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Abstract

Diffraction-limited images, of resolution many times finer than what is ordinarily ob-
tainable through large earth-bound telescopes, can be obtained by first measuring the modu-
lus of the Fourier transform of an object by the method of Labeyrie's stellar speckle
interferometry, and then reconstructing the object by an iterative method. Before recon-
struction is performed, it is first necessary to compensate for weighting functions and
noise in order to arrive at a good estimate of the object's Fourier modulus. A simple al-
ternative to Worden's method of compensation for the MTF of the speckle process is de-
scribed. Experimental reconstruction results are shown for the binary star system SAO
94163,

Introduction

As discussed in several papers in this session on Stellar Speckle Interferometry,
Labeyrie's method!l of processing many short-exposure images can be used to arrive at a
diffraction-limited estimate of the Fourier modulus of an astronomical object despite the
presence of atmospheric turbulence. Since the diffraction limit of a large-aperture tele-
scope is many times finer than the resolution ordinarily obtainable through the atmosphere
at optical wavelengths, stellar speckle interferometry has the potential for providing
images having many times finer detail than what is ordinarily obtainable from earth-bound
telescopes. Unfortunately,_except for special cases in which an unresolved star is very
near the object of interestz, the Fourier modulus data can be used to directly compute
only the autocorrelation of the object and not the object itself. 1In recent years, it has
been shown that this stumbling block can be overcome by an iterative method® of computing
the object's spatial (or angular) brightness distribution, which uses the Fourier modulus
data provided by stellar speckle interferometry combined with the a priori knowledge that
the object distribution is nonnegative. This method provides an alternative to other fine-
resolution imaging techniques4:3,

In the remainder of this paper, stellar speckle inteferometry and the iterative recon-
struction method are briefly reviewed. Then more detailed discussions of noise terms and
MTF factors present in speckle interferometry are given, and methods of obtaining an im-
proved estimate of an astronomical object's Fourier modulus are described. Finally, some
recent results obtained with telescope data are shown.

Basic stellar speckle interferometry

Labeyrie's stellar speckle interferometry starts by taking a number of short-exposure
images of an astronomical object:

dm(x) = f(x) % Sm{x) (1)

where f(x) is the spatial or angular brightness distribution of the object and sp(x) is
the point-spread function due to the comblned effects of atmosphere and the telescope for
the mth exposure. The coordinate x is a two-dimensional vector and K denotes convolu-
tion. It is assumed that the exposure time is short enough to "freeze" the atmosphere and
only a narrow spectral band is used. The Fourier transform of each short-exposure image
is computed:

|

Dm(u) = f_’dm(x) exp (i2qux) dx (2)

In this paper, capital letters will denote the complex Fourier transforms of the corre-
sponding lower-case letters, and the coordinate u is referred to as a spatial frequency.
The summed squared Fourier modulus (the summed power spectrum) is computed:
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The factor znsm(uJ|3 can be thought of as the square of the MTF of the speckle interfer-
ometry process (the speckle MTF2) and it can be determined approximately by performing
stellar speckle interferometry on an isolated unresolved star through atmospheric condi-
tions having the same statistics as those through which the object imagery is taken.
Dividing the summed power spectrum hy the speckle MTFZ yields, according to Eq. (3),
|F(u) |2, the squared Fourier modulus of the object.

Since it is simply the Fourier transform of |F(u)| 2, the autocorrelation of the object
can be obtained by Labeyrie's method. However, the autocorrelation gives only very limited
information about the object: 1its diameter, and the separation for the case of a binary
star system. Only for the special cases of (1) an object known to be centro-symmetric and
(2) an object having an isolated unresolved star within the same isoplanatic patch?

(within a few seconds of arc) can the autocorrelation, or equivalently |F(u)|4, be used
to directly compute the object.

The iterative method

We have, in addition to the measured Fourier modulus, the a priori knowledge that the
object brightness is a real, nonnegative function. The reconstruction problem consists of
finding a nonnegative object that is consistent with the measured Fourier modulus data.
This problem can be solved by the iterative method depicted in Figure 1. It consists of
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Figure 1. Iterative processing overview.

four steps: (1) an initial estimate of the object, g(x) (which we usually choose to be a
field of random numbers), is Fourier transformed; (2) in the Fourier domain, the measured
Fourier modulus is substituted for the computed Fourier modulus, and the computed phase is
unaltered; (3) the result is inverse Fourier transformed, yielding an image g'(x); and (4)
a new g(x) is chosen, based on the violation of the object-domain constraints by g'(x).
The four steps are repeated until the mean-squared error is reduced to a small value con-
sistent with the signal-to-noise ratio of the measured Fourier modulus data. The mean-
squared error in the image domain is

E: = (4)

where the region Y includes all points at which g'(x) violates the object domain con-
straints (where it is negative or possibly where it exceeds an a priori known diameter).
Several different methods for choosing a new g(x) have proven successful. For the results
shown in this paper, we used for most iterations
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interspersing with
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every few iterations, where the subscript k refers to the kth iteration and vy is cefined
as in Eg. (4). More detailed discussions of the iterative method and why it works can be
founa in References 3 and 4.

