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Abstract. Imaging correlography is a technique for constructing high reso-
lution images of laser-illuminated objects from measurements of back-
scattered (nonimaged) laser speckle intensity patterns. In this paper, we
investigate the possibility of implementing an imaging correlography sys-
tem with sparse arrays of intensity detectors. The theory underlying the
image formation process for imaging correlography is reviewed, empha-
sizing the spatial filtering effects that sparse collecting apertures have on
the reconstructed imagery. We then demonstrate image recovery with
sparse arrays of intensity detectors through the use of computer experi-
ments in which laser speckle measurements are digitally simulated. It is
shown that the quality of imagery reconstructed using this technique is
visibly enhanced when appropriate filtering techniques are applied. The
signal-to-noise ratio of the process and its dependency on array redun-
dancy and number of speckle pattern measurements is also discussed.
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1. INTRODUCTION

One can obtain large optical apertures, necessary to achieve
high resolution imagery, by synthesizing a phased array of
smaller optical elements or subapertures.'= If the array is
sparse (only partially filled), the modulation transfer function
(MTF) of the system will generally be depressed at the middle
and higher spatial frequencies, as compared with a filled
aperture having the same diameter, resulting in loss of image
contrast and resolution. Imagery obtained in this fashion can,
in principle, be digitally postprocessed to remove the image
distorting effects of the sparse collecting aperture through
“MTF boosting.” To ensure that the noise is not boosted more
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than the image signal, one should design the phased-array
imaging system so that the synthesized MTF is greater than
the detector noise threshold for all spatial frequencies of in-
terest.

We have suggested a new optical imaging technique that
constructs images of coherently illuminated, diffuse objects
from measurements of (nonimaged) backscattered laser
energy.>® Recently, it was demonstrated in the optical lab-
oratory.’” This technique, which we call imaging correlogra-
phy, uses measurements of the intensity of the coherent
speckle pattern formed when an object is illuminated with a
laser to calculate an estimate of the energy (or power) spec-
trum of the underlying incoherent object without requiring a
phased array. An iterative Fourier transform algorithm is used
to retrieve the phase associated with the square root of this
energy spectrum to arrive at the complex Fourier transform of
the incoherent object from which an unspeckled image is
formed. Since this method relies on correlations of Fourier
(pupil) plane speckle intensity, one can show that the estimate
of the object’s energy spectrum is filtered by a transfer func-
tion given by the autocorrelation of the pupil (the collecting
area over which the speckle intensity is measured). As a
consequence of this fact, we conclude that imaging correl-
ography can be implemented with sparse collecting arrays of
intensity detectors and that—with analogy to MTF boosting
with phased-array, incoherent imaging systems—the speckle
intensity data used in imaging correlography can be digitally
processed to compensate for vacancies in the collecting aper-
ture.
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In this paper, we demonstrate that imaging correlography
may be implemented with sparse arrays of Fourier plane de-
tectors, as suggested above, and that MTF boosting of the
estimated energy spectrum of the illuminated object has the
desired effect of reducing image artifacts due to collecting
array sparsity. We illustrate the effects of MTF boosting using
computer simulations of the imaging correlography process.
We also discuss the requirements for the product of array
redundancy and number of speckle measurements needed to
achieve an adequate signal-to-noise ratio.

2. IMAGING CORRELOGRAPHY

We begin with a review of the theory underlying the imaging
correlography technique previously reported in Refs. 5 and 6.
The material provided here is presented in a slightly different
(although equivalent) mathematical form from that reported
earlier in order to emphasize the role that a sparse collecting
aperture plays in filtering the estimate of the object’s energy
spectrum.

Image synthesis using imaging correlography is based on
the fact that the autocorrelation function of the illuminated
object’s brightness distribution can be obtained from the aver-
age energy spectrum of a laser speckle pattern.® (The bright-
ness distribution is essentially the object’s irradiance distribu-
tion had the object been illuminated with an incoherent light
source.) Since the Fourier transform of the autocorrelation of
the object’s brightness function is equal to the squared mod-
ulus of the Fourier transform of the brightness function,’ an
image of the object can be obtained if the phase associated
with this Fourier transform can be determined. To obtain this
phase, we use the iterative transform algorithm, which em-
ploys the Fourier modulus estimated from the speckle data,
together with the constraint that the object’s brightness func-
tion be real valued and nonnegative.'®'? Once the phase
associated with the Fourier modulus is determined, the image
is recovered by inverse transformation of the synthesized
Fourier plane data. Because the image is recovered from an
estimate of the energy spectrum of the object’s brightness
distribution, we find that the recovered image is unspeckled,
even though the data for imaging correlography was obtained
from measurements of coherent laser speckle intensity.

Rather than relating, as we did above, the average energy
spectrum of the speckle pattern to the autocorrelation func-
tion of the object’s brightness function, one can equate the
autocovariance of the far-field laser speckle pattern with the
energy spectrum of the object’s brightness function. This
second interpretation suggests the following procedure for
image recovery: (1) estimate the autocovariance of the ob-
served speckle intensity, (2) take the square root of the esti-
mated autocovariance, (3) recover the phase associated with
this square root, and (4) inverse Fourier transform the assem-
bled Fourier data. Image recovery using this prescription
uncovers a close relationship between imaging correlography
and image recovery from intensity interferometry,'? in which
the object’s Fourier phase information, too, is lost in the
measurement process. (The fact that Fourier domain image
information of incoherent objects can be obtained from far-
field correlations is, of course, a consequence of the Van
Cittert-Zernike theorem.'?)

