) when only partial information is available in each of two do-
mains; and (2) synthesize a (Fourier) transform pair having
desirable properties in both domains. A reconstruction problem
arises when only partial information is measured in one domain,
and in the other domain either partial information is measured or
certain constraints are known a priori. The information available in
any one domain is insufficient to reconstruct the function or its
transform. A synthesis problem typically arises when one wants the
transform of a function to have certain desirable properties (such as
uniform spectrum, low sidelobes, etc.) while the function itself
must satisfy certain constraints or have certain desirable properties.
Because arbitrary sets of properties and constraints can be con-
tradictory, there may not exist a transform pair that is completely
desirable and satisfies all the constraints. Nevertheless, one seeks a
transform pair that comes as close as possible to having the
desirable properties and satisfying the constraints in both domains.

Both the reconstruction and the synthesis problems can be ex-
pressed as follows, if the meaning of the word "constraints" is
broadened to include any kind of measured data, desirable proper-

ties, or a priori conditions:
Given a set of constraints placed on a function and another
set of constraints placed on its transform, find a transform
pair (i.e., a function and its transform) that satisfies both sets
of constraints.

Once a solution is found to such a problem, the question often
remains: is the solution unique? For synthesis problems, the
uniqueness is usually unimportant -one is satisfied with any solu-
tion that satisfies all the constraints; often a more important prob-
lem is whether there exists any solution that satisfies what may be
arbitrary and conflicting constraints. For reconstruction problems,
the uniqueness properties of the solution are of central importance.
If many different functions satisfying the constraints could give rise
to the same measured data, then a solution that is found could not
be guaranteed to be the correct solution. The question of unique-
ness must be studied for each problem. Fortunately, as will be
described later, for some important reconstruction problems the
solution usually is unique.

An effective approach to solving the large class of problems
described above is the use of iterative algorithms related to the
Gerchberg- Saxton algorithm.' The algorithms involve the iterative
transformation back and forth between the two domains, with the
known constraints applied repetitively in each domain.

The basic algorithm is presented in Sec. 2. A number of different
applications having different types of constraints are described,
and examples are shown in Sec. 3. In Sec. 4 the convergence prop-
erties of the algorithm are discussed, and improved versions of the
algorithm are reviewed. A brief summary and comments are in-
cluded in Sec. 5.

2. THE BASIC ITERATIVE ALGORITHM
The first published account of the iterative algorithm was its use by
Gerchberg and Saxton' to solve the electron microscopy problem.
For this problem both the modulus (magnitude) of a complex-
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valued image and the modulus of its Fourier transform are
measured, and the goal is to reconstruct the phase in both domains.
Apparently unknown to Gerchberg and Saxton, the method was in-
vented somewhat earlier by Hirsch, Jordan, and Lesem2 to solve a
synthesis problem for computer -generated holograms that has a
similar set of constraints. (This will be described later in more
detail.) The method was again reinvented for a similar problem in
computer holography by Gallagher and Liu.3 The fact that the
algorithm was invented repeatedly testifies to its simplicity and ef-
fectiveness.

2.1. Gerchberg- Saxton algorithm
In what immediately follows, the iterative algorithm is described in
terms of its application to the electron microscopy reconstruction
problem. An excellent treatment of the electron microscopy phase
problem and its solution by this and other methods can be found in
Ref. 4. Later it is shown how to apply the same principles to a large
class of problems.

Suppose that the electron wave function in an image plane is
described by the two -dimensional (2 -D) complex -valued function

f(x) = f(x) ei>G(x) (1)

Its Fourier transform, the wave function in a far -field diffraction
plane, is given by

F(u) = F(u) eiB(u) _ [f(x)] = f(x)è i2wux dx ,

_00

(2)

where x and u are the vector coordinates in the spatial (image) do-
main and the spatial frequency (far -field diffraction) domain,
respectively. The notation used throughout this paper is that func-
tions represented by capital letters are the Fourier transforms of the
functions represented by the corresponding lower -case letters. It is
assumed that the intensity spatial distributions are measured in
each domain, but the phase information is lost. Therefore, one
wishes to reconstruct 0(x) and 0(x) from f(x) and F(u) .

The iterative algorithm for solving this problem is depicted in
Fig. 1. One iteration (the kth iteration) of the algorithm proceeds as
follows. A trial solution for the wave function (an estimate of the
wave function), gk(x), is Fourier transformed yielding

Gk(u) _ Gk(u) exp[ich(u)] = g- [gk(x)] (3)

Then a new Fourier -domain function, Gk(u), is formed by replac-
ing the computed Fourier modulus by the measured Fourier
modulus, F(u) , and keeping the computed phase:

Gk(u) = F(u) exp[id3k(u)] (4)

The resulting Gk(u), which is in agreement with all the known
measurements and constraints in the Fourier domain, is inverse
Fourier transformed, yielding the wave function gk(x). The itera-
tion is completed by forming a new estimate for the wave function,

gk + 1(x), which is obtained by replacing the computed modulus of
gk(x) with the measured modulus f(x) , and keeping the computed
phase.

The algorithm consists of no more than enforcing what informa-
tion is available on the wave function, Fourier transforming, im-
posing what information is available on the wave function's
Fourier transform, inverse transforming, and repeating these sim-
ple operations for a number of iterations. What makes the
algorithm practical is the existence of a fast Fourier transforms
(FFT), so that the number of computations per iteration goes only
as NlogN, where N is the number of samples of the function com-
puted. This compares very favorably with some other iterative
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Fig. 1. Block diagram of the iterative error -reduction algorithm.

methods, such as Newton- Raphson,4 for which the number of com-
putations per iteration goes as N3.

A measure of the progress of the iterations, and a criterion by
which one can determine when a solution has been found, is the
normalized mean -squared error, which is defined in the Fourier do-
main by

Ei -

00

1 [ Gk(u) - F(u)1l2du

co

/ 1F(u)Pdu
_/00

or in the image domain by

gk(x)

¡oo
J

- f(x) 2dx

f(x) 2 dx

(5)

It has been shown that the algorithm converges in the sense that the
mean -squared error can only decrease at each iteration.1,4,6 The
issue of convergence will be discussed in greater detail in Sec. 4.

2.2. Error -reduction iterative algorithm
It is now known that with slight modifications this same algorithm
can be applied to many different problems having a variety of
available constraints or measurements.? Let the function f(x) repre-
sent a wavefront, an object, a signal, an antenna array, a spectral
density function, an electron density function, etc., where x is an
N- dimensional vector (spatial, angular, time, etc.) coordinate.
Depending on the problem, f(x) may be complex valued or real
valued and, if real, may or may not be nonnegative. Its Fourier
transform, F(u), is given by Eq. (2) and is complex valued for most
problems. The N- dimensional vector u is a (spatial, angular, time,
etc.) frequency coordinate. One can instead consider another
transformation of f(x), such as the Fresnel transform, which has
been used for more than one problem.2,8,9 For simplicity of discus-
sion, the Fourier transform will be assumed, but the reader should
keep in mind that what is said also applies to a number of other
transformations as well (although the method becomes less attrac-
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tive if a fast transform algorithm is not available).
With only slight modifications, the Gerchberg- Saxton algorithm

can be used to solve the wide class of problems described in Sec. 1.
Referring again to the block diagram of the algorithm in Fig. 1, all
that is required is to impose constraints in each domain that are
pertinent to the problem of interest. At the kth iteration, gk(x), an
estimate of f(x), is Fourier transformed, yielding Gk(u), which is
given by Eq. (3). Then a new Fourier -domain function Gk(u) is
formed from Gk(u) by making the smallest possible changes in
Gk(u) that allow it to satisfy the Fourier -domain constraints. For
example, if the Fourier -domain constraint is that the Fourier
modulus equals F(u) 1 over some region of the Fourier domain,
then F(u) 1 is substituted for I Gk(u) 1 in that region. The new
Fourier -domain function Gk(u), which satisfies the Fourier -domain
constraints, is inverse Fourier transformed to yield gk(x). To com-
plete one iteration, a new estimate gk 1(x) is formed from gk(x) by
making the smallest possible changes in gk(x) that allow it to satisfy
the function- domain constraints. One example is that if the func-
tion is complex valued and it is constrained to have a modulus
equal to f(x) over some region of space, then I f(x) is substituted
for I gk(x) in that region. A special case of this is when the func-
tion is to be zero outside a certain interval (the Fourier function is
bandlimited). Another example is that if the function is constrained
to be nonnegative, then gk + 1(x) is set equal to gk(x) for those x
where gk(x) >_ 0, and gk + 1(x) is set equal to zero for those x where
gk(x) < O. In summary, one transforms back and forth between the
two domains, forcing the function to satisfy the constraints in each
domain.

For reconstruction problems, whatever characteristics of the ac-
tual F(u) and f(x) that are measured or are known a priori are im-
posed on Gk(u) and gk(x), respectively. For synthesis problems,
one imposes on Gk(u) and gk(x) whatever characteristics one might
desire F(u) and f(x), respectively, to have. Once the constraints are
defined, the algorithm proceeds the same for synthesis problems as
for reconstruction problems. In fact, there are some synthesis prob-
lems that are mathematically indistinguishable from some
reconstruction problems, and they are handled identically by the
algorithm.

The first iteration of the algorithm can be started in a number of
ways, for example, by setting g1(x) or 01(x) equal to an array of
random numbers. The iterations continue until a Fourier transform
pair is found that satisfies all the constraints in both domains to
within the desired accuracy (or, if convergence is too slow, until
one loses interest or the money runs out). The mean -squared error
can generally be defined in the Fourier domain by

co

II Gk(u) - Gk(u) 1 Z du

EF
00

(7)
co

loo Gk(u) 2 du

or in the function domain by

EZ =0

co

gk+1(x)-gk(x)12dx
-00

ao

gk(x) 2 d

(8)

In each of these two expressions, the integrand in the numerator is
the squared modulus of the amount by which the computed func-
tion violates the constraints in that domain. It is easily seen that

these expressions reduce to Eqs. (5) and (6), respectively, for the
electron microscopy problem.

Just as in the electron microscopy problem, for problems having
other sets of constraints it will be shown in Sec. 4 that the algorithm
converges, that is, the error decreases at each successive iteration.
The algorithm depicted in Fig. 1 may be referred to as the "error -
reduction" algorithm for that reason, as well as to distinguish it
from algorithms described in Sec. 4 that are related to it but con-
verge faster. Typically, the error is reduced very rapidly for the first
few iterations of the error -reduction algorithm, but more slowly for
later iterations. For some applications, the error -reduction
algorithm has been very successful in finding solutions using a
reasonable number of iterations. However, for some other applica-
tions, the mean -squared error decreases extremely slowly with each
iteration, and an impractically large number of iterations is re-
quired. The improved algorithms described in Sec. 4 do much to
alleviate this problem.

2.3. Alternative descriptions of the algorithm
Once a solution (i.e., a Fourier transform pair satisfying all the
constraints in both domains) is found, the error -reduction
algorithm ceases to make changes to the estimate, and the
algorithm locks on to the solution. The operations of enforcing the
constraints in each domain would then leave the function estimate
and its Fourier transform unaltered, since they already satisfy the
constraints. Now let us define the operation S[g(x)] as the suc-
cessive Fourier transformation of g(x), followed by the imposition
of the Fourier domain constraints, followed by inverse Fourier
transformation, followed by imposition of the object domain con-
straints. That is, the operation S is just the performance of one
iteration of the error -reduction algorithm, and

gk1(x) = S[gk(x)] (9)

From the discussion above, it is evident that any solution f(x) must
satisfy the relation

f(x) = S[f(x)] . (10)

When presented in this form, it is seen that the error -reduction
algorithm is a particular implementation of the method of suc-
cessive approximations.'°

The method of successive approximations can be more easily
understood from the following simple example. Suppose one
wishes to solve the following equation for y:

4y4 -4y + 1 = 0.

