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ABSTRACT 

The lateral resolution of an imaging system is limited by its numerical aperture and the wavelength. 
Structured illumination incident on the object heterodynes the higher spatial frequencies of the object with the 
spatial frequency of the sinusoidal illumination into the passband of the imaging system providing lateral 
superresolution. This idea has been implemented in microscopy. Multiple images of an object are taken, with 
distinct phase shifts in the sinusoidally patterned illumination. They are processed to separate the 
conventional, un-aliased object spatial frequencies from the aliased ones, which contain superresolution 
information. The separated aliased terms are de-aliased (i.e. the spatial frequencies in them are moved to their 
correct locations in Fourier space) giving superresolution along the direction perpendicular to the orientation 
of the sinusoidal fringe pattern. This process is repeated with, say, 60° and 120° rotation of the sinusoidal 
fringe illumination to obtain superresolution in all directions. The final reconstructed image can be obtained 
by appropriate combination of the de-aliased superresolution components with the conventional, un-aliased 
components. We discuss the signal-to-noise ratio (SNR) and optical transfer function (OTF) compensation in 
the combination of all these components to obtain an image with lateral superresolution.   

Keywords: Superresolution, structured illumination, moiré, aliasing, deconvolution, optical imaging, 
microscopy, image processing 
 

1. INTRODUCTION 
The resolution of any imaging system is limited by its numerical aperture and the wavelength. However these 
limits are valid only for the case of uniform, on-axis illumination and imaging linear fluorescence or 
transmission/reflection. Sinusoidally patterned illumination can be used to go beyond this limit on resolution. 

The basic idea is that a sinusoidally patterned illumination incident on an object multiplies with it, producing 
a moiré, beat pattern. This moiré pattern heterodynes the high spatial frequencies of the object with the spatial 
frequency of the sinusoidal illumination and effectively shifts the high spatial frequencies of the object into 
the passband of the imaging system. This technique has been implemented in fluorescence microscopy to 
obtain either lateral superresolution or axial sectioning [1-21]. Multiple images of the object are taken with 
the phase of the sinusoidal pattern shifted by distinct amounts and the orientation of the sinusoidal 
illumination rotated a few times. These images are processed to extract the aliased, high frequencies to obtain 
a superresolved image. For the case of fluorescence imaging due to linear absorption and emission, up to 
100% superresolution can be obtained.  

Conventionally three images are taken with phase shifts of 0°, 120° and 240° in the sinusoidal illumination. 
We discuss a technique which will be valid for any number, N, of sinusoidally patterned images, where N ≥ 3, 
and for equally spaced as well as randomly spaced phase shifts in the sinusoidal illumination. In this paper we 
discuss the effect of SNR and OTF compensation involved in the processing of these sinusoidally patterned 
images to obtain a superresolved reconstruction. 
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2. THEORY 
2.1 Sinusoidally patterned image formation 

We consider the case of incoherent imaging, such as for a fluorescent object illuminated by an incoherent 
source of illumination. The pattern is produced by a sinusoidal grating in the illumination path. Consider a 
sinusoidal illumination field, ( ) ( ), cos 2 ,s o nU x y f xπ φ= +  having a spatial frequency ( ),0of  and a phase 
shift of nφ . The intensity of this sinusoidal illumination has twice this frequency, ( )2 ,0 ,of  and twice this 
phase shift, 2 .nφ  Let us assume a modulation contrast factor, m, affecting the contrast of the sinusoidal 
component of this intensity to account for different efficiencies of gratings producing the sinusoidal patterned 
illumination. Then the intensity of this sinusoidal illumination is given by  

 ( ) ( )1, 1 cos 4 2 .
2s o nI x y m f xπ φ⎡ ⎤= + +⎣ ⎦  (1) 

Let oG be the Fourier transform of the object intensity and 1H and 2H be the optical transfer functions (OTFs) 
of the illumination and imaging paths, respectively. If the illumination and imaging paths are identical and the 
image is formed on a double-pass reflection from the object, then ( ) ( )2 1, ,x y x yf f f f= − −H H [22]. The 

Fourier  transform, ,nG of the image, given by [2,4,21], including measurement noise can be written as  
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Ignoring noise for the moment, Eq. (2) indicates that the Fourier transform of this image, visualized in Figure 
1, has three components, the unshifted object Fourier transform, ( ), ,o x yf fG  and two shifted copies of the 

object Fourier transform, ( )2 ,o x o yf f f−G  and ( )2 , .o x o yf f f+G  

 

Figure 1. Visualization of structured illumination image in Fourier domain [21] 

