
Use of an opacity constraint in three-dimensional imaging

Richard G. Paxman, John H. Seldin, James R. Fienup, and Joseph C. Marron

Optical & Infrared Science Laboratory, Advanced Concepts Division
Environmental Research Institute of Michigan

P.O. Box 134001, Ann Arbor, Michigan 48113-4001
internet email: paxman©erim.org

ABSTRACT

Three-dimensional imaging provides profile information not available with conventional two-
dimensional imaging. Many three-dimensional objects of interest are opaque to the illuminating
radiation, meaning that the object exhibits surface, as opposed to volume, scattering. We inves-
tigate the use of an opacity constraint to perform three-dimensional phase retrieval. The use of
an opacity constraint in conjunction with frequency-diverse pupil-plane speckle measurements to
reconstruct a three-dimensional object constitutes a novel unconventional-imaging concept. This
imaging modality avoids the difficulties associated with making phase measurements at a cost of
increased computations.

1. INTRODUCTION

Marron and Schroeder [1,2] have demonstrated that three-dimensional imaging can be accom-
pushed by sequentially illuminating an object with different laser frequencies and measuring the
far-field speckle pattern for each of the illuminating frequencies [1]. In-phase and quadrature mea-
surements provide optical-field values for the laser-speckle patterns. Properly formatted, these data
form a three-dimensional Fourier-volume (or Fourier-aperture) representation of the illuminated
object. A simple three-dimensional Discrete Fourier Transform (DFT) can be performed to provide
a three-dimensional representation of the object. This three-dimensional lensless-imaging concept
is referred to as Holographic Laser Radar (HLR).

The collection of HLR data could be considerably simplified if instead of collecting field mea-
surements for the speckle images, intensity measurements were collected. Intensity measurements
are straightforward and eliminate the need for interference with a reference beam with precision
alignment, tracking, and phase stability. A multiple-frequency speckle-intensity data set would pro-
vide three-dimensional Fourier-magnitude information or, equivalently, the three-dimensional object
autocorrelation. In order to recover a literal three-dimensional image, a phase-retrieval algorithm
is required. Therefore, this proposed imaging concept trades complexity and cost in hardware for
increased computing.

Phase retrieval requires some type of a priori information about the object. Two-dimensional
complex-valued objects have been recovered using phase retrieval with a support constraint [3],
although this is a challenging problem. It is well known that the uniqueness properties of two-
dimensional phase retrieval are much better than for the one-dimensional problem [4]. We conjecture
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that three-dimensional phase retrieval with a support constraint is better conditioned than its two-
dimensional counterpart.

An additional constraint that has great promise in the three-dimensional imaging case is an
opacity constraint. An opaque object is one that exhibits only surface scattering and no volume
scattering (over volumes that extend beyond the desired range resolution). The reflectivity function
for an opaque object is confined to a two-dimensional curved (possibly discontinuous) surface,
embedded in a three-dimensional space. In this paper we explore the use of an opacity constraint to
perform phase retrieval. We have previously used an opacity constraint to perform superresolution
[5].

The opacity constraint is a special type of support constraint. It is a "quality of support"
constraint — the actual location of the support is not given, although the object is known to be
confined to a two-dimensional curved surface. This constraint promises to be very powerful since
it greatly reduces the class of feasible objects from which to choose an estimate. Moreover, there
are many imaging applications in which the objects will be known with confidence to be opaque.
For example, space objects, balistic missiles, aircraft, and a multitude of industrial-inspection parts
qualify as opaque objects. Most objects in our everyday experience satisfy the opaque condition.
The constraint is invalid for objects with distributed volume scatterers such as translucent or fog-like
objects.

The use of an opacity constraint in conjunction with frequency-diverse pupil-plane speckle mea-
surements to reconstruct a three-dimensional object constitutes a novel unconventional-imaging
concept.