Based on the relation y = y4 + 1/4, one could write

yk +1 = S1(yk) = Yk + 1/4. (12)

Using the method of successive approximations to find the solu-
tion, one would pick an initial estimate, say yo = 0.1, and employ-
ing Eq. (12) compute y1 = 0.2501, y2 = 0.2539, etc., and rapidly
converge to the solution y' = 0.2541737 ... . However, it con-
verges to y' only for yo < y" = 0.8967902 ... . For yo > y ", Eq.
(12) diverges; and for yo = y ", it stays at y ", the second solution.
On the other hand, one could just as logically have chosen

Yk + I = S2(Yk) = (Yk - 1/4)1/4 (13)

This second form converges to the second solution y" for yo > y' ,
diverges for yo < y', and stays at y' for yo = y'. Figure 2, a
graphical representation of Eq. (12), shows the two solutions, y'
and y ". The irregular staircase between the two curves y and y4 +
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of the Fourier domain constraints, followed by inverse Fourier 
transformation, followed by imposition of the object domain con 
straints. That is, the operation S is just the performance of one 
iteration of the error-reduction algorithm, and

gk = S[gk (x)]. (9)

From the discussion above, it is evident that any solution f(x) must 
satisfy the relation

f(x) = S[f(x)] . (10)

When presented in this form, it is seen that the error-reduction 
algorithm is a particular implementation of the method of suc 
cessive approximations. 10

The method of successive approximations can be more easily 
understood from the following simple example. Suppose one 
wishes to solve the following equation for y:

4y4 -4y +1=0. (11) 

Based on the relation y = y4 + 1/4, one could write

1/4. (12)

or in the function domain by

\^j 

I ISk+

(8)

/

In each of these two expressions, the integrand in the numerator is 
the squared modulus of the amount by which the computed func 
tion violates the constraints in that domain. It is easily seen that

Using the method of successive approximations to find the solu 
tion, one would pick an initial estimate, say y0 = 0.1, and employ 
ing Eq. (12) compute y, = 0.2501, y2 - 0.2539, etc., and rapidly 
converge to the solution y' = 0.2541737 .... However, it con 
verges to y' only for y0 < y" = 0.8967902 .... For y0 > y", Eq. 
(12) diverges; and for y0 = y", it stays at y", the second solution. 
On the other hand, one could just as logically have chosen

=S2(yk) = (yk -l/4) 1/4 (13)

This second form converges to the second solution y" for y0 > y' , 
diverges for y0 < y', and stays at y' for y0 = y'. Figure 2, a 
graphical representation of Eq. (12), shows the two solutions, y' 
and y". The irregular staircase between the two curves y and y4 +
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Fig. 2. Method of successive approximations for solving 4y4 - 4y
+1 =o.

1/4 indicates how the estimate yk approaches the two solutions.
Criteria on the derivative of S(y) determine whether the algorithm
converges.11

The error -reduction algorithm, as described by Eqs. (9) and (10),
is analogous to the example of successive approximations described
above, except that instead of operating on a scalar y, it operates on
a function g(x). As seen from the example, the method of suc-
cessive approximations may or may not converge, depending on the
particular form chosen and on the initial estimate. Fortunately, as
will be discussed further in Sec. 4, the error -reduction algorithm
never diverges. It may, however, stagnate. A simple example of
stagnation of the method of successive approximations is shown by
the following. In solving x = 2 -x (which has the obvious solution
x = 1), starting with the initial estimate xo, one obtains x1 = 2 - xo,
x2 = 2 - (2 - x0) = x0, . . . , x2k -1 = 2 - xo, x2k = xo, etc., and no
progress is made toward the solution.

Another way of understanding the error -reduction algorithm,
applicable for certain sets of constraints, is the alternating projec-
tion of the function onto specified subspaces in a Hilbert space.12
This, along with the possibility of closed -form solutions,13 is
discussed in the contribution to this volume by Marks and Smith.

3. APPLICATIONS
A large number of important problems in optics and related fields
fit the problem description in Sec. 1 and can be solved by the
iterative algorithm (by the error -reduction algorithm described in
Sec. 2 and the related algorithms described in Sec. 4). One par-
ticular application, that of spectral extrapolation or superresolu-
tion, is discussed in detail in the contribution to this volume by
Marks and Smith. In this section, several classes of applications are
listed, followed by more detailed discussions of some of the ap-
plications, including examples.

In Sec. 1, a distinction was made between reconstruction prob-
lems and synthesis problems. Another useful way to classify such
problems is according to the type of information available. For one
set of problems, the modulus (magnitude or amplitude) of a
complex -valued function and the modulus of its Fourier transform
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are measured (or are given), and one wishes to know the phase of
the Fourier transform pair in both domains. These include the
phase retrieval problem in electron microscopy, the phase retrieval
problem in wavefront sensing, the design optimization of radar
signals and antenna arrays having desirable properties, and phase
coding and spectrum shaping problems for computer -generated
holograms and other applications. These applications often involve
the Fresnel transform for the near -field case instead of the Fourier
transform.

For another set of problems, the function is known to be real and
nonnegative and the modulus of its Fourier transform is measured.
These include the phase problems of x -ray crystallography, Fourier
transform spectroscopy, imaging through atmospheric turbulence
using interferometer data, and pupil function determination.

For another set of problems, a low- resolution (i.e., a low -pass
filtered) version of a function is measured (i.e., its complex Fourier
transform is measured only over a certain interval), and the func-
tion is known to have a finite extent (i.e., it is zero outside of some
known region of support). This is the spectral extrapolation or
superresolution problem for band -limited time signals or for im-
aging of objects of finite extent.

For another set of problems, the function is known to be non -
negative and of finite extent and its complex Fourier transform is
measured only over a partially filled aperture. These include the in-
terpolation of the complex visibility function for long baseline
radio interferometry and the missing -cone problem in x -ray
tomography.

For still another set of problems, the modulus of a complex -
valued function is given, and one wishes to find an associated phase
function that results in a Fourier transform whose complex values
fall on a prescribed set of quantized complex values. These include
the reduction of quantization noise in computer -generated
holograms and in coded signal transmission.

Another problem is to reconstruct the modulus of a complex -
valued function from the phase of the function, given the fact that
the Fourier transform of the function has finite support.

The number of types of problems solvable by the iterative
algorithm appears to be limited only by one's ingenuity in defining
different combinations of information that might be available in
each of two domains.

3.1. Modulus -modulus constraints
3.1.1. Electron microscopy
Among the applications for which the modulus is given in each of
two domains, the electron microscopy phase retrieval problem was
one of the earliest applications of the error -reduction algorithm
and has been the problem most heavily investigated.1,4,8,14,15 The
error -reduction (Gerchberg- Saxton) algorithm has been shown to
perform very successfully for this problem, and the solution is
usually unique.15 The reader is referred to a book by Saxton for a
thorough review.

3.1.2. Spectrum shaping
A second application for which the modulus is given in each of two
domains is the spectrum shaping problem. Spectrum shaping is a
synthesis problem that can be stated as follows: given the modulus

f(x) 1 of a complex -valued wavefront, g(x) = f(x) 1 exp[iO(x)],
find a phase function 0(x) such that [g(x)] is equal to a given
spectrum F(u) . Such a problem is the one suggested by the Escher
engraving shown in Fig. 3, in which a bird transforms into a fish.
One wishes to find a function with modulus being a picture of a
fish, which has a Fourier transform with modulus being a picture of
a bird. Or, in terms of computer holography, find a phase function
to assign to the image of a fish so that the hologram will look like
an image of a bird. Figure 4(a) shows the actual "bird" and "fish"
binary patterns used for our experiment.? For the first iteration, the
fish object was random phase coded, Fourier transformed, and the
modulus of the Fourier transform was replaced with the modulus
of the bird pattern shown in Fig. 4(a). The result was inverse

y" i

Fig. 2. Method of successive approximations for solving 4y4 - 4y 
+ 1=0.

1/4 indicates how the estimate yk approaches the two solutions. 
Criteria on the derivative of S(y) determine whether the algorithm 
converges. 11

The error-reduction algorithm, as described by Eqs. (9) and (10), 
is analogous to the example of successive approximations described 
above, except that instead of operating on a scalar y, it operates on 
a function g(x). As seen from the example, the method of suc 
cessive approximations may or may not converge, depending on the 
particular form chosen and on the initial estimate. Fortunately, as 
will be discussed further in Sec. 4, the error-reduction algorithm 
never diverges. It may, however, stagnate. A simple example of 
stagnation of the method of successive approximations is shown by 
the following. In solving x = 2 - x (which has the obvious solution 
x = 1), starting with the initial estimate XQ , one obtains Xj = 2 - x0 , 
x2 = 2 - (2 - x0) = x0 , . . . , x2k_ 1 = 2 - x0 , x2k = x0 , etc., and no 
progress is made toward the solution.

Another way of understanding the error-reduction algorithm, 
applicable for certain sets of constraints, is the alternating projec 
tion of the function onto specified subspaces in a Hilbert space. 12 
This, along with the possibility of closed-form solutions, 13 is 
discussed in the contribution to this volume by Marks and Smith.

3. APPLICATIONS
A large number of important problems in optics and related fields 
fit the problem description in Sec. 1 and can be solved by the 
iterative algorithm (by the error-reduction algorithm described in 
Sec. 2 and the related algorithms described in Sec. 4). One par 
ticular application, that of spectral extrapolation or superresolu- 
tion, is discussed in detail in the contribution to this volume by 
Marks and Smith. In this section, several classes of applications are 
listed, followed by more detailed discussions of some of the ap 
plications, including examples.

In Sec. 1, a distinction was made between reconstruction prob 
lems and synthesis problems. Another useful way to classify such 
problems is according to the type of information available. For one 
set of problems, the modulus (magnitude or amplitude) of a 
complex-valued function and the modulus of its Fourier transform

are measured (or are given), and one wishes to know the phase of 
the Fourier transform pair in both domains. These include the 
phase retrieval problem in electron microscopy, the phase retrieval 
problem in wavefront sensing, the design optimization of radar 
signals and antenna arrays having desirable properties, and phase 
coding and spectrum shaping problems for computer-generated 
holograms and other applications. These applications often involve 
the Fresnel transform for the near-field case instead of the Fourier 
transform.

For another set of problems, the function is known to be real and 
nonnegative and the modulus of its Fourier transform is measured. 
These include the phase problems of x-ray crystallography, Fourier 
transform spectroscopy, imaging through atmospheric turbulence 
using interferometer data, and pupil function determination.

For another set of problems, a low-resolution (i.e., a low-pass 
filtered) version of a function is measured (i.e., its complex Fourier 
transform is measured only over a certain interval), and the func 
tion is known to have a finite extent (i.e., it is zero outside of some 
known region of support). This is the spectral extrapolation or 
superresolution problem for band-limited time signals or for im 
aging of objects of finite extent.

For another set of problems, the function is known to be non- 
negative and of finite extent and its complex Fourier transform is 
measured only over a partially filled aperture. These include the in 
terpolation of the complex visibility function for long baseline 
radio interferometry and the missing-cone problem in x-ray 
tomography.

For still another set of problems, the modulus of a complex- 
valued function is given, and one wishes to find an associated phase 
function that results in a Fourier transform whose complex values 
fall on a prescribed set of quantized complex values. These include 
the reduction of quantization noise in computer-generated 
holograms and in coded signal transmission.

Another problem is to reconstruct the modulus of a complex- 
valued function from the phase of the function, given the fact that 
the Fourier transform of the function has finite support.

The number of types of problems solvable by the iterative 
algorithm appears to be limited only by one's ingenuity in defining 
different combinations of information that might be available in 
each of two domains.