The shifted components carry portions of the object’s Fourier transform that would ordinarily lie outside the 
passband of a conventional imaging system, and shift them into the passband of the conventional OTF, 
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making them accessible. In order to obtain a superresolved image, the three overlapping terms must be 
separated. The unshifted version may be retained as is, but the shifted versions must be moved in Fourier 
space so as to bring the spatial frequencies of these components from ( )2 ,x o yf f f−  and ( )2 ,x o yf f f+  

coordinates back to the ( ),x yf f  coordinates. Then all three components may be combined appropriately to 

obtain a superresolved image. Next we discuss the processing involved in obtaining these component images. 
2.2 Processing to obtain superresolution components 

Continuing to ignore the noise, we treat the three overlapping copies of the object’s Fourier transform as three 
unknowns. In order to solve for three unknowns we need three or more images. Therefore N images are taken 
with the sinusoidal pattern shifted by distinct phase steps where, 3.N ≥ The traditional techniques use three 
images with phase shifts of 0°, 120° and 240° in the sinusoidal illumination. Our analysis remains valid for 
this case as well as the case where the phase shifts are introduced randomly. We treat the Fourier transforms, 
ˆ ,nG  of the N measured images as a system of N linear equations, ,AX B= which can be written as, 
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From Eq. (3), matrix A depends on nφ , the phase shifts in each sinusoidally patterned image, which may be 
determined by using precision actuated, pre-calibrated translation stages which move the grid in known phase 
steps, or may be determined a posteriori using algorithms such as discussed in [18-21]. The matrix X may be 
obtained by using a simple singular value decomposition and pseudoinverse [23] of the matrix A and 
premultiplying B by that. The separated terms in matrix X are now analyzed. The term 

 ( ) ( ) ( ) ( )1 1 2
1, 0,0 , ,
2 oc x y x y x yf f f f f fGI = H H  (4) 

is similar to the conventional image but having an OTF given by 

  ( ) ( ) ( )1 1 2
1, 0,0 , .
2x y x yotf f f f f= HH  (5) 

The second separated term, ( ) ( ) ( ) ( )1 21 4 2 ,0 , 2 , ,o x y o x o ym f f f f f f−H GH  contains the valuable 

superresolution information from the shifted object Fourier transform. It can be sub-pixel shifted using the 
Fourier method from the ( )2 ,x o yf f f−  coordinates back to the ( ),x yf f  coordinates to obtain 

( ) ( ) ( ) ( )1 21 4 2 ,0 2 , , .o x o y o x ym f f f f f f+H GH  This is repeated for the third separated term to obtain 

( ) ( ) ( ) ( )1 21 4 2 ,0 2 , , .o x o y o x ym f f f f f f− −H GH  These two terms can be combined, giving  
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 ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2
1, 2 ,0 2 , 2 ,0 2 , , ,
4c x y o x o y o x o y o x yf f m f f f f m f f f f f f⎡ ⎤= + − −⎣ ⎦I H + H GH H  (6) 

which is treated as another component that will later be used to form the superresolved image. The OTF for 
2cI  is 

 ( ) ( ) ( ) ( ) ( )2 1 2 1 2
1, 2 ,0 2 , 2 ,0 2 , .
4x y o x o y o x o yotf f f m f f f f m f f f f⎡ ⎤= + − −⎣ ⎦H + HH H  (7) 

Similarly, to achieve superresolution in all directions in Fourier space, this process is repeated for, say, 60° 
and 120° rotation of the sinusoidal fringe illumination. Thereby, we extract four more component images – 
two having conventional image terms, given by 3cI  and 5cI , having OTFs similar to 1otf , given by 3otf  and 

5,otf and two component images having superresolution along their respective rotations in Fourier space, 
given as 4cI  and 6cI , having OTFs similar to rotated versions of 2otf , given by 4otf  and 6.otf  Now these 6 
component images must be combined with appropriate OTF compensation in order to obtain an image having 
superresolution in all directions in Fourier space. 

2.3 SNR analysis 

Before we proceed with combining these component images, we analyze their SNR. Consider Eq. (2) for the 
specific case of 2 0,  / 2,   and 3 / 2,nφ π π π=  where ( )exp 2 1,ni φ± = ,i± 1− and im . Let the four respective 
image Fourier transforms be 1̂,G 2ˆ ,G 3Ĝ and 4ˆ .G  

For this specific case, the first noisy version of component 1,cI  which contains conventional resolution 
information, can be obtained in closed form as 
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The signal power spectrum in this image is 
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where ( ) 2
,oO x yf fΦ = G is the object power spectrum. The OTF affecting this signal is given by Eq. (5). 