2. REPRESENTATION OF OPAQUE OBJECTS

Consider a three-dimensional opaque object, f(x, y, z), defined on an object-centered coordinate
system. Let x and y be the cross-range (angle-angle) coordinates and let z be the range coordinate
that is co-aligned with the illumination direction. Since the collected data will be sampled and
since object reconstructions must be performed with a digital computer, we vill adopt a discrete
representation for, the object. Accordingly, we require the coordinates (x, y, z) to take on integer
values. Because of the opaque nature of the object, only radiation from reflecting sources in the
illuminated surface will contribute to the received signal. Hidden surfaces do not contribute. Let
h(x, y) denote the height of the object in the z-dimension. Because the object is confined to a
two-dimensional curved surface embedded in three-dimensional space, it can be represented with
delta-function notation [5,6],

f(x, y, z) = r(x, y)8[z — h(x, y)} , x, y, z E {O, 1,2,. . . N — 1} , (1)

where r(x, y) is the complex surface reflectivity, N is the total number of samples in each dimension,
and S(.) is used to represent the Kronecker delta,

S(z—z)
{ : : (2)
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Recall that the collected Fourier intensity data can be transformed to compute a three-dimensional
object autocorrelation. In order to avoid aliasing, we require the object to have finite support with
sufficient zero padding,

f(x,y,z) = 0, x,y,z€{,+1,...,N—1} . (3)

The rectilinear object-support bound given in Eq. (3) is not likely to be a "tight" bound. More
restrictive or tighter bounds on object support can be determined from the known object auto-
correlation by using a generalization of methods developed for two-dimensional phase retrieval [7].
Any three-dimensional support bound can be expressed in terms of a two-dimensional angle-angle
support bound and a one-dimensional range support bound that depends upon angle-angle position.

3. STATEMENT OF PROBLEM

The Fourier representation of the object is found with the DFT,
N—iN—iN—i

F(u, v, w) = > > > f(x,y, z) exp{—i2ir(ux + vy + wz)/N} (4)
x=O y=O z=O
N—iN—iN—i

= : >: r(x, y)S[z — h(x,y)J exp{—i2ir(ux + vy + wz)/N} (5)
:r=O y=O z=O
N—i N—i

= E r(x,y)exp{—i2ir{ux+vy+wh(x,y)]/N}, (6)
z=O y=O

where we have used the Kronecker delta to eliminate the summation over z. Since we detect
intensities in the Fourier domain, a noiseless measurement would be given by the squared modulus
of the DFT of the object, IF(u, v, w)J2. The actual detected data will be corrupted by noise. The
detected data are represented by

D(u,v,w) = .Af{JF(u,v,w)2} (7)

where the noise operator .A/'{.} corrupts the argument according to an appropriate noise model.
Additive Gaussian or Poisson noise models are appropriate when detector readout noise or photon
noise, respectively, are the dominant noise sources.

The problem that we wish to address can now be stated. Given the data, D(u, v, w), estimate
the object height function, h(x, y), and the object surface reflectivity function, r(x, y), over the
angle-angle object-support bound. Performing such an estimate implicitly provides an estimate for
the object's Fourier phase. Therefore this problem may be properly viewed as a phase-retrieval
problem.

4. MAXIMUM-LIKELIHOOD ESTIMATION

When detector readout noise dominates, the noise operator has the effect of adding a realization
of a Gaussian noise process,

D(u, v, w). = IF(u, v, w)12 + n(u, v, w). (8)
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Assuming a common noise variance and statistical independence between differing samples of the
noise process, it is straightforward to express the probability density function for the recorded data
[8] . The associated log-likelihood function is readily found to be [8]

N—i N—i N—i 2
L{f(x,y),ii(x,y)} = — [D(u,v,w)

—
IP(u,v,w)121

tt=O v=O w=O

22N—iN—iN—i N—iN—i
= — >: : > D(u, v, w) — i(x, y) exp{—i2ir{ux + vy + wh(x, y)]/N} , (10)

2L=O v=O w=O z0 y=O

where the caret symbol indicates an estimated quantity. Recall that the object surface reflectivity is
complex valued. It is convenient to explicitly denote the real and imaginary parts of the reflectivity,

r(x,y) = rr(x,y)+irj(x,y).