3.1. Modulus—modulus constraints
3.1.1. Electron microscopy
Among the applications for which the modulus is given in each of 
two domains, the electron microscopy phase retrieval problem was 
one of the earliest applications of the error-reduction algorithm 
and has been the problem most heavily investigated. 1 '4 ' 8 ' 14 ' 15 The 
error-reduction (Gerchberg-Saxton) algorithm has been shown to 
perform very successfully for this problem, and the solution is 
usually unique. 15 The reader is referred to a book by Saxton4 for a 
thorough review.

3.1.2. Spectrum shaping
A second application for which the modulus is given in each of two 
domains is the spectrum shaping problem. Spectrum shaping is a 
synthesis problem that can be stated as follows: given the modulus 
|f(x)| of a complex-valued wavefront, g(x) = f(x)| exp[i0(x)], 
find a phase function 0(x) such that | & [g(x)J is equal to a given 
spectrum | F(u) |. Such a problem is the one suggested by the Escher 
engraving shown in Fig. 3, in which a bird transforms into a fish. 
One wishes to find a function with modulus being a picture of a 
fish, which has a Fourier transform with modulus being a picture of 
a bird. Or, in terms of computer holography, find a phase function 
to assign to the image of a fish so that the hologram will look like 
an image of a bird. Figure 4(a) shows the actual "bird" and "fish" 
binary patterns used for our experiment. 7 For the first iteration, the 
fish object was random phase coded, Fourier transformed, and the 
modulus of the Fourier transform was replaced with the modulus 
of the bird pattern shown in Fig. 4(a). The result was inverse
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Fig. 3. Bird transforms into fish ( "Sky and Water" by M. C. Escher).
This reproduction was authorized by the M. C. Escher Foundation,
The Hague, Holland /G.W. Breughel.

(a)

Fig. 4. Example of spectrum shaping. (a) Bird hologram and
desired fish image; (b) fish output image after random phase
coding of input; (c) output image after seven iterations of the
iterative algorithm.

Fourier trsformed, yielding the very noisy output image shown in
Fig. 4(b). The iterative algorithm was then used for seven itera-
tions, resulting in the improved image shown in Fig. 4(c). For this
example, increasing the number of iterations resulted in a further
improvement of the quality of the image; that is, a Fourier
transform pair was found that more closely satisfied the constraints
in both domains.

Spectrum shaping is also important in computer holography for
reducing quantization noise. The objective of computer
holography16 is to synthesize a transparency that can modulate a
wavefront according to a calculated wavefront, often correspond-
ing to Fourier coefficients (or samples of the Fourier transform of
an image) computed by the discrete Fourier transform. Let F =
,F [f] be the desired wavefront modulation and f be the complex -
valued function describing the desired image. Due to the limitations
of the recording devices and materials used to synthesize computer
holograms, it is often not possible to represent exactly any arbitrary
complex Fourier coefficient. An extreme example of this is the

(a)

(b)

Fig. 5. Computer -simulated images from kinoform. (a) object ran
dom phase coded; (b) after eight iterations of the iterative
algorithm.

kinoform,17 which allows nearly continuous phase control by vary-
ing the thickness of the recording medium, but which quantizes the
modulus to a single level. (If the gray -level recording device used to
synthesize a kinoform has a finite number of gray levels, then the
phase is quantized as well.) The desired coefficient F is only ap-
proximated by the quantized value F/ `F I . Since only the squared
modulus (the intensity) of the image is observed, one is free to
choose the phase of the object (phase code the object) in such a way
as to reduce the variance (dynamic range) of F . In this way the
quantization noise in kinoforms and, to a lesser extent, in other
types of computer -generated holograms can be greatly reduced.
Random phase and various deterministic phase codes18 cause con-
siderable reduction in the variance of IF! , but substantial errors re-
main. l9

It was for the kinoform application that the iterative algorithm
was first invented.2,3 Figure 5 shows an example of its use for this
synthesis problem.7 Figure 5(a) shows the image resulting when the
input image was random phase coded, encoded as a kinoform in
the Fourier plane, and reconstructed by inverse Fourier transfor-
mation. The ideal image would be the binary ( = 0 or 1) block letters
SU. Figure 5(b) shows the improved result after eight iterations of
the iterative algorithm. In this case, the image- domain constraint is
that the modulus equal the SU pattern, and the Fourier -domain
constraint is that the modulus equal a constant.

A problem very similar to the kinoform problem is that of syn-
thesizing a quasi- random radar signal having good autocorrelation
properties. Specifically, one would like to synthesize a radar signal
f(t) which is a pure phase function, i.e., f(t) 1 = 1, over some inter-
val of time and which has an autocorrelation function which ap-
proaches a delta- function, i.e., its Fourier spectrum I F(v) 2 is con-
stant over the bandwidth of interest. From the examples shown
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iterative algorithm.
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tions, resulting in the improved image shown in Fig. 4(c). For this 
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improvement of the quality of the image; that is, a Fourier 
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Spectrum shaping is also important in computer holography for 
reducing quantization noise. The objective of computer 
holography 16 is to synthesize a transparency that can modulate a 
wavefront according to a calculated wavefront, often correspond 
ing to Fourier coefficients (or samples of the Fourier transform of 
an image) computed by the discrete Fourier transform. Let F = 
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kinoform, 17 which allows nearly continuous phase control by vary 
ing the thickness of the recording medium, but which quantizes the 
modulus to a single level. (If the gray-level recording device used to
synthesize a kinoform has a finite number of gray levels, then the 
phase is quantized as well.) The desired coefficient F is only ap 
proximated by the quantized value F/|F| . Since only the squared 
modulus (the intensity) of the image is observed, one is free to 
choose the phase of the object (phase code the object) in such a way 
as to reduce the variance (dynamic range) of F |. In this way the 
quantization noise in kinoforms and, to a lesser extent, in other 
types of computer-generated holograms can be greatly reduced. 
Random phase and various deterministic phase codes 18 cause con 
siderable reduction in the variance of | F |, but substantial errors re 
main. 19

It was for the kinoform application that the iterative algorithm 
was first invented. 2 * 3 Figure 5 shows an example of its use for this 
synthesis problem. 7 Figure 5(a) shows the image resulting when the 
input image was random phase coded, encoded as a kinoform in 
the Fourier plane, and reconstructed by inverse Fourier transfor 
mation. The ideal image would be the binary ( =0 or 1) block letters 
SU. Figure 5(b) shows the improved result after eight iterations of 
the iterative algorithm. In this case, the image-domain constraint is 
that the modulus equal the SU pattern, and the Fourier-domain 
constraint is that the modulus equal a constant.

A problem very similar to the kinoform problem is that of syn 
thesizing a quasi-random radar signal having good autocorrelation 
properties. Specifically, one would like to synthesize a radar signal 
f(t) which is a pure phase function, i.e., | f(t) | = 1, over some inter 
val of time and which has an autocorrelation function which ap 
proaches a delta-function, i.e., its Fourier spectrum | F(p) j 2 is con 
stant over the bandwidth of interest. From the examples shown
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above, it is obvious that the iterative method would be an effective
tool for synthesizing such radar signals.

Another spectrum- shaping application is the phasing of elements
of an array of antennas in order to achieve a far -field pattern hav-
ing desirable properties. For example, one might wish to phase the
antenna elements in such a way as to minimize the maximum
sidelobe of the far -field pattern or to place nulls of the antenna pat-
tern at several different prescribed locations simultaneously. A
related application for which the iterative method has been used is
the transformation of a Gaussian laser beam into a beam having a
more nearly rectangular profile.20

3.1.3. Wavefront sensing
The wavefront sensing application is very similar to the electron
microscopy problem. Suppose that one measures the image f(x) 1 2
of a point source using an aberrated optical system, where the aber-
rations may be due to atmospheric turbulence or due to the optical
system itself. Assuming that the aberration is a pure phase func-
tion, then F(u), the Fourier transform of f(x), has modulus F(u) 1
equal to the aperture function of the optical system. The problem is
to reconstruct the phase of F(u) given F(u) and f(x)1. Several in-
vestigators9'21,22 have applied the error -reduction algorithm to this
problem with generally good results.

3.2. Nonnegativity -modulus constraints
For some reconstruction problems, the physical quantity of interest
can be represented as a nonnegative function, and one is able to
measure only the modulus of its Fourier transform (or at least the
measured modulus information has a much higher signal -to -noise
ratio than the measured phase). From the Fourier modulus, one
wishes to reconstruct the Fourier phase or, equivalently, the func-
tion itself. Since the autocorrelation of the function is available as
the inverse Fourier transform of the squared Fourier modulus,23
this problem is equivalent to reconstructing the function from its
autocorrelation. This problem, referred to as the phase retrieval
problem of optical coherence theory, arises in spectroscopy, 24

one -dimensional problem; in astronomy, a two -dimensional prob-
lem; and in x -ray crystallography,25 a three -dimensional problem.
In spectroscopy, the nonnegative spectral density, g(v), is the
Fourier transform of the complex degree of temporal coherence,
Y(r), of which 11(r) is most easily measured. In x -ray
crystallography, the nonnegative electron density function, Q(x, y,
z), which is periodic, is the Fourier transform of the structure fac-
tor Fhkh of which Fhkl is measured by a diffractometer. The
astronomy problem will be described in more detail later.

3.2.1. Uniqueness of solutions
For the one -dimensional problem, use of the iterative algorithm (or
any other method) to reconstruct the function from its Fourier
modulus is of limited interest since the solution in the general case is
usually not unique.26,27 The uniqueness of the solution for the one -
dimensional problem can be analyzed using the theory of analytic
functions, from which one finds that additional solutions can be
generated by "flipping zeros" of the Fourier transform analytically
extended over the complex plane.26,27 The additional "solutions"
have the same support as the original function, but are not
guaranteed to be nonnegative; therefore one could reduce the
degree of ambiguity by generating all possible "solutions" and then
keeping only the nonnegative ones.28

For certain special types of one -dimensional functions, there is a
high probability that the solution is unique. For a function having
two separated intervals of support, being separated by an interval
over which the function is zero, the solution usually is unique,29,3°
but only if the two intervals of support are sufficiently separated.31
Another special type of function for which the solution is usually
unique is one consisting of a summation of a number of delta -
functions randomly distributed in space; for such functions, one
does not need the iterative method -they can be reconstucted by a
simple noniterative method involving the product of three
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Fig. 6. Functions (a) and (b) having the same Fourier modulus.

translates of the autocorrelation function.32
In the event that multiple solutions do exist, it would not appear

that the algorithm would be biased toward one over another, and
one would expect the algorithm to converge to different solutions,
depending on the initial input to the algorithm. For example, Fig. 6
shows two functions having the same Fourier modulus. In a com-
puter experiment using the iterative reconstruction algorithm on
the functions' Fourier modulus, it converged to one of the solu-
tions in about half of the trials and converged to the other solution
in the other half of the trials, depending on the random number se-
quences used as the initial input to the algorithm.

For the problem in two or more dimensions, it appears that the
solution is usually unique. Considering sampled functions defined
on a rectangular grid of points, Bruck and Sodin33 showed that the
existence of additional solutions is equivalent to the factorability of
a polynomial representation of the Fourier transform. Since a
polynomial of one variable of degree M can always be factored into
M prime factors, there are 2M -1 solutions in the one -dimensional
case. Once again, only some of the "solutions" may be non -
negative. On the other hand, polynomials of two or more variables
having arbitrary coefficients are only rarely factorable; consequent-
ly, the two -dimensional problem is usually unique. Attempts have
also been made to extend this concept to continuous, as opposed to
discrete, functions.34 Although it is always possible to make up ex-
amples in two dimensions that are not unique,35 it appears to be
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simple noniterative method involving the product of three

(a)

(b)
Fig. 6. Functions (a) and (b) having the same Fourier modulus.

translates of the autocorrelation function. 32
In the event that multiple solutions do exist, it would not appear 

that the algorithm would be biased toward one over another, and 
one would expect the algorithm to converge to different solutions, 
depending on the initial input to the algorithm. For example, Fig. 6 
shows two functions having the same Fourier modulus. In a com 
puter experiment using the iterative reconstruction algorithm on 
the functions' Fourier modulus, it converged to one of the solu 
tions in about half of the trials and converged to the other solution 
in the other half of the trials, depending on the random number se 
quences used as the initial input to the algorithm.