The noise power spectrum is given as 

 ( ) 2 2 2 2 2
1 1 2 3 4

1 1, ,
16 4N x y N N N Nf f σ σ σ σ σ⎡ ⎤Φ = + + + =⎣ ⎦  (10) 
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where Nkσ is the noise variance in the image, where k = 1,2,…4, and assume that the noise realizations in 

these four images are statistically independent as well as have identical variances, 2.σ Therefore the power 
SNR for this image is given by 
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The noisy version of the superresolution component 2cI is formed by computing the second and third 
separated overlapping terms, given by 
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and, 
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sub-pixel shifting them and summing them, and dividing by 4 for normalization, giving 
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Its signal power spectrum is 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2 1 2 1 2

2
1 2 1 2

1, 2 ,0 2 , 2 ,0 2 , ,
4

1 2 ,0 2 , 2 ,0 2 , , .
16

oS x y o x o y o x o y x y

o x o y o x o y O x y

f f m f f f f m f f f f f f

m f f f f m f f f f f f

⎡ ⎤Φ = + + − −⎣ ⎦

⎡ ⎤= + + − − Φ⎣ ⎦

GH H H H

H H H H

(15) 

The OTF affecting this signal is given by Eq. (7). The noise power spectrum is  
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 ( ) ( ) ( )'2 '2 '2 '2 ''2 ''2 ''2 ''2 2
2 1 2 3 4 1 2 3 4

1 1, ,
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where '
Niσ and ''

Niσ are the variances for the noise realizations shifted in the Fourier domain to ( )2 ,x o yf f f−  

and ( )2 ,x o yf f f+ respectively and where we assume that the noise realizations shifted in the Fourier domain 

are statistically independent and have identical variances, 2.σ  Therefore the SNR for this image component 
is 
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From Eqs. (11) and (17), we can see that the SNR would be relatively lower as the spatial frequency, 2 ,of  of 
the illumination pattern increases. The illumination and imaging OTFs and the modulation contrast, m, are 
important parameters affecting ciSNR  for the superresolution components because they can potentially lower 
superresolution signal strength significantly compared to that of conventional component images. 
  
Also affecting ciSNR is the number of images used to form each component image. For instance, if 1ĉI is the 
average of N images, (where N = 4 in the analysis above), then the SNR for this component image would be 

given by ( ) ( ) ( ) ( )22
1 24 0,0 , , .x y O x yN f f f fσ⎡ ⎤ Φ⎢ ⎥⎣ ⎦

H H  

 
Furthermore, the phase shifts in the sinusoidal illumination affect the signal strength in .ciSNR  For instance, 
if we have equally spaced phase shifts of 0°, 120° and 240°, only three images might be enough to obtain 
good signal strength. But if two of the phase shifts were nearly identical, then the signal strength would be 
low and we would need an additional, fourth image with a substantially different phase shift to obtain good 
signal strength in the component images. Therefore, the SNR for the component images is generalized to be 

 ( ) 2
, O

ci i i x y
Ni

SNR otf f fη
Φ

=
Φ

 (18) 

where iη  is the contribution from the randomness of the phase shifts and multiple number of images used as 
well as from the SVD and pseudoinverse. We assumed 1iη =  in our simulations shown below. We obtain an 
estimate of OΦ  from the power spectrum of the object in a conventional image [24-27]. We obtain the 
factor NiΦ as the average power spectrum in a far corner in the Fourier transform of each component image, 
ˆ ,ciI  outside the extent of .iotf  

2.4 Image reconstruction 

We employ a weighted Wiener-Helstrom-like deconvolution [28] of the M component images to combine 
them together,  
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which is implemented using Eq. (18) as 
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This is a multiframe deconvolution filter and weights each component image, ˆ ,ciI  according to its Fourier 
domain power SNR. We usually set the constant c = 1 which gives us a least squares solution, but lower 
values of c may be used for increased visual contrast at the expense of increased noise in the image. The OTF 
of the illumination and imaging systems are characterized to obtain 1H and 2.H  The modulation contrast, m, 
may be determined from the efficiency of the sinusoidal grating in the imaging system. We assumed a high 
contrast grating and set m = 1 in our simulations. 

3. SIMULATION RESULTS 
For our simulations we used the pristine object shown in Figure 2(a). It has fine features such as leaves, 
bricks, bars, etc. Many of these features are horizontal or vertical. Therefore, in Figure 2(g), in the Fourier 
domain of this object, we see distinct horizontal and vertical streaks which are the Fourier transforms of those 
horizontal and vertical features.  

Figure 2(b) shows the simulated, noise-free conventional image. It has a finite extent in the Fourier domain 
due to the OTF as seen in its Fourier transform in Figure 2(h). Fine features of the bricks and leaves cannot be 
seen in this image because their spatial frequencies lie outside the passband of the conventional image in this 
simulation. 