We can use standard nonlinear optimization methods to search for ir(X, ii), y), and (x, y)
((x, y) E the angle-angle object-support bound) that maximize the objective function, L, to yield a
maximum-likelihood estimate. If the angle-angle object support bound is comprised of N/2 by N/2
samples, then L is defined on a parameter space of dimension 3N2/4. The range support bound
that derives from the three-dimensional support bound could be used to constrain the search over
h(x, 11).

There are a variety of nonlinear optimization algorithms that could be used to maximize the
log-likelihood function. One choice is the well-known conjugate-gradients algorithm [9]. As its
name suggests, this algorithm makes use of the gradient of the objective function. We have derived
closed-form expressions for the partial derivatives that constitute the gradient. These expressions
afford a gradient computation that is more accurate and computationally much more efficient than
would be rendered using the method of finite differences. The partial derivatives of the log-likelihood
function with respect to the real and imaginary parts of the surface reflectivity and with respect to
the height function, at the angle-angle location (x0, yo), are given by

9L

8Ir(Xo,yo)
=

(N—iN—iN—i
4Re [D(tz, v, w) — v, w)12] fr*(u, v, w) exp{—i2ir[ux0 + vy0 + wIL(x0, o)]/N} j, (12)

u=O v=O w=O

0L

O(x0,y0)
=

(N—iN—iN—i
—41m [jj(, v, w) — JF(u, v, w)12] P*(u, v, w) exp{—i27r[ux0 + vy0 + w&(x0, y0)]/N}, (13)

u=O v=O tuO
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a ( N—iN--iN-i

ul = --Im 1(xo, Yo)>. : [D(u, v, w) — P(u, v, w)121
(1 (x0, Yo) u=O v=O w=O

E*(u,v,w)wexp{_i2[uxo+vyo + w&(xoYo)]/N}} (14)

where the operators Re{.} and Im{.} take the real and imaginary parts of the argument, respectively.
Notice that these partial-derivative expressions each have the form of a two-dimensional DFT (over
U and v) followed by a summation over w for each (x0, yo). This affords efficient evaluation the entire
gradient using the Fast Fourier Transform (FFT). The three-dimensional function F(u, v, w) must
be computed to evaluate the objective function and the gradient. We find that N two-dimensional
FFTs are needed to compute F(u, v, w). Careful examination of Eqs. (12)—(14) reveals that the
entire gradient can be computed with an additional N two-dimensional FFTs followed by 2SN2
summations over w, where S is the proportion of pixels in the angle-angle object support relative
to the number of samples in the total angular field of view. In the case of the rectilinear support
expressed in Eq. (3), S = 1/4. Of course additional computational overhead is required to perform
complex multiplies and sums. Closed-form expressions for the log-likelihood and its gradient can
also be derived for the case of photon noise.

5. SIMULATIONS

We have performed two simulations that demonstrate three-dimensional phase retrieval using
an opacity constraint. For both of the simulations we chose N = 32 and a maximum object extent
of 16 samples in each dimension, as required by Eq. (3). This guarantees that the Fourier-intensity
data are adequately sampled. In addition, for this initial demonstration we used noiseless Fourier-
intensity data, giving n(u, v, w) = 0 in Eq. (8).

The first simulation utilized a simple object consisting of 6 separated points of equal reflect-
ing strength. The angle-angle (x-y) view of the magnitude of the surface reflectivity is shown in
Figure 1(A). The phases of these points are independent, identically-distributed samples from a
probability distribution function (PDF) that is uniformly distributed on the interval [0, 2rJ. The
height distribution and reflectivity of these points are summarized in Table 1. Coordinates are
referenced from (0, 0) in the upper left corner. Despite the discrete representation of the object in
the x and y dimensions, the z-dimension heights, h(x, si)' are not restricted to integer values.