For the problem in two or more dimensions, it appears that the 
solution is usually unique. Considering sampled functions defined 
on a rectangular grid of points, Bruck and Sodin33 showed that the 
existence of additional solutions is equivalent to the factorability of 
a polynomial representation of the Fourier transform. Since a 
polynomial of one variable of degree M can always be factored into 
M prime factors, there are 2M-1 solutions in the one-dimensional 
case. Once again, only some of the "solutions" may be non- 
negative. On the other hand, polynomials of two or more variables 
having arbitrary coefficients are only rarely factorable; consequent 
ly, the two-dimensional problem is usually unique. Attempts have 
also been made to extend this concept to continuous, as opposed to 
discrete, functions. 34 Although it is always possible to make up ex 
amples in two dimensions that are not unique, 35 it appears to be
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true that for two -dimensional functions drawn from the real world,
the solution is usually unique. The general uniqueness of the two -
dimensional case is indicated by experimental reconstruction results
using the iterative algorithm.36 Furthermore, noise in the Fourier
modulus data has had the effect of adding noise to the
reconstructed function rather than causing the algorithm to con-
verge to a radically different solution.37

3.2.2. Astronomical reconstruction
The problem of reconstructing a two -dimensional nonnegative
function from the modulus of its Fourier transform arises in
astronomy. Due to atmospheric turbulence, the resolution at-
tainable from large optical telescopes on earth is only about one
second of arc, many times worse than the diffraction limit imposed
by the diameter of the telescope aperture. For a five -meter
telescope aperture, the diffraction -limited resolution would be
about 0.02 seconds of arc -fifty times finer. Despite atmospheric
turbulence, it is possible to measure the modulus of the Fourier
transform of a space object out to the diffraction limit of the
telescope using interferometric techniques.38 -41 The autocorrelation
of the object can be computed from the Fourier modulus, allowing
the diameter of the object to be determined. However, unless the
Fourier transform phase is also measured, it was previously not
possible to determine the object itself, except for some special
cases. Previous attempts to solve this problem had not proven to be
practical for complicated two -dimensional objects.

The problem of reconstructing an object from interferometer
data can be solved by the iterative method.42,36 The Fourier -
domain constraint is that the Fourier modulus equal the Fourier
modulus measured by an interferometer, and the function -domain
constraint is that the object function be nonnegative. Figure 7
shows an example. Fig. 7(a) shows a computer- synthesized object
used for the experiment -a sun -like disk having "solar flares" and
bright and dark "sunspots." The modulus of its Fourier transform
is shown in Fig. 7(b). Figure 7(c) shows a square of random
numbers used as the initial input for the iterative algorithm. Figures
7(d), 7(e), and 7(f) show the reconstruction results after 20, 230,
and 600 iterations, respectively. Figure 7(g) shows the initial input
for a second trial, and the reconstruction results after 2 and 215
iterations are shown in Figs. 7(h) and 7(i), respectively. Comparing
Figs. 7(f) and 7(i) with the original object in Fig. 7(a), one sees that
for both trials, the reconstructed images match the original object
very closely. Note that inverted solutions such as Fig. 7(f) are per-
mitted for this problem since the modulus of the Fourier transform
of f( -x) equals the modulus of the Fourier transform of f(x) for
real -valued f(x). Other successful reconstruction experiments have
been performed on data simulated to have the types of noise pres-
ent in stellar speckle interferometry,39 and it appears that under
realistic levels of photon noise for fairly bright objects, diffraction -
limited images can be reconstructed.37 Initial expements have also
been carried out on data from telescopes.43

3.2.3. Pupil reconstruction and synthesis
Another case in which one may want to reconstruct a two -
dimensional nonnegative function from its Fourier modulus is in
pupil function determination. In a diffraction -limited optical
system, the point- spread function is the squared Fourier modulus
of the system's pupil function. Equivalently, the optical transfer
function is the autocorrelation of the pupil function.'" Given the
point- spread function at a given location in an image plane, one
could use the iterative algorithm to retrieve the corresponding pupil
function, in a way that is mathematically equivalent to the
astronomy problem. Turning this problem around, one could use
the iterative algorithm to synthesize (design) a pupil function that
would yield a given, desired point- spread function while possibly
satisfying other desirable constraints as well.

3.3. Finite extent -measurement over part of an aperture
In a number of reconstruction problems, there is a function of

(a) (b) (c)

(d) (e)

(g) (h)

(f)

(i)

Fig. 7. Reconstruction of a nonnegative function from its Fourier
modulus. (a) Test object; (b) modulus of its Fourier transform; (c) ini-
tial estimate of the object (first test); (d) -(f) reconstruction results
- number of iterations: (d) 20, (e) 230, (f) 600; (g) initial estimate of
the object (second test); (h) -(i) reconstruction results- number of
iterations: (h) 2, (i) 215.

known finite extent (or support) and one wishes to reconstruct the
function with resolution appropriate to an aperture in the Fourier
domain more complete than the one over which measurements were
actually taken. In some cases, the desired aperture is simply larger
than the aperture over which measurements were taken, and so one
wishes to extrapolate the function's Fourier transform, i.e., to ob-
tain superresolution of the function. In other cases, one has made
measurements over a partially filled aperture, in which case one
wishes to interpolate the Fourier transform of the function, and
thereby obtain an improved impulse response in the function do-
main.

3.3.1. Extrapolation or superresolution
The error -reduction algorithm was first applied to the extrapolation
(or superresolution) problem by Gerchberg.45 Much has been writ-
ten about the iterative algorithm, specifically the error -reduction
algorithm, as it relates to this problem, including various ways of
understanding the algorithm (see the end of Sec. 2) and proofs of
convergence.1o4243 °46-48 For this particular problem, the nature of
the constraints makes it possible to implement the algorithm by a
feedback optical processor49,5o taking on the order of 10-9 seconds
per iteration even for the two -dimensional case. Marks and Smith
describe these matters in detail elsewhere in this volume.

3.3.2. Interpolation
In tomographic imaging systems, many projections of the object
are measured, each projection yielding information about a slice
through the Fourier transform of the object. When measurements
over only a limited cone of angles are made, the effective aperture
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true that for two-dimensional functions drawn from the real world, 
the solution is usually unique. The general uniqueness of the two- 
dimensional case is indicated by experimental reconstruction results 
using the iterative algorithm. 36 Furthermore, noise in the Fourier 
modulus data has had the effect of adding noise to the 
reconstructed function rather than causing the algorithm to con 
verge to a radically different solution. 37

3.2,2, Astronomical reconstruction
The problem of reconstructing a two-dimensional nonnegative 
function from the modulus of its Fourier transform arises in 
astronomy. Due to atmospheric turbulence, the resolution at 
tainable from large optical telescopes on earth is only about one 
second of arc, many times worse than the diffraction limit imposed 
by the diameter of the telescope aperture. For a five-meter 
telescope aperture, the diffraction-limited resolution would be 
about 0.02 seconds of arc fifty times finer. Despite atmospheric 
turbulence, it is possible to measure the modulus of the Fourier 
transform of a space object out to the diffraction limit of the 
telescope using interferometric techniques. 38"41 The autocorrelation 
of the object can be computed from the Fourier modulus, allowing 
the diameter of the object to be determined. However, unless the 
Fourier transform phase is also measured, it was previously not 
possible to determine the object itself, except for some special 
cases. Previous attempts to solve this problem had not proven to be 
practical for complicated two-dimensional objects.

The problem of reconstructing an object from interferometer 
data can be solved by the iterative method. 42 ' 36 The Fourier- 
domain constraint is that the Fourier modulus equal the Fourier 
modulus measured by an interferometer, and the function-domain 
constraint is that the object function be nonnegative. Figure 7 
shows an example. Fig. 7(a) shows a computer-synthesized object 
used for the experiment a sun-like disk having "solar flares" and 
bright and dark "sunspots." The modulus of its Fourier transform 
is shown in Fig, 7(b). Figure 7(c) shows a square of random 
numbers used as the initial input for the iterative algorithm. Figures 
7(d), 7(e), and 7(f) show the reconstruction results after 20, 230, 
and 600 iterations, respectively. Figure 7(g) shows the initial input 
for a second trial, and the reconstruction results after 2 and 215 
iterations are shown in Figs, 7(h) and 7(i), respectively. Comparing 
Figs, 7(f) and 7(i) with the original object in Fig. 7(a), one sees that 
for both trials, the reconstructed images match the original object 
very closely. Note that inverted solutions such as Fig. 7(f) are per 
mitted for this problem since the modulus of the Fourier transform 
of f(-x) equals the modulus of the Fourier transform of f(x) for 
real-valued f(x). Other successful reconstruction experiments have 
been performed on data simulated to have the types of noise pres 
ent in stellar speckle interferometry, 39 and it appears that under 
realistic levels of photon noise for fairly bright objects, diffraction- 
limited images can be reconstructed. 37 Initial expements have also 
been carried out on data from telescopes. 43

3.2. 3. Pupil reconstruction and synthesis
Another case in which one may want to reconstruct a two- 
dimensional nonnegative function from its Fourier modulus is in 
pupil function determination. In a diffraction-limited optical 
system, the point-spread function is the squared Fourier modulus 
of the system's pupil function. Equivalently, the optical transfer 
function is the autocorrelation of the pupil function. 44 Given the 
point-spread function at a given location in an image plane, one 
could use the iterative algorithm to retrieve the corresponding pupil 
function, in a way that is mathematically equivalent to the 
astronomy problem. Turning this problem around, one could use 
the iterative algorithm to synthesize (design) a pupil function that 
would yield a given, desired point-spread function while possibly 
satisfying other desirable constraints as well.

3.3. Finite extent—measurement over part of an aperture
In a number of reconstruction problems, there is a function of

(9)
Fig. 7. Reconstruction of a nonnegative function from its Fourier 
modulus, (a) Test object; (b) modulus of its Fourier transform; (c) ini 
tial estimate of the object (first test); (d)-(f) reconstruction results 
  number off iterations: (d) 20, (e) 230, (f) 600; (g) initial estimate of 
the object (second test); (h)-(i) reconstruction results number of 
iterations: (h) 2, (i) 215.

known finite extent (or support) and one wishes to reconstruct the 
function with resolution appropriate to an aperture in. the Fourier 
domain more complete than the one over which measurements were 
actually taken. In some cases, the desired aperture is simply larger 
than the aperture over which measurements were taken, and so one 
wishes to extrapolate the function's Fourier transform, i.e., to ob 
tain superresolution of the function. In other cases, one has made 
measurements over a partially filled aperture, in which case one 
wishes to interpolate the Fourier transform of the function, and 
thereby obtain an improved impulse response in the function do 
main.

3.3.1. Extrapolation or superresolution
The error-reduction algorithm was first applied to the extrapolation 
(or superresolution) problem by Gerchberg. 45 Much has been writ 
ten about the iterative algorithm, specifically the error-reduction 
algorithm, as it relates to this problem, including various ways of 
understanding the algorithm (see the end of Sec. 2) and proofs of 
convergence. 10' 12 ' 13 '46"48 For this particular problem, the nature of 
the constraints makes it possible to implement the algorithm by a 
feedback optical processor49'50 taking on the order of 10"9 seconds 
per iteration even for the two-dimensional case. Marks and Smith 
describe these matters in detail elsewhere in this volume.