For the binary star results shown later, when random numhers were used for the initial
input, then over a hundred iterations were required for an array size of 128 x 128 pixels
{about the same number of iterations that has been required for complicatea two-dimensional
ob jects), taking about two minutes on a Floating Point Systems AP 120B array processor.
When a binary star pattern witn the correct spacing (which can be determined from the auto-
correlation) but the incorrect brightness ratio was used as the initial input, then only a
dozen iterations were required for convergence, taking about 10 seconds. It was found that
the nonnegativity constraint was sufficient, and the diameter constraint was not needed.

Noise and MTF characteristics and their compensation

The data used for the experiments described here were obtained from the Steward Observ-
atory Speckle Interferometry Proaram which is described in more detail elsewhere in this
proceedings volume’/. For this "event detection" data, it is assumed that any one short
exposure image contains no more than one photon in any one pixel (and most pixels record
zero photons). After an image is magnified, intensified, and detected, (among other
things) it is thresholded to produce an image consisting of ones (where above the thresh-
old) and zeros. Each image is autocorrelated, and the sum of all the autocorrelations is
computed. The summed power spectrum is computed as the Fourier transform of the summed
autocorrelation., In addition, each image is centroided (translated to make their centroids
coincident) to within the nearest pixel, and the sum of the centroided images is computed.

The telescope diameter is 2.3 meters; and, for 30X magnification of the image, the image
scale is approximately 0.02 arc-sec per pixel along each line, and is about 0.017 arc-sec
per line (it is stretched by about 13% in that dimension relative to the along-line dimen-
sion). For 60X magnification, the scale is half that. The data is digitized in 256 x 256
arrays.

Figure 2 shows an example of a cut through the summed power spectrum of an unresolved
star, SAO 36615. This data was taken at 60X magnification (0.01 arc-sec per pixel = 4.7 x
10-8 radians per pixel) at a 30 nm wavelength band centered at 750 nm. The scale in the
Fourier domain is 750 nm/(4.7 x 10-8 rad x 256) = 0.062 meters (of telescope aperture)
per pixel. For a telescope diameter of 2.3 meters, the highest spatial frequency passed
by the telescope aperture is 2.3 m/(0.062 m/pix) = 37 pixels from zero frequency. Ideally
(no atmosphere or aberrations and no noise), the summed power spectrum of an unresolved
star would be the square of the MTF due to the telescope aperture (that MTF is the autocor-
relation of the telescope pupil function). Assuming a circular aperture, a cut through
the telescope aperture MTF would have a roughly cone shape® and be zero beyond pixel 37.
However, the summed power spectrum of the unresolved star shown in Figure 2 is very far
from this ideal.

Two effects dominate the shape of the power spectrum. First, the speckle MTF2, men-
tioned earlier in connection with Eq. (3), drops very rapidly for the very low spatial fre-
quencies near the atmospheric cut-off. This results in the spike-like behavior of the
summed power spectrum for very low spatial frequencies. Beyond the very low sBatial-
frequency region, the speckle MTF2 is much better behaved and decreases slowly”. Second,
photon noise results in, among other things, a noise bias term in the summed power spec-
trumi0, This noise bias term dominates in the higher spatial frequencies. Beyond a
radius of 37 pixels in the summed power spectrum, no signal energy exists -- it is purely
noise. They so dominate the summed power spectrum that little useful information can be
obtained unless compensation is made for both of these two effects.

The noise bias term and the detection transfer function

One would ordinarily eiiminate the noise bias term simply by subtracting a constant from
the summed power spectrumlO, L However, as seen from Figure 2, the noise bias term,

which is seen by itself beyond pixel 37, is not a constant in this case. This results from
the fact that upon detection and thresholding, & single photon sometimes results in more
than one pixel recording a one, depending upon the threshold level and the size of the
splotch of light exiting from the image intensifier. Table 1 shows the autocorrelations
and the individual squared transfer functions of some of the various patterns of ones re-
sulting from a single photon. Each pattern is, in effect, the impulse response of the de-



impulse responses, their auto correlations,

E Table 1. Event detection data: individual
£ and their power spectra.
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Figure 2. Summed power spectrum of an un-
resolved star (linear scale).
The middle and upper curves are
the same as the lower curve, ex-
cept have 10X and 100X vertical
scales, respectively.

tection system; and in any one image, several different patterns may appear. That is, this
impulse response may vary from photon to photon within the same image. Assuming a sparse
population of photons within each image, it can be shown that the net squared transfer
function, due to the ensemble of photon-produced patterns within an image, is given by a
weighted sum of the individual squared transfer functions of the individual patterns. We
refer to this weighted sum as the detection transfer function squared (DTF2).