The OTF-compensated version of the noise-free conventional image is shown in Figure 2(c). Although its 
contrast is improved, its Fourier transform in Figure 2(i) shows that the OTF compensation does not increase 
the spatial frequency extent or add new information to it. Therefore the finest details in the bricks and leaves 
are still not visible in this image.  

In order to perceive these fine details, one would need to extend the passband of the image. The structured 
illumination processing detailed in Section 2 can be used to obtain superresolution. We simulated an 
incoherent sinusoidal illumination with a spatial frequency at 81% of cutoff frequency. Three images for each 
orientation at 0˚, 60˚ and 120˚, having equally spaced, known phase shifts at 0˚, 120˚ and −120˚ were used. 
Random phase shifts could also have been used as demonstrated in [21]. As mentioned before, these phase 
shifts can be introduced in a pre-calibrated, known manner or determined a posteriori [18-21]. We assumed 
complete knowledge of the phase shifts in this image recovery. The resulting reconstruction having 81% 
superresolution is shown in Figure 2(d). This image shows more details such as fine features in the leaves and 
bricks. Its Fourier transform in Figure 2(j) clearly shows an extended passband, and the horizontal and 
vertical streaks in the Fourier domain are visible all the way to the edge of this extended passband. The 
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increase in the extent of the passband is proportional to the spatial frequency of the sinusoidal illumination 
and effectively the superresolution in the image. There is no noise in the structured illumination images used 
to obtain this reconstruction. The quality of the reconstruction deteriorates with the introduction of noise. 

Gaussian noise was added to the next set of images. In Figure 2(e) we obtain a reconstruction using 
sinusoidally patterned images having an SNR of 124 (mean image/standard deviation of noise). This is a 
relatively good SNR condition for conventional images. But as shown by the SNR analysis in Section 2.3, the 
high spatial frequency of the sinusoidal illumination used here, i.e. at 81% of cutoff frequency, implies that 
the superresolution signal is significantly attenuated by the circular-aperture illumination OTF which alone 

contributes a factor ( ) 2
1 2 ,0 0.0096of =H at this frequency. This factor would be larger for a sinusoidal 

illumination with lower spatial frequency or if the sinusoidal pattern were produced by interfering two laser 
beams. Additionally, for the double-pass system we have simulated, we also have another factor of the 
imaging OTF, 2 ,H  further reducing the effective SNR of the superresolution component in this image. The 
noise from the structured illumination images appears as colored noise in the reconstructed superresolved 
image. The extended passband seen in the Fourier transform in Figure 2(k) also shows noise which is more 
distinct in the periphery of the extended OTF where the superresolved object transform is weaker. Therefore, 
in the reconstruction at this high spatial frequency of the sinusoidal illumination, we see that the 
superresolution is not easily evident in the image, and the finer features of the leaves and brick pattern that we 
seek are not distinct.  

This SNR limitation can be remedied by using a greater number of composite images, with different noise 
realizations, to obtain a reconstruction. Figure 2(f) shows the reconstruction, having 81% superresolution, 
obtained from processing 10 sets of such composite images in the multiframe filter in Eq. (20). Now the fine 
superresolved features of the bricks and leaves are more evident than before. The Fourier domain shown in 
Figure 2(l) also shows that the extended horizontal and vertical streaks from the object structured are 
somewhat more visible in the Fourier domain of this reconstruction and the higher spatial frequencies are no 
longer completely drowned in noise as for the case of Figure 2(k). Fewer component images would need to be 
used if we were aiming for lesser values of superresolution, such as 50% of cutoff frequency.  

4. CONCLUSIONS 
We have analyzed the reconstruction of images to obtain lateral superresolution from sinusoidally illuminated 
images. We have included SNR considerations in our analysis for the combination of all superresolution and 
conventional image components to obtain a multiframe image reconstruction filter which adds every 
component image with appropriate weighting. The superresolution information is sensitive to noise and 
multiple images may need to be added in order to obtain effective superresolution. Simulations show up to 
81% superresolution is possible even in the presence of noise. The sensitivity to noise decreases substantially 
for lower values of superresolution.  

Our ongoing and future work in this area includes working on moving objects such as the human retina in 
vivo. We are implementing this analysis on experimental images obtained from a fluorescence microscope.  
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Figure 2. (a) Pristine object used in simulation, (b) conventional image, (c) OTF-compensated version of conventional 

image, (d) superresolved image obtained from noiseless images, (e) superresolved image obtained from noisy images       
(SNR = 124), (f) superresolved image obtained from noisy images (SNR = 124, used 10 sets of composite images),   

(g) – (l) Fourier transforms of (a) – (f) respectively. Figures 2(d) – (f) and (j) – (l) have 81% superresolution. 
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