3.3.2. Interpolation
In tomographic imaging systems, many projections of the object 
are measured, each projection yielding information about a slice 
through the Fourier transform of the object. When measurements 
over only a limited cone of angles are made, the effective aperture
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in the Fourier domain has gaps, and the impulse response of the
system is highly irregular. In applying the iterative algorithm to this
problem,51,52 the function -domain constraint is the finite extent
and nonnegativity of the object, and the Fourier domain constraint
is that the Fourier transform equal the measured Fourier transform
over the measurement aperture.

A problem similar to the tomography problem arises in radio
astronomy. The radio sky brightness map is a two -dimensional
real, nonnegative function which is the Fourier transform of the
complex visibility function. The visibility function is measured by
radio interferometry, and in the case of long -baseline in-
terferometry, the visibility function is measured only over a limited
set of "tracks" in the Fourier domain, resulting in a partially -filled
effective aperture. The error -reduction algorithm has been used to
obtain improved maps by, in effect, interpolating the visibility
function to fill in the area between the tracks.53 For this problem,
the constraints on the brightness map are that it be nonnegative and
be zero outside the known field of view. In the visibility plane, the
constraint is that the complex visiblity function equal the measured
value within the area of the tracks.

3.4. Modulus- quantized values
As mentioned earlier in connection with spectrum shaping, in com-
puter holography one may wish to encode the Fourier transform of
an image as a computer -generated hologram, but some types of
computer -generated holograms can encode only certain quantized
complex values. The kinoform example discussed earlier is a special
type of quantization. A more general example is the Lohmann
hologram, 54 for which the modulus and phase of a complex sample
are determined by the area and relative position, respectively, of an
aperture within a sampling cell. The number of allowable quantized
values is determined by the number of resolution elements, of the
recording device used to fabricate the hologram, used to form one
cell. For this synthesis problem, the function- domain constraint is
that the modulus of the function equal the desired image modulus
and the Fourier -domain constraint is that the complex Fourier
coefficients fall on a prescribed set of quantized values. Ex-
periments have shown that synthesizing such a Fourier transform
pair is possible using the iterative algorithm.55,7 For example, Fig.
8(a) shows a simulation of an image produced by a Lohmann
hologram having only four modulus and four phase quantization
levels when the image was random phase coded. Figure 8(b) shows
the image after 13 iterations, a considerable improvement. This
problem is one of a more general class of problems regarding the
transmission of coded data.

3.5. Finite extent -phase
Finally, the iterative algorithm has been used to reconstruct the
modulus of a band -limited signal from its phase.56.57 Or, looking at
it in another way, given that a function has finite extent and given
the phase of its Fourier transform, reconstruct the modulus of its
Fourier transform. For this application, it has been shown that for
a wide class of conditions the solution is unique.56 This application
will be discussed further in Sec. 4.

4. ALGORITHM CONVERGENCE AND
ACCELERATED ALGORITHMS
As mentioned in Sec. 2, the basic iterative algorithm depicted in
Fig. 1, referred to as the error -reduction algorithm, has been shown
to converge for some applications. In this section, the convergence
is proven for all applications. In addition, modified algorithms that
often converge much faster than the error -reduction algorithm are
discussed.

4.1. Convergence of the error- reduction algorithm
For the error -reduction algorithm, the mean -squared error can be
defined in general by Eq. (7) or Eq. (8). It is a normalized version
of the integral over the square of the amount by which the corn-
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Fig. 8. Computer -simulated images from hologram with four
magnitude and four phase quantized levels. (a) Object random
phased coded; (b) after 13 iterations of the iterative method.

puted function (or the computed Fourier transform) violates the
constraints in the appropriate domain. When the mean -squared er-
ror is zero, then a Fourier transform pair has been found that
satisfies all the constraints in both domains.

Consider again the steps in the error -reduction algorithm
described in Sec. 2. The kth iteration starts with an estimate gk(x)
that satisfies the function -domain constraints. For any coordinate,
x, the complex values that g(x) can have that satisfy the function -
domain constraints form some set of points in phasor space. For
example, if the modulus must equal f(x)1, then the set of such
points is a circle of radius f(x) 1 in phasor space; if the function
must be nonnegative, then the set of such points is the half line on
the nonnegative real axis. The function estimate gk(x) is Fourier
transformed, yielding Gk(u). The next step in the algorithm is to
form Gk(u) by changing Gk(u) by the smallest possible amount that
allows it to satisfy the Fourier- domain constraints. Gk(u) is then in-
verse Fourier transformed, yielding gk(x) in the function domain.
In the final step, gk +1(x) is formed by changing gk(x) by the
smallest amount that allows it to satisfy the function -domain con-
straints. Now consider the unnormalized squared error, given by
the numerators in Eqs. (7) and (8). In the Fourier domain, the un-
normalized squared error at the kth iteration is

2 _
eFk -

co

IGk(u) - Gk(u) 1 2 du
_00

(14)

in the Fourier domain has gaps, and the impulse response of the 
system is highly irregular. In applying the iterative algorithm to this
problem, 51 ' 52 the function-domain constraint is the finite extent 
and nonnegativity of the object, and the Fourier domain constraint 
is that the Fourier transform equal the measured Fourier transform 
over the measurement aperture.

A problem similar to the tomography problem arises in radio 
astronomy. The radio sky brightness map is a two-dimensional 
real, nonnegative function which is the Fourier transform of the 
complex visibility function. The visibility function is measured by 
radio interferornetry, and in the case of long-baseline in 
ter ferometry, the visibility function is measured only over a limited 
set of "tracks" in the Fourier domain, resulting in a partially-filled 
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obtain improved maps by, in effect, interpolating the visibility 
function to fill in the area between the tracks. 53 For this problem, 
the constraints on the brightness map are that it be nonnegative and 
be zero outside the known field of view. In the visibility plane, the 
constraint is that the complex visiblity function equal the measured 
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puter holography one may wish to encode the Fourier transform of 
an image as a computer-generated hologram, but some types of 
computer-generated holograms can encode only certain, quantized 
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type of quantization. A more general example is the Lohrnann 
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aperture within a sampling cell. The number of allowable quantized 
values is determined by the number of resolution elements, of the 
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that the modulus of the function equal the desired image modulus 
and the Fourier-domain constraint is that the complex Fourier 
coefficients fall on a prescribed set of quantized values. Ex 
periments have shown that synthesizing such a Fourier transform 
pair is possible using the iterative algorithm,. 55 ' 7 For example, Fig. 
8(a) shows a simulation of an image produced by a Lohrnann 
hologram having only four modulus and four phase quantization 
levels when, the image was random, phase coded. Figure 8(b) shows 
the image after 1,3 iterations, a considerable improvement. This 
problem is one of a more general class of problems regarding the 
transmission of coded data.

3.5. Finite extent phase
Finally, the iterative algorithm has been used to reconstruct the 
modulus of a band-limited signal from its phase. 56 ' 57 Or, looking at 
it in another way, given that a function has finite extent and given 
the phase of its Fourier transform, reconstruct the modulus of its 
Fourier transform. For this application, it has been shown that for 
a wide class of conditions the solution is unique. 56 This application 
will be discussed further in Sec. 4.

4. ALGORITHM CONVERGENCE AND 
ACCELERATED ALGORITHMS
As mentioned in Sec. 2, the basic iterative algorithm depicted in 
Fig. 1, referred to as the error-reduction algorithm, has been shown 
to converge for some applications. In this section, the convergence 
is proven for all applications. In addition, modified algorithms that 
often converge much faster than the error-reduction algorithm are 
discussed.

4.1. Convergence of the error-reduction algorithm
For the error-reduction algorithm, the mean-squared error can be 
defined in general by Eq. (7) or Eq. (8). It is a normalized version 
of the integral over the square of the amount by which the corn-

Fig. 8. Computer-simulated images from hologram with four 
magnitude and four phase quantized levels, (a) Object random 
phased coded; (b) after 13 iterations of the iterative method.

puted function (or the computed Fourier transform) violates the 
constraints in the appropriate domain. When the mean-squared er 
ror is zero, then a Fourier transform pair has been found that 
satisfies all the constraints in both domains.

Consider again the steps in the error-reduction algorithm 
described in Sec. 2. The k th iteration starts with an estimate g^(x) 
that satisfies the function-domain constraints. For any coordinate, 
x, the complex values that g(x) can have that satisfy the function- 
domain constraints form some set of points in phasor space. For 
example, if the modulus must equal f(x) |, then the set of such 
points is a circle of radius | f(x) | in phasor space; if the function 
must be nonnegative, then the set of such points is the half line on 
the nonnegative real axis. The function estimate gk (x) is Fourier 
transformed, yielding Gk(u). The next step in the algorithm is to 
form G^(u) by changing G^(u) by the smallest possible amount that 
allows it to satisfy the Fourier-domain constraints. G£(u) is then in 
verse Fourier transformed, yielding g£(x) in the function domain. 
In the final step, g^ + jM is formed by changing g£(x) by the 
smallest amount that allows it to satisfy the function-domain con 
straints. Now consider the unnorrnalized squared error, given by 
the numerators in Eqs. (7) and (8). In the Fourier domain, the un- 
normalized squared error at the k th iteration is

G k(u)- du

(14)
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= I I gk(x) - gk(x) 12 dx ,
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where the second line in this equation results from Parseval's
theorem. The unnormalized squared error in the function domain
at the kth iteration is given by

2
e0k =

w

fI gk + l(x) - gk(x) I 2 dx .

-03

(15)

Both gk(x) and gk + i(x) by definition satisfy the function -domain
constraints. Also at any given coordinate x, gk + 1(x) is the point in
phasor space satisfying the function -domain constraints that is
closest to gk(x). Therefore, for all values of x,

I gk + 1(x) - gk(x) I< I gk(x) - gk(x) (16)

where equality holds only if gk(x) is just as close in phasor space to
gk(x) as gk + 1(x) is. When there is a point in phasor space satisfying
the constraints that is closer to gk(x) than gk(x) is, then the left -
hand side of the expression above is strictly less than the right -hand
side. Therefore, combining Eqs. (14) -(16),

e0k `- eFk
(17)

for a given iteration. From the perfect symmetry of the error -
reduction algorithm, as seen from Fig. 1, a similar result holds
when one completes the iteration by satisfying the function -domain
constraints, thereby forming gk + 1(x), and continues the next itera-
tion by Fourier transforming gk + i(x) and causing its transform to
satisfy the Fourier -domain constraints. One then finds that

eF,k+1 < e0k < eFk (18)

Therefore, the unnormalized squared error can only decrease (or at
least not increase) at each iteration. Since the normalized mean -
squared error is simply proportional to the unnormalized squared er-
ror, a similar result holds for the errors defined by Eqs. (7) and (8).

While the error -reduction algorithm converges to a solution suf-
ficiently fast for some applications, it is unbearably slow for others.
In most cases, the error is reduced rapidly for the first few itera-
tions, and then much more slowly for later iterations.

4.2. Input- output algorithms
Resulting from an investigation into the problem of the slow con-
vergence of the error -reduction algorithm, a new and faster -
converging algorithm was developed, the input- output
algorithm.55,58,7,36,42 The input- output algorithm differs from the
error -reduction algorithm only in the function -domain operation.
The first three operations- Fourier transforming g(x), satisfying
Fourier domain constraints, and inverse Fourier transforming the
result -are the same for both algorithms. Those three operations,
if grouped together as shown in Fig. 9, can be considered as a
nonlinear system with an input g(x) and an output g' (x). A prop-
erty of this system is that its output is always a function having a
Fourier transform that satisfies the Fourier -domain constraints.
Therefore, if the output also satisfies the function -domain con-
straints, then all the constraints are satisfied and it is a solution to
the problem. It is then necessary to determine how to manipulate
the input in such a way as to force the output to satisfy the
function- domain constraints.