One can compensate for the noise bias term by the following stepslz. (1) Over the
spatial frequencies above the telescope cut-off, perform a two-dimensional least-squares
fit of a weighted sum of individual squared transfer functions (some of which are shown in
Table 1) to the summed power spectrum. By this, the DTF2 is determined._ (2) Compensate
the effects of the DTFZ by dividing the summed power spectrum by the DTFZ2 (for all spa-
tial frequencies). By this, the noise bias term is made a constant. (3) Subtract from
the DTF2-compensated summed power spectrum the constant noise bias term. This DTF
and noise bias compensation are demonstrated in Figures 3 and 4 for the binary star system
SAO 94163. In this case, the magnification was 30X and the wavelength was 750 nm (10 nm
spectral bandwidth) and so the telescope cut-off is at a spatial frequency of 74 pixels.
This data set resulted from power-spectrum averaging of 1820 short exposure images contain-
ing a total of about 2.4 x 102 photons.

iIn the autocorrelation domain, the noise bias term results in a spike at the (0, 0)
coordinate, and the DTFzﬁcauses the spike to be spread over a few pixels about (0, 0).
Compensation for the DTF< causes the spike to collapse to a delta-function at (0, 0).

Then the subtraction of the noise bias in the Fourlier domain removes the delta-function at
(0, 0) in the autocorrelation.

More generally, the functional form of the DTF2 is heavily dependent on the manner in
which the images are detected and should be modified according to the characteristics of
the detection hardware used.

The speckle MTF2

Compenstion for the speckle MTF2 would ordinarily be accomplished b{ dividing the
summed power spectrum by the summed power spectrum of a reference star!., Both power
spectra should first be corrected for the DTFZ and the noise bias term.
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In some instances, there is not available the summed power spectrum of a reference star
close enough in both space and time to the observation of the object._ In that case, one
approach is to approximate the actual speckle MTF2 by fitting a_model? of the speckle MTF2
to the data. Another alternative is the Worden subtract methodl3. There seems to be some
controversy over the effectiveness of this methodla; there is no doubt that it provides a
much better estimate of the object's power spectrum than the summed power spectrum, but
further investigation is needed to determine whether it is the best available estimate.

The Worden subtract method of compensating for the speckle MTF2 consists of subtracting
from the summed autocorrelation the sum of cross-correlations of different short-exposure
images. The short-exposure images must be centroided before being cross-correlated®?.

It is easily shown that subtraction of a properly scaled version of the power spectrum of
the sum of the centroided images from the summed power spectrum is exactly equivalent to
the Worden subtract method. Figure 5(a) shows a cut through these two functions for very
low spatial frequencies for the unresolved star SAD 36615. Both are similar in their
spike-like behavior for very low spatial frequencies. However, for spatial frequencies at
four pixels from zero frequency and beyond, the power spectrum of the sum of the centroided
images is essentially zero. Thus, it would appear that the Worden subtract method could
correct only for the very lowest spatial frequencies. This Is borne out in Figures 5(b)
and 5(c). Furthermore, recalling that the compensated summed power spectrum for an unre-
solved star should be a constant (weighted by the MTFZ of the telescope aperture which

is nearly unity for these very low spatial frequencies), we see from Figures 5(b) and (c)
that the Worden subtract method did not produce the expected result. By getting rid of most
of the low-frequency spike in the summed power spectrum, the Worden subtract method did
greatly decrease its mean-squared error; however, it did not replace the spike with the
correct low-frequency information. It is not presently known whether this apparent inade-
quacy of the Worden subtract method is due to basic inadequacies of the method itself or
due to pigblems with this particular data set; however, it is consistent with the analysis
of Fantet®,

A better speckle MTF 2 compensation than the Worden subtract method in this case would
simply be to clip the summed power spectrum at the very low spatial frequencies. That is,
assuming that the object's power spectrum is nearly constant tor the very low spatial fre-
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Figure 5. Worden subtract method on an unresolved star (low spatial

frequencies). (A) upper curve: summed power spectrum; low-
er curve: power spectrum of the sum of the centroided im-
ages; (B) upper curve: summed power spectrum (note expanded
vertical scale); lower curve: summed power spectrum minus

the power spectrum of the sum ?f the centroided images;
(C) same as (B), except a smaller percentage of the power

spectrum of the sum of the centroided images was subtracted.

quencies (which would be true for objects of diameter only a small fraction of an arc-sec),
we replace the summed power spectrum in that region by a constant. The constant is chosen
to be consistent with the value of the summed power spectrum in the region just beyond the
very low-frequency spike. As in this case of the Worden subtract method, this method does
not correct for the middle-frequency vs. higher-frequency regions of the speckle MTFZ;
however, as noted earlier, the speckle MTF< is reasonably well behaved for those spatial
frequencies, and correcting for the very low spatial frequencies corrects for the greatest
part of the error.