The phase-retrieval problem consists of estimating a set of real-valued quantities, rr(x, y),
r(x, y), and h(x, y), defined on a discrete (x, y) coordinate system. The conjugate-gradients al-
gorithm, used to estimate the object parameters, is initiated with a first guess of the unknown
parameters. We began with an initial estimate of h(x, y) = 0 and independent, identically dis-
tributed samples from a PDF that is uniform on the interval [0, 1] for Tr(X, y) and r1(x, y). The
magnitude and phase of the initial reflectivity guess are shown in Figures 1(B) and 1(C), respec-
tively. The magnitude of the initial reflectivity guess ranges between 0.083 and 1.34, and the phase
varies from 0.001 to 1.567 radians. By restricting the initial guess of rr(x, y) and r1(x, y) to positive
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Figure 1. 6-point object simulation. (A) Angle-angle (x-y) view of the magnitude of the
reflectivity of a 6-point, complex-valued object; (B) Magnitude of the initial
reflectivity estimate; (C) Phase of the initial reflectivity estimate; (D) Recon-
structed object.
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(x,y) rr(x,y) rj(x,y) h(x,y)

(1,3) -0.976 0.216 0.0

(2,7) 0.411 0.911 0.3
(7,8) 0.994 0.111 0.9
(3,12) -0.988 0.153 1.5
(8,14) 0.745 -0.666 2.1

(11,12) 0.089 0.996 3.0

Table 1: 6-Point Object Description.

values, we have reduced the chance of biasing the simulation by starting too close to the true solu-
tion. No a priori knowledge of the support of the unknown object was used during the estimation
of its reflectivity and height distribution, so a total of 16 x 16 x 3 =768 parameters were estimated
simultaneously.

The angle-angle view of the estimated reflectivity magnitude after about 400 iterations of the
conjugate-gradients algorithm is shown in Figure 1(D). The reconstruction is virtually perfect, and
is limited only by computational precision. There are several features of the reconstruction to note.
First, the reconstructed object is shifted from its true location. A feature of all phase retrieval
algorithms is a translation ambiguity among the set of valid object solutions. A translation of the
object adds a linear phase term to the complex-valued Fourier transform, but does not affect the
Fourier intensity. There is also a 180-degree object-rotation ambiguity. Such a rotation gives rise
to a Fourier transform that is the complex-conjugate of the original Fourier transform, but which
leaves the Fourier intensity unchanged.

The height estimates were also virtually perfect. It is of interest that the non-integer height
values were estimated very accurately, indicating that in addition to phase retrieval, we were ac-
complishing superresolution in range. Not only is the object estimate translated in (x, y), but it is
also translated in the z direction by a constant value of —1 .2. Also, whereas the magnitude of the
estimated reflectivity matches the true reflectivity, the phase of the estimate differs by the constant
value of 0.64 radians at each point. This is yet another ambiguity associated with the phase retrieval
of complex-valued objects. A constant phase bias across the object, however, is typically irrelevant.

For the case of noiseless Fourier-intensity measurements we have shown that an array of points
with a modest height distribution can be reconstructed perfectly with no a priori knowledge about
the support or height distribution of the points, except for the use of an opacity constraint. We have,
however, found that the conjugate-gradients algorithm is subject to stagnation in what we believe
to be local extrema in the log-likelihood function, and a successful reconstruction was obtained only
after several random initial guesses for the reflectivity. Also, we have observed that the relative
distribution of the points in the z-dimension has a bearing on the success of the reconstruction. We
chose a distribution over a range of 3 samples, and we have noted that as this range is expanded,
stagnation becomes more likely when using a naive initial guess of h(x, y) = 0. Thus, we believe
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that the development of methods that yield improved initial estimates and support bounds that
will constrain the range of height parameters will be important for successful reconstructions for
surfaces that have large variation in depth. Our second simulation provides an example of how such
a height constraint could be derived and utilized.