For the error -reduction algorithm, the next input g(x) is chosen
to be the current best estimate of the function satisfying the
function- domain constraints. However, for the input- output

INPUT g

OUTPUT g<

SATISFY
FOURIER

CONSTRAINTS

g{

Fig. 9. Block diagram of the system for the input- output concept.

algorithm, the input is not necessarily an estimate of the function
or a modification of the output, nor does it have to satisfy the con-
straints; instead, it is viewed as the driving function for the next
output. This viewpoint allows one a great deal of flexibility and in-
ventiveness in selecting the next input and allows the invention of
an algorithm that converges more rapidly to a solution. As will be
seen later, the "input- output algorithm" actually comprises a few
different algorithms, all of which are based on the input- output
point -of -view.

How the input should be changed in order to drive the output to
satisfy the constraints depends on the particular problem at hand.
The analysis given in the appendix for a specific application can be
generalized as follows. Consider what happens when an arbitrary
change is made in the input. Suppose that at the kth iteration the in-
put gk(x) results in the output gk(x). Further, suppose that the input
is then changed by adding Og(x):

gk + 1(x) = gk(x) + Ag(x) (19)

Then one would expect the new output resulting from gk + 1(x) to
be of the form

gk + 1(x) = gk(x) + crhg(x) + additional noise. (20)

That is, the expected (or statistical mean) value of the change of the
output, due to the change Ag(x) of the input, is atg(x), a constant
times the change of the input. The system shown in Fig. 9 is not
linear; nevertheless, small changes of the input tend to result in
similar changes of the output. The expected value of the change of
the output can be predicted, but its actual value cannot be
predicted since it has a non -zero variance. In the equation above,
this lack of predictability is indicated by the "additional noise"
term. The constant a depends on the statistics of Gk(u) and F(u)
and on the Fourier -domain constraints.

If the output gk(x) does not satisfy the function -domain con-
straints and if gk(x) + Ogd(x) does, then one might try to drive the
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v^/•/ |gk(x)-g£(x)| 2 dx,

where the second line in this equation results from Parseval's 
theorem. The unnormalized squared error in the function domain 
at the kth iteration is given by

eOk = + i(x)-g£(x)| 2 dx. (15)

Both gk(x) and gk + i(x) by definition satisfy the function-domain 
constraints. Also at any given coordinate x, gk + j(x) is the point in 
phasor space satisfying the function-domain constraints that is 
closest to gk(x). Therefore, for all values of x,

I gk +1W - gk WI < I gk(x) - g£ (16)

where equality holds only if gk(x) is just as close in phasor space to 
gk(x) as gk + j(x) is. When there is a point in phasor space satisfying 
the constraints that is closer to gk(x) than gk(x) is, then the left- 
hand side of the expression above is strictly less than the right-hand 
side. Therefore, combining Eqs. (14)-(16),

eOk * eFk (17)

for a given iteration. From the perfect symmetry of the error- 
reduction algorithm, as seen from Fig. 1, a similar result holds 
when one completes the iteration by satisfying the function-domain 
constraints, thereby forming gk + j(x), and continues the next itera 
tion by Fourier transforming gk + j(x) and causing its transform to 
satisfy the Fourier-domain constraints. One then finds that

eOk (18)

Therefore, the unnormalized squared error can only decrease (or at 
least not increase) at each iteration. Since the normalized mean- 
squared error is simply proportional to the unnormalized squared er 
ror, a similar result holds for the errors defined by Eqs. (7) and (8). 

While the error-reduction algorithm converges to a solution suf 
ficiently fast for some applications, it is unbearably slow for others. 
In most cases, the error is reduced rapidly for the first few itera 
tions, and then much more slowly for later iterations.

4.2. Input-output algorithms
Resulting from an investigation into the problem of the slow con 
vergence of the error-reduction algorithm, a new and faster- 
converging algorithm was developed, the input-output 
algorithm. 55 ' 58 ' 7 ' 36'42 The input-output algorithm differs from the 
error-reduction algorithm only in the function-domain operation. 
The first three operations Fourier transforming g(x), satisfying 
Fourier domain constraints, and inverse Fourier transforming the 
result are the same for both algorithms. Those three operations, 
if grouped together as shown in Fig. 9, can be considered as a 
nonlinear system with an input g(x) and an output g'(x). A prop 
erty of this system is that its output is always a function having a 
Fourier transform that satisfies the Fourier-domain constraints. 
Therefore, if the output also satisfies the function-domain con 
straints, then all the constraints are satisfied and it is a solution to 
the problem. It is then necessary to determine how to manipulate 
the input in such a way as to force the output to satisfy the 
function-domain constraints.

For the error-reduction algorithm, the next input g(x) is chosen 
to be the current best estimate of the function satisfying the 
function-domain constraints. However, for the input-output

INPUT 9
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FOURIER
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Fig. 9. Block diagram off the system for the input-output concept.

algorithm, the input is not necessarily an estimate of the function 
or a modification of the output, nor does it have to satisfy the con 
straints; instead, it is viewed as the driving function for the next 
output. This viewpoint allows one a great deal of flexibility and in 
ventiveness in selecting the next input and allows the invention of 
an algorithm that converges more rapidly to a solution. As will be 
seen later, the "input-output algorithm" actually comprises a few 
different algorithms, all of which are based on the input-output 
point-of-view.

How the input should be changed in order to drive the output to 
satisfy the constraints depends on the particular problem at hand. 
The analysis given in the appendix for a specific application can be 
generalized as follows. Consider what happens when an arbitrary 
change is made in the input. Suppose that at the kth iteration the in 
put gk(x) results in the output gk(x). Further, suppose that the input 
is then changed by adding Ag(x):

(19)

Then one would expect the new output resulting from gk + i(x) to 
be of the form

gk + l(x) = g£(x) + aAg(x) + additional noise. (20)

That is, the expected (or statistical mean) value of the change of the 
output, due to the change Ag(x) of the input, is aAg(x), a constant 
times the change of the input. The system shown in Fig. 9 is not 
linear; nevertheless, small changes of the input tend to result in 
similar changes of the output. The expected value of the change of 
the output can be predicted, but its actual value cannot be 
predicted since it has a non-zero variance. In the equation above, 
this lack of predictability is indicated by the "additional noise" 
term. The constant a. depends on the statistics of Gk(u) and F(u) 
and on the Fourier-domain constraints.

If the output g£(x) does not satisfy the function-domain con 
straints and if g£(x) + Agd(x) does, then one might try to drive the
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output to satisfy the constraints by changing the input in such a
way as to cause the output to change by Agd(x). According to the
equation above, the change of the input that will, on the average,
cause a change Agd(x) of the output is

Ag(x) = a- lAgd(x) . (21)

Thus a logical choice for the new input is

gk + 1(x) = gk(x) + ßAgd(x) , (22)

where ß is a constant ideally equal to a'', and where Agd(x) is a
function such that gk(x) + Agd(x) satisfies the function -domain
constraints. If a is unknown, then a value of ß only approximately
equal to a-' will usually work nearly as well. The use of too small a
value of ß in Eq. (22) will only cause the algorithm to converge
more slowly. The noise -like terms in Eq. (20) are kept to a
minimum by minimizing I iAgd(x) .

As mentioned earlier, for the input- output algorithm gk(x) is not
necessarily an estimate of the function; it is instead the driving
function for the next output. Therefore, it does not matter whether
its Fourier transform, Gk(u), satisfies the Fourier -domain con-
straints. Consequently, for the input- output algorithm, the mean -
squared error, El., is unimportant; Eó is the meaningful quality
criterion. When computing E0 for the input- output algorithm, the
gk +1(x) that one should use in the integrand of Eq. (8) is the one
determined by the error -reduction algorithm rather than the one
computed by the input- output algorithm. That is, E0 should still be
a measure of the amount by which the output, gk(x), violates the
constraints.

Another interesting property of the system shown in Fig. 9 is that
if an output g' (x) is used as an input, then its output will be itself.
Since the Fourier transform of g' (x) already satisfies the Fourier -
domain constraints, g' (x) is unaffected as it goes through the
system. Therefore, no matter what input actually resulted in the
output g' (x), the output g' (x) can always be considered to have
resulted from itself as an input. From this point of view, another
logical choice for the new input is

gk+l(x) = gk(x) + ßAgd(x) (23)

Note that if ß = 1 in Eq. (23), then this version of the input -
output algorithm reduces to the error -reduction algorithm. Since
the optimum value of ß is usually not unity, the error -reduction
algorithm can be looked on as a suboptimal subset of one version
of the more general input- output algorithm. Depending on the
problem being solved, other variations in Eqs. (22) and (23) may be
successful ways for choosing the next input.

In order to implement the input- output algorithm using Eq. (22)
or (23), one chooses Agd(x) according to the function -domain con-
straints. In general, a logical choice is the smallest value of Agd(x)
for which g' (x) + Agd(x) satisfies the function -domain constraints.
At those values of x for which gk(x) already satisfies the function-
domain constraints, one would set Agd(x) = O. At those values of x
for which gk(x) violates the function -domain constraints, examples
of logical choices of Agd(x) for various applications are as follows.
For the astronomy problem and other applications requiring the
function to be nonnegative, choose Agd(x) = -gk(x) where gk(x) is
negative. For applications requiring the function to be of finite ex-
tent, choose Agd(x) _ -gk(x) for x outside the known region of
support. For applications requiring the function to have modulus
equal to I f(x) I , choose

ABA) = If(x)I
gk(x)

-gk(x).
Igk(x)t

(24)
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In addition to the values of Agd(x) given above, there are other
choices that are successful when used in Eqs. (22) and (23). Any
Agd(x) that moves g' (x) in the general direction of satisfying the
function -domain constraints will usually result inan algorithm that
works; suboptimum choices of Agd(x) and of ß in Eq. (22) or Eq.
(23) result in algorithms that converge less rapidly than the op-
timum. Two examples of other algorithms that converge more
rapidly than the "logical" ones described in the preceding
paragraph are as follows. For applications requiring the function to
have modulus equal to I f(x) I , it was noticed that the difference in
phase between gk(x) and gk(x) tends to have the same sign as the
change of phase of gk(x) from one iteration to the next. In order to
anticipate the direction that the phase is changing, one could
choose a Agd(x) that tends to rotate the phase angle of the new
input toward that of the last output. That is, a good choice for the
desired change of the output is

gk(x)
Agd(x) = {f(x)) - gk(x)

I gk(x) I J

+ If(x)I
gk(x)

- If(x)I
gk(x)

(25)
I gk(x)1 I gk(x) I

in which the first component boosts (or shrinks) the magnitude of
the output to match I f(x) I and the second component rotates the
phase angle of the input toward the phase angle of the output. For
the astronomy problem, it was found that a particularly successful
algorithm was to use Eq. (23) at those points where the constraints
were satisfied and use Eq. (22) at those points where the constraints
were violated, i.e.,

gk(x), where constraints satisfied

gk + 1(x) -
gk(x) - ßgk(x), where constraints violated

(26)

Furthermore, it was found that even faster convergence can be ob-
tained by alternating between the above equation and the error -
reduction algorithm every few iterations.

Unlike the error- reduction algorithm, the input -output algorithm
is not guaranteed to converge; in fact the error may even increase
for some of the iterations. However, the input-output algorithm is
much less prone to stagnation and therefore in practice converges
much faster than the error -reduction algorithm. In some instances
during the input- output iterations, E0 may even increase although
the visual appearance of the image improves. This behavior, which
is poorly understood, is described further in Ref. 59.