The method of clipping the summed power spectrum to correct for the speckle MTF2 is
demonstrated in Figure 6 for the binary SAO 94163 for which reference star data was not
available. 1In order to increase the accuracy of the assumption that the Fourier modulus
(or its square, the power spectrum) is constant for very low spatial frequencies, the DTF
and noise-bias-corrected Fourier modulus was divided by the MTF due to the telescope aper-
ture (which was approximated by the MTF due to a circular aperture of diameter 2.3 meters).
The elliptical shape of the Fourier modulus data is due to the difference in scale factors
in the two dimensions as noted earlier. Within the low frequency region, wherever the
Fourier modulus exceeded a threshold value, it was clipped to that threshold value. The
result was multiplied by the MTF due to the telescope to arrive at our final estimate of
the Fourier modulus of SAOD 94163 including the telescope MTF. In the process of multiply-
ing back in the telescope MTF, the residual noise beyond the telescope cut-off frequency
was set to zero.

Image reconstruction results

The Fourier modulus estimate shown in Figure 6(d) was truncated to a 128 x 128 array,
in order to save computation time in the iterative reconstruction. This caused a slight
truncation of the highest spatial frequencies along the horizontal dimension of Fig-
ure 6(d). SAO 94163 was reconstructed using the iterative method, and the images resulting
from two different selections of the initial input to the algorithm are shown in Fig-
ures 7(a) and (b), respectively. The rms error Ey was reduced to about 0.05. For the
purpose of display, a (sin x)/x interpolation was performed on the images of Figure 7 in
order to increase the sampling rate across the image. 1In order to get an indication of
the sensitivity of the method to the clipping threshold level described in the previous
section, the clipping was done over again using a 33% greater threshold value (which is
obviously greater than the optimum threshold). Two images reconstructed from the resulting
Fourier modulus estimate are shown in Figure 7(c) and (d). Half the time, the iterative
reconstruction algorithm produces an image rotated by 180° due to the inherent 2-fold am-
biguity of the Fourier modulus data.



Figure 6. Clipping to compensate for the Figure 7. Reconstructed images of SAO
speckle MTF (for "seeing') for 94163 (see text).
the binary SAO 94163. (A) Four-
ier modulus, same as Figure 4(D);

(B) Fourier modulus compensated
for telescope MIF (attempted
division by zero is evident for
spatial frequencies above the
telescope cut-off frequency);

(C) clipping of the low spatial
frequencies; (D) Fourier modulus
estimate obtained by putting back
in the telescope MTF.

The average separation of the reconstructed images is 13.9 pixels = 0.27 arc-sec and
the orientation angle is 42.7° (47.3° from the orthogonal axis). The brightness ratios,
based on the maximum brightness of each star in the pair, are 4.38, 4.17, 4.14, and 3.96
for Figures 7(a) through (d), respectively, and the corresponding magnitude differences
are 1.60, 1.55, 1.54, and 1.49, respectively. Thus, a 33% increase in threshold level
caused only a 6% decrease in the computed brightness ratio. The average magnitude differ-
ence of the reconstructions of Figures 7(a) and (b) is 1.57.

Conclusions

We have discussed steps necessary to obtain an accurate estimate of an object's Fourier
modulus from the raw summed power spectrum: detection transfer function compensation,
noise bias subtraction, and speckle MTF compensation. For compensation of the speckle MTF
when reference star data is not available, an improvement over the Worden subtract method
is the simple method of clipping the Fourier modulus spike at the very low spatial frequen-
cies (for objects much smaller than one arc-sec in diameter). A reconstruction of the
binary SAD 94163 using this method resulted in an image having a binary separation of 0.27
arc-sec at an angle of 42.7° (47.3°) and a magnitude difference of 1.57 (brightness ratio
of 4.26). The reconstruction of a binary is trivial and does not require the use of the
iterative method; however, the iterative method is required for complicated objects, and
the data processing steps described here for this simple example can be used in more gen-
eral circumstances. Based on the success of image reconstruction experiments using summed
power spectra of complicated two-dimensional objects computer-simulated to include the
effects of atmospheric turbulence and photon nolsell, it is expected that it will be pos-
sible to reconstruct fine-resolution images of complicated astronomical objects.
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