The second simulation example involves an object that is a curved surface with an angle-angle
(x-y) support that is a 5 x 5-pixel right triangle. To simplify the height distribution, we made the
height of the object a function of the x-dimension alone. The support of the object projected in
each of the 3 directions is shown in Figure 2. When the object is projected in the y-direction, we
obtain a single pixel of z-direction support for each position in the x dimension, as illustrated in
Figure 2(A). We conclude from this that the height is constant in y for each x and is symmetric
about the x = 8 plane. The height of the object varies over a 5-pixel interval, with a 2-pixel height
gap between the x-dimension edges and their neighbors.

If no support constraint is used along with a naive initial guess of h(x, y) = 0, the parameter
estimation stagnates and the object cannot be reconstructed. Thus, the reconstruction of this
more complicated object might benefit from a support constraint. Techniques for bounding the
object support using the autocorrelation support have been developed for two-dimensional phase-
retrieval problems [7] . We can apply these same techniques to the support of the three-dimensional
autocorrelation projected into 2 dimensions in each of the 3 directions. Unfortunately, in doing
so we lose registration information between the 3 resulting 2-D support constraints and, thus,
cannot merge these results into a tight 3-D support constraint. However, for this particular object
for which the height is constant along the y-direction, the triple-intersection rule [7] applied to
the support of the y-projected autocorrelation yields the exact z-support shown in Figure 2(A).
This somewhat surprising result suggests that opacity could be extremely useful in finding support
bounds. The derived height support in turn yields the true solution for the height and indicates
that the x-dimension support is 5-pixels wide. Merging this information with the support of the
autocorrelation projected along the z-direction into the x-y plane yields the x-y object support
bound shown in Figure 3(A). This bound could further be reduced using a two-point intersection
rule, but we found that this was not necessary.

The magnitude of the reflectivity of the true object is shown in Figure 3(B). The initial guess
for the reflectivity is found in Figure 3(C), and the initial guess for the height was set to the values
yielded from the x-z support derived from the triple-intersection of the projected autocorrelation.
The initial guess of the height was set constant in the y-direction over the support defined in
Figure 3(A). The x-y support constraint reduces the number of parameters to be estimated to
114. After approximately 800 iterations of the conjugate-gradients algorithm, the estimates were
perfect to within the limits of computational precision. Despite our knowledge of the height from
the support estimate, we still allowed the height estimates to vary during minimization. The final
estimates actually moved a fixed distance from their initial settings, but remained constant in the
y-direction. The final estimate of the reflectivity is shown in Figure 3(D), and is essentially identical
to the true reflectivity in Figure 3(B).

Although it is unlikely that the height of the object can be estimated directly from the projected
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z
A

Figure 2. Three views of the support of a triangular curved surface. (A) x-z view of the sur-
face. From this view we see that the height distribution is the same for every value
of y and is symmetric about the x=8 plane; (B) x-y view of the surface; (C) y-z view
of the surface.
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Figure 3. Reconstruction of triangular curved surface. (A) x-y support bound. The bound was
obtained by intersecting the estimated x-z support bound [same as shown in Figure
2(A)] with the x-y autocorrelation support; (B) Magnitude of the true reflectivity;
(C) Magnitude of the initial guess on the support of (A); (D) Magnitude of recon-
structed reflectivity.
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autocorrelation in practical scenarios involving measurement noise and 2-D height variation (instead
of the 1-D variation of this example), this example demonstrates that a filled surface reflectivity
can be estimated with a loose angle-angle support.

6. CONCLUSIONS

We have reported the first demonstration of three-dimensional phase retrieval with an opacity
constraint. These results make feasible the possibility of an entirely new three-dimensional imaging
modality. Further experimentation is required to determine how loose the height constraint can be
made and the importance of the role of the initial height estimate. We believe that the theory of
two-dimensional support bounds [7] can be generalized to the three-dimensional case to give good
support bounds. We also conjecture that opacity will play a role to help tighten range-dimension
support bounds. Historically modes of stagnation have been studied in the two-dimensional phase-
retrieval problem and appropriate algorithms to avoid such modes have been developed. A similar
process needs to be undertaken in the three-dimensional case. Finally, the sensitivity of three-
dimensional phase retrieval to noise needs to be investigated.
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