From the paragraphs above, it is seen that the "input- output
algorithm" is really a family of algorithms. The input- output ap-
proach is one that can lead to a number of different algorithms
based on the manner in which the nonlinear system of Fig. 9
behaves. One would hope that the principles of control theory and
possibly other disciplines could be used to shed further light on this
system and help to arrive at algorithms with still more rapid con-
vergence.

It should also be noted that, unlike the error -reduction
algorithm, the input- output algorithm does not treat the two do-
mains in a symmetric manner. By reversing the roles of the two
domains, one can arrive at a different and possibly more advan-
tageous algorithm.

4.3. Relaxation -parameter algorithm
A second method of improved convergence is the use of a relaxa-
tion parameter. In solving the problem of reconstructing the
magnitude of a band -limited function from its phase (or,
equivalently, reconstructing a function of finite extent from the

output to satisfy the constraints by changing the input in such a 
way as to cause the output to change by Agd(x). According to the 
equation above, the change of the input that will, on the average, 
cause a change Agd(x) of the output is

Ag(x) = c

Thus a logical choice for the new input is

0Agd(x),

(21)

(22)

where 0 is a constant ideally equal to a' 1 , and where Agd(x) is a 
function such that g£(x) + Agd(x) satisfies the function-domain 
constraints. If a. is unknown, then a value of 0 only approximately 
equal to a"1 will usually work nearly as well. The use of too small a 
value of /3 in Eq. (22) will only cause the algorithm to converge 
more slowly. The noise-like terms in Eq. (20) are kept to a 
minimum by minimizing | /3Agd(x) |.

As mentioned earlier, for the input-output algorithm gk(x) is not 
necessarily an estimate of the function; it is instead the driving 
function for the next output. Therefore, it does not matter whether 
its Fourier transform, Gk(u), satisfies the Fourier-domain con 
straints. Consequently, for the input-output algorithm, the mean- 
squared error, Ep, is unimportant; E^ is the meaningful quality 
criterion. When computing E0 for the input-output algorithm, the 
gk + i(x) that one should use in the integrand of Eq. (8) is the one 
determined by the error-reduction algorithm rather than the one 
computed by the input-output algorithm. That is, E0 should still be 
a measure of the amount by which the output, gk(x), violates the 
constraints.

Another interesting property of the system shown in Fig. 9 is that 
if an output g'(x) is used as an input, then its output will be itself. 
Since the Fourier transform of g'(x) already satisfies the Fourier- 
domain constraints, g'(x) is unaffected as it goes through the 
system. Therefore, no matter what input actually resulted in the 
output g'(x), the output g'(x) can always be considered to have 
resulted from itself as an input. From this point of view, another 
logical choice for the new input is

(23)

Note that if 0 = 1 in Eq. (23), then this version of the input- 
output algorithm reduces to the error-reduction algorithm. Since 
the optimum value of 0 is usually not unity, the error-reduction 
algorithm can be looked on as a suboptimal subset of one version 
of the more general input-output algorithm. Depending on the 
problem being solved, other variations in Eqs. (22) and (23) may be 
successful ways for choosing the next input.

In order to implement the input-output algorithm using Eq. (22) 
or (23), one chooses Agd(x) according to the function-domain con 
straints. In general, a logical choice is the smallest value of Agd(x) 
for which g£(x) + Agd(x) satisfies the function-domain constraints. 
At those values of x for which g£(x) already satisfies the function- 
domain constraints, one would set Agd(x) = 0. At those values of x 
for which g£(x) violates the function-domain constraints, examples 
of logical choices of Agd(x) for various applications are as follows. 
For the astronomy problem and other applications requiring the 
function to be nonnegative, choose Agd(x) = -g£(x) where g£(x) is 
negative. For applications requiring the function to be of finite ex 
tent, choose Agd(x) = -g£(x) for x outside the known region of 
support. For applications requiring the function to have modulus 
equal to | f(x) |, choose

Agd(x)= |f(x)
|gk(x)t

--gk(x). (24)

In addition to the values of Agd(x) given above, there are other 
choices that are successful when used in Eqs. (22) and (23). Any 
Agd(x) that moves g'(x) in the general direction of satisfying the 
function-domain constraints will usually result in an algorithm that 
works; suboptimum choices of Agd(x) and of 0 in Eq. (22) or Eq. 
(23) result in algorithms that converge less rapidly than the op 
timum. Two examples of other algorithms that converge more 
rapidly than the "logical" ones described in the preceding 
paragraph are as follows. For applications requiring the function to 
have modulus equal to | f(x) |, it was noticed that the difference in 
phase between g£(x) and gk(x) tends to have the same sign as the 
change of phase of g£(x) from one iteration to the next. In order to 
anticipate the direction that the phase is changing, one could 
choose a Agd(x) that tends to rotate the phase angle of the new 
input toward that of the last output. That is, a good choice for the 
desired change of the output is

gk(x)

|gk(x)| |gk(*)l
(25)

in which the first component boosts (or shrinks) the magnitude of 
the output to match | f(x) | and the second component rotates the 
phase angle of the input toward the phase angle of the output. For 
the astronomy problem, it was found that a particularly successful 
algorithm was to use Eq. (23) at those points where the constraints 
were satisfied and use Eq. (22) at those points where the constraints 
were violated, i.e.,

£(x), where constraints satisfied

(26)
gk(x) - #gk(x), where constraints violated

Furthermore, it was found that even faster convergence can be ob 
tained by alternating between the above equation and the error- 
reduction algorithm every few iterations.

Unlike the error-reduction algorithm, the input-output algorithm 
is not guaranteed to converge; in fact the error may even increase 
for some of the iterations. However, the input-output algorithm is 
much less prone to stagnation and therefore in practice converges 
much faster than the error-reduction algorithm. In some instances 
during the input-output iterations, E0 may even increase although 
the visual appearance of the image improves. This behavior, which 
is poorly understood, is described further in Ref. 59.

From the paragraphs above, it is seen that the "input-output 
algorithm" is really a family of algorithms. The input-output ap 
proach is one that can lead to a number of different algorithms 
based on the manner in which the nonlinear system of Fig. 9 
behaves. One would hope that the principles of control theory and 
possibly other disciplines could be used to shed further light on this 
system and help to arrive at algorithms with still more rapid con 
vergence.

It should also be noted that, unlike the error-reduction 
algorithm, the input-output algorithm does not treat the two do 
mains in a symmetric manner. By reversing the roles of the two 
domains, one can arrive at a different and possibly more advan 
tageous algorithm.

4.3. Relaxation-parameter algorithm
A second method of improved convergence is the use of a relaxa 
tion parameter. In solving the problem of reconstructing the 
magnitude of a band-limited function from its phase (or, 
equivalently, reconstructing a function of finite extent from the
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Fig. 10. Block diagram of the error -reduction algorithm modified to
include a relaxation step.

phase of its Fourier transform), Oppenheim, Hayes, and Lim57
modified the error -reduction algorithm (Fig. 1) by adding a relaxa-
tion step, as shown in Fig. 10. Here the band -limited function is
taken to be in the Fourier domain. The function g(x) then must be
of finite extent according to the bandwidth of the Fourier -domain
function. In the relaxation step, gk(x) is formed from gk(x) accord-
ing to

gk(x) = (1 - r1k)gk_1(x) + nkgk(x) , (27)

and then the new estimate gk + 1(x) is formed from gk(x) by making
it satisfy the function -domain constraints. The parameter rlk, which
is a constant that may vary from one iteration to the next, is the
relaxation parameter. For ,tk = 1, gk(x) = gk(x) and this reduces to
the error -reduction approach. For r1k = 0, gk(x) = gk_1(x), that is,
the result from the previous iteration is used. Other values of 7k
give a linear combination of gk_1(x) and gk(x). For the reconstruc-
tion of a function of finite extent from the phase of its Fourier
transform or from a segment of its Fourier transform (i.e., the
superresolution problem), if gi(x) and gz(x) both satisfy the
Fourier -domain constraint, then the linear combination rigi(x) +
(1 - rl)g2(x) also satisfies the constraint in the Fourier domain. It
follows from this that gk(x) given by Eq. (27) also satisfies the
Fourier -domain constraint. In those cases, it can be shown that the
algorithm converges for 0 < rlk <_ 1. However, for other sets of
constraints, for example, given the modulus of the Fourier trans-
form, gk(x) given by the equation above does not generally satisfy
the Fourier -domain constraints and so the relaxation method does
not strictly apply.

The optimum value of rjk can be determined as follows. Define
the function- domain squared error after the relaxation step as

e2=/0 gk(x) Z dx , (28)

ti
where the region of integration, y, is the region over which the
function is known to be zero. Setting equal to zero the derivative of
eó with respect to r1k, and solving for r,k, one finds the optimum
value of fk to be given by

1k

-Re gk_1(x)[gk(x) - gk_1(x)]* dx

y

gk(x) - gk_1(x) 2 dx

(29)

The computation of the relaxation parameter by Eq. (29) takes
much less time than the computation of one (fast) Fourier
transform, and so it does not significantly increase the total com-
putation time of a single iteration.

Use of the relaxation step for the problem of reconstructing a
band -limited function from its phase resulted in an order of
magnitude improvement in the speed of convergence of the
algorithm over that of the error -reduction algorithm.57

The relaxation step described above incorporates the optimum
combination of the current output with the previous output. It is
also possible to extend this concept to include a number of previous
outputs,57 which may result in still more rapid convergence.

It should be noted that the majority of the work referenced in
Sec. 3 made use of only the error -reduction algorithm. Improved
speed of convergence could be expected if one of the two ac-
celerated algorithms discussed above were employed.

5. SUMMARY AND COMMENTS
The iterative error -reduction algorithm, an extension of the
Gerchberg- Saxton algorithm to include various types of con-
straints, has been found to be capable of solving a wide range of
difficult problems in optics and other fields. It can be applied to the
reconstruction of a function (an object, wavefront, signal, etc.)
when only partial information is available in each of two domains,
or to the synthesis of a function (wavefront, signal, etc.) having
desired properties in each of two domains. The iterative algorithm
is reasonably fast for most applications, since the major computa-
tional burden, two Fourier transforms per iteration, can be ac-
complished using the fast Fourier transform (FFT) algorithm. The
iterative algorithm has been shown to outperform alternative
methods of solving these classes of problems both because of its
speed and its tolerance of noise.4,9 For some applications, a large
number of iterations is required for convergence of the error -
reduction algorithm. This situation can be remedied by using an
algorithm with accelerated convergence, such as the input- output
algorithm or an algorithm employing a relaxation step.

The iterative algorithm has been in use for only a few years, yet it
has already found numerous applications; and methods of improv-
ing the algorithm have been devised. Nevertheless, it is safe to
predict that it will be used in the future to solve new problems not
discussed here, and it is hoped that further improvements of the
algorithm will be discovered.

POSTSCRIPT
As this book goes to print, further developments relating to the
iterative algorithm are occurring at a rapid pace. It has been un-
covered that an algorithm equivalent to Gerchberg's45 error -
reduction algorithm for extrapolation was proposed by Ville60 in
1956, although approached from a different point of view. Rela-
tionships between the error -reduction algorithm and gradient
search methods have been discovered59,61,62 and uncovered.ó3 And
further work on various applications is being reported.64 -83

APPENDIX: ANALYSIS OF THE INPUT -OUTPUT
SYSTEM
Consider the synthesis problem for kinoforms, for which the
Fourier modulus is set equal to a constant. Suppose that the input
g(x) to a kinoform system results in the output g' (x). The kinoform
has a transmittance G'(u) = K exp[ic(u)], where 0(u) is the phase
of G(u) = G(u)1 exp[iO(u)] = , [g(x)], and K is a constant. The
resulting image is g' (x) = -I [G ' (u)] . Now consider what happens
when a change Ag(x) is made in the input. As illustrated in the
phasor diagrams in Fig. Al , the change Ag(x) of the input causes a
change zG(u) of its Fourier transform, which causes a change
AG' (u) of the kinoform and a corresponding change Ag' (x) =
,3 -I [AG' (u)] of the output image. The goal here is to determine

the relationship between the change Ag' (x) of the output and the
change Ag(x) of the input. Figure A2 shows the relationship be-
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Fig. 10. Block diagram of the error-reduction algorithm modified to 
include a relaxation step.

phase of its Fourier transform), Oppenheim, Hayes, and Lim57 
modified the error-reduction algorithm (Fig. 1) by adding a relaxa 
tion step, as shown in Fig. 10. Here the band-limited function is 
taken to be in the Fourier domain. The function g(x) then must be 
of finite extent according to the bandwidth of the Fourier-domain 
function. In the relaxation step, g£(x) is formed from g£(x) accord 
ing to

g£(x) - (1 - (27)

and then the new estimate gk _,_ j(x) is formed from g£(x) by making 
it satisfy the function-domain constraints. The parameter ?y k , which 
is a constant that may vary from one iteration to the next, is the 
relaxation parameter. For iy k = 1, g£(x) = g£(x) and this reduces to 
the error-reduction approach. For r/k = 0, g£(x) = gj^x), that is, 
the result from the previous iteration is used. Other values of r/k 
give a linear combination of g£_i(x) and g£(x). For the reconstruc 
tion of a function of finite extent from the phase of its Fourier 
transform or from a segment of its Fourier transform (i.e., the 
superresolution problem), if g{(x) and g^(x) both satisfy the 
Fourier-domain constraint, then the linear combination r/gj(x) + 
(1 - ^g^W also satisfies tne constraint in the Fourier domain. It 
follows from this that g£(x) given by Eq. (27) also satisfies the 
Fourier-domain constraint. In those cases, it can be shown that the 
algorithm converges for 0 < ?/ k < 1. However, for other sets of 
constraints, for example, given the modulus of the Fourier trans 
form, g£(x) given by the equation above does not generally satisfy 
the Fourier-domain constraints and so the relaxation method does 
not strictly apply.

The optimum value of r/ k can be determined as follows. Define 
the function-domain squared error after the relaxation step as

e£ = |g£(x)| 2 dx, (28)

where the region of integration, 7, is the region over which the 
function is known to be zero. Setting equal to zero the derivative of 
e2 with respect to r/k , and solving for r/k , one finds the optimum 
value of rjk to be given by

(29)

-Re / gfc.iWb
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Jk(x) - gk'.i(x)]* dx

|gk(x)-gk_!(x)| 2 dx

The computation of the relaxation parameter by Eq. (29) takes 
much less time than the computation of one (fast) Fourier 
transform, and so it does not significantly increase the total com 
putation time of a single iteration.

Use of the relaxation step for the problem of reconstructing a 
band-limited function from its phase resulted in an order of 
magnitude improvement in the speed of convergence of the 
algorithm over that of the error-reduction algorithm. 57

The relaxation step described above incorporates the optimum 
combination of the current output with the previous output. It is 
also possible to extend this concept to include a number of previous 
outputs, 57 which may result in still more rapid convergence.

It should be noted that the majority of the work referenced in 
Sec. 3 made use of only the error-reduction algorithm. Improved 
speed of convergence could be expected if one of the two ac 
celerated algorithms discussed above were employed.
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Gerchberg-Saxton algorithm to include various types of con 
straints, has been found to be capable of solving a wide range of 
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reconstruction of a function (an object, wavefront, signal, etc.) 
when only partial information is available in each of two domains, 
or to the synthesis of a function (wavefront, signal, etc.) having 
desired properties in each of two domains. The iterative algorithm 
is reasonably fast for most applications, since the major computa 
tional burden, two Fourier transforms per iteration, can be ac 
complished using the fast Fourier transform (FFT) algorithm. The 
iterative algorithm has been shown to outperform alternative 
methods of solving these classes of problems both because of its 
speed and its tolerance of noise. 4 ' 9 For some applications, a large 
number of iterations is required for convergence of the error- 
reduction algorithm. This situation can be remedied by using an 
algorithm with accelerated convergence, such as the input-output 
algorithm or an algorithm employing a relaxation step.

The iterative algorithm has been in use for only a few years, yet it 
has already found numerous applications; and methods of improv 
ing the algorithm have been devised. Nevertheless, it is safe to 
predict that it will be used in the future to solve new problems not 
discussed here, and it is hoped that further improvements of the 
algorithm will be discovered.

POSTSCRIPT
As this book goes to print, further developments relating to the 
iterative algorithm are occurring at a rapid pace. It has been un 
covered that an algorithm equivalent to Gerchberg's45 error- 
reduction algorithm for extrapolation was proposed by Ville60 in 
1956, although approached from a different point of view. Rela 
tionships between the error-reduction algorithm and gradient 
search methods have been discovered59 ' 61 ' 62 and uncovered. 63 And 
further work on various applications is being reported. 64" 83

APPENDIX: ANALYSIS OF THE INPUT-OUTPUT 
SYSTEM
Consider the synthesis problem for kinoforms, for which the 
Fourier modulus is set equal to a constant. Suppose that the input 
g(x) to a kinoform system results in the output g'(x). The kinoform 
has a transmittance G'(u) = K exp[i</>(u)], where <£(u) is the phase 
of G(u) = | G(u) | exp[i0(u)] = 9 [g(x)], and K is a constant. The 
resulting image is g' (x) = & ~* [G' (u)]. Now consider what happens 
when a change Ag(x) is made in the input. As illustrated in the 
phasor diagrams in Fig. Al, the change Ag(x) of the input causes a 
change AG(u) of its Fourier transform, which causes a change 
AG'(u) of the kinoform and a corresponding change Ag'(x) = 
^^[AG'Cu)] of the output image. The goal here is to determine 

the relationship between the change Ag'(x) of the output and the 
change Ag(x) of the input. Figure A2 shows the relationship be-
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Fig. Al. A change Ag of the input results in a change AG' of the
kinoform and a change of Ag' of the output.

Fig. A2. Relationship between AG', the change of the kinoform
and two components of AG, the Fourier transform of the change o
the input.

tween AG' (u) and two orthogonal components of AG(u). By
similar triangles, for I AGI < < I G I ,

AG' (u) _ AGt(u) K ,

G(u)

where the two orthogonal components of AG(u) are

AGr(u) = AG(u) cos ß(u) e'4(u)

parallel to G(u), and

AGt(u) = I AG(u) I sin ß(u) ei[0(u) +112]

orthogonal to G(u); and

AG(u) = AGr(u) + AGt(u) = AG(u) e1[40) +ß(u)]

(Al)

(A2)

(A3)

(A4)

where ß(u) is the angle between AG(u) and G(u). Only one of the
two orthogonal components of AG(u), namely AGt(u), contributes
to AG' (u).
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In order to compute the expected change of the output,
E[Ag'(x)], treat the phase angles ß(u) and the magnitudes I G(u) I as
random variables. Inserting I AG(u) I from Eq. (A4) into Eq. (A3),
one obtains

AGt(u) = AG(u) é i[4(u)+ß(u)] sin /3(u) ei0(u) eia/2

= AG(u)[sin2 0(u) + i sin (3(u) cos ß(u)] . (A5)

For ß(u) uniformly distributed over [0, 21],19 the expected value of
AGt(u) is

E[AGt(u)] = AG(u) (I + iOl = 2 AG(u) . (A6)

Therefore, the expected value of the change of the output is, using
Eqs. (Al) and (A6) and assuming that the magnitudes I G(u) I are
identically distributed random variables19 independent of ß(u),

E[Ag'(x)] = E
L

g (AG ')1

= [E(AG' )] - 9= [Fwit) E
K

ÌGI

g [1ci(u)]
E (-ï-) = 4

Ag(x)E C

K

GI
(A7)

That is, the expected change of the output is a times the change of
the input, giving us the second term in Eq. (20), where a =
(1 /2)E(K/ I G I ). After a few iterations, I G(u) will not differ
greatly from K; then a _ 1/2.

Similarly, the variance of the change of the output can be shown
to óe58

- IE[Ag'(x)]I2

l (f
E

4
/ L \IGI

A

CO

1
-w (A8)

where A is the area of the image. That is, the variance of the change
of the output Ag' (x) at any given x is proportional to the integrated
squared change of the entire input. The predictability of Ag' (x),
and the degree of control with which one can manipulate it,
decreases as one makes larger changes of the input. The difference
between the actual change of the output and the expected change of
the output given by Eq. (A7) is what is meant by the additional
noise term in Eq. (20). If, after a few iterations, I G(u) I = K, then
in Eq. (A8) the factor (1 /4)12E(K2/ I G 12) - [E(K/ G O]21 1/4.

Equations (A7) and (A8) are a justification for the input- output
concept: small changes of the input result in similar changes of the
output, and so the output can be driven to satisfy the constraints by
appropriate changes of the input, as in Eqs. (22) and (23).
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tween AG'(u) and two orthogonal components of AG(u). By 
similar triangles, for | AG | « | G |,

- AGl(u)- K (Al)

where the two orthogonal components of AG(u) are

AGr(u) = AG(u)| cos/

parallel to G(u), and

AGl(u) = |AG(u)| sir

orthogonal to G(u); and

AG(u) = AGr(u) + AGl(u) = |AG(u)| jtoW + PW] , (A4)

(A2)

(A3)

where 0(u) is the angle between AG(u) and G(u). Only one of the 
two orthogonal components of AG(u), namely AG*(u), contributes 
to AG'(u).

In order to compute the expected change of the output, 
E[Ag'(x)], treat the phase angles /3(u) and the magnitudes | G(u) | as 
random variables. Inserting | AG(u)| from Eq. (A4) into Eq. (A3), 
one obtains

= AG(u) e"

= AG(u)[sin2 /3(u) + isi

sin ei?r/2

(A5)

For 0(u) uniformly distributed over [0, 27r], 19 the expected value of 
AGl(u) is

AG(u) — + i-
2

=   AG(u) .
2

(A6)

Therefore, the expected value of the change of the output is, using 
Eqs. (Al) and (A6) and assuming that the magnitudes G(u)| are 
identically distributed random variables 19 independent of /3(u),

E[Ag'(x)] = E ')l

9 E(AGl) E

\G
(A7)

That is, the expected change of the output is a times the change of 
the input, giving us the second term in Eq. (20), where a = 
(1/2)E(K/|G|). After a few iterations, |G(u)| will not differ 
greatly from K; then a =• 1/2.

Similarly, the variance of the change of the output can be shown 
to be58

E[|Ag'(x)| 2]-

2E
K2

-1 /|Ag(x')| 2 dx', 
A /

(A8)

where A is the area of the image. That is, the variance of the change 
of the output Ag' (x) at any given x is proportional to the integrated 
squared change of the entire input. The predictability of Ag'(x), 
and the degree of control with which one can manipulate it, 
decreases as one makes larger changes of the input. The difference 
between the actual change of the output and the expected change of 
the output given by Eq. (A7) is what is meant by the additional 
noise term in Eq. (20). If, after a few iterations, |G(u)| - K, then 
in Eq. (A8) the factor (1/4)(2E(K2/|G| 2) - [E(K/|G|)] 2J = 1/4.

Equations (A7) and (A8) are a justification for the input-output 
concept: small changes of the input result in similar changes of the 
output, and so the output can be driven to satisfy the constraints by 
appropriate changes of the input, as in Eqs. (22) and (23).
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