We can demonstrate the relationship between the auto-
covariance of the laser speckle pattern and the object energy
spectrum by considering the measurement process involved in

-

COHERENT |LLUMINATOR

[ ™

bV
Ve
Y /
yd
7

UNFILLED
RECEIVER
ARRAY u‘
(LIGHT BUCKETS)

Fig. 1. Sensing geometry for a sparse-array implementation of im-
aging correlography. Light from the laser is expanded to flood illum-
inate the target object. The backscattered laser speckle intensity is
measured with light bucket detectors arranged in an unfilled, two-
dimensional array configuration.

imaging correlography. Let us suppose that a diffuse object is
flood illuminated with a laser so that the object lies entirely
within the coherence volume of the laser beam. A two-dimen-
sional array of photodetectors measures the backscattered
light intensity in a (far-field) plane some distance z from the
object (see Fig. 1 for a possible measurement scenario). We
assume that the object is optically rough so that its microscale
surface height variations are random and of a size comparable
with or greater than the wavelength of light. Additionally, we
assume that the transverse scale size of the surface height
fluctuations is small compared with the resolution patch size
associated with the collecting array (i.e., the spatial correla-
tion of surface roughness is small compared to Az/D, where A
is the wavelength of light, z is the range, and D is the largest
array dimension). This being the case, the reflected laser light
is randomly (and coherently) dephased, and the photodetec-
tors in the observation plane record the intensity pattern of a
fully developed laser speckle pattern. !>

Each realization of the observed speckle pattern I,(u) may
be expressed as the squared modulus of the Fourier transform
of the complex object field:

Lo(u) = [Fy)]* = [F[f,0] (1

where & denotes a Fourier transform, f,(x) = |fo(x)|exp[idn(x)]
is the field reflected by the object, |fo(x)| is the object’s field
amplitude reflectivity, and &, (x) is the (random) phase of the
nth realization of the reflected object field associated with the
object’s surface height profile. (Independent realizations of
the observed speckle intensity can occur if the object and
measurement planes are laterally displaced with respect to
each other or if the object rotates slightly.) In the above
expression, X represents a two-dimensional spatial (or angu-
lar) coordinate vector in object space, and u represents a
two-dimensional coordinate in the measurement plane. An
estimate of the autocovariance of the measured speckle pat-
tern may be computed as follows from N realizations of the
laser speckle intensity:
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N o
Ci(Au;N) = ﬁ E f f P(u + Au)P)[L,(u + Aw)l,(u) — I'Jd%u
n=1 -
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where I is the average intensity of the observed speckle pat-
tern, Au is a vector separation in the measurement plane, and
P(u) is the pupil (aperture) function associated with the collect-
ing array, defined as

1, for u € aperture array ,
P(u) = ) 3)
0, otherwise .
In the limit as N (the number of independent observed speckle
patterns) approches infinity, one can use the moment factor-
ing theorem for circular-complex Gaussian (ccg) fields'® to
show that

N

lim — E [L(u + Awl,(u) — I)] = [TAw)?, 4)
e n=1

where T'(Au) = F[|fo(x)|?] is the Fourier transform of the
object’s brightness distribution [i.e., I'(Au) is the mutual
intensity of the (complex) speckle field in the measurement
aperture, evaluated at field points separated by a vector Au].
Our ability to invoke the ccg moment theorem above follows
from the fact that the observed speckle field is ccg since the
speckle pattern is fully developed. In the limit N — o, we
therefore find from Eqs. (2) and (4) that the estimated auto-
covariance of the speckle intensity observed over the
measurement aperture P(u) is given by

lim C(Au;N)

N—>x

Ci(Au)
= OTF(Auw)|T'(Au)|?, (5)

where OTF(Au) is the autocorrelation of P(u). This result
demonstrates that C;(Au;N) provides an estimate for
[T(Au)|?, the energy spectrum of the object’s brightness func-
tion—the square root of which is an estimate of the Fourier
modulus of the object’s brightness function. This square root
is used in the iterative transform algorithm to retrieve the
associated Fourier phase data and thereby reconstruct an
image.

We see from Eq. (5) that the estimated autocovariance of
the observed speckle pattern provides a weighted, or filtered,
estimate of the object’s energy spectrum. This weighting is
completely determined by the spatial arrangement of the de-
tectors making up the collecting aperture. Because this
weighting function OTF(Au) is equal to the autocorrelation of
the measurement pupil, we refer to OTF(Au) as the optical
transfer function (OTF) for the imaging correlography sys-
tem—with obvious analogy to the OTF arising in the analysis
of incoherent imaging systems. The MTF is just the modulus
of the OTF, and, since the OTF is nonnegative, MTF(Au) =
OTF(Au). The fact that this OTF is in the form of an autocor-
relation allows us to consider the use of sparse arrays of
intensity detectors in imaging correlography.
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3. APPLICATON TO SPARSE COLLECTING
APERTURES

The fact that the OTF for imaging correlography is given by
the autocorrelation of the pupil function P(u) suggests a pro-
cedure with which to remove sidelobe artifacts introduced by
a multiple-aperture (sparse array) measurement scheme. If the
detector elements are positioned so that the autocorrelation of
the detector array does not drop to zero within the bandpass of
the OTF, the object energy spectrum estimated by the imaging
correlography process contains essentially the same spatial
frequencies as a filled aperture having the same diameter as
the sparse array. And provided that the noise in the estimated
autocovariance is not too great, the energy spectrum estimate
can be boosted to match the OTF of a completely filled aper-
ture; an image with nearly the resolution of the full aperture is
then, in theory, synthesized.

In practical applicatons of imaging correlography, noise in
the Fourier modulus estimate will arise from many sources,
including detector noise, background flux noise, photon shot
noise, and noise introduced when a finite number of speckle
measurements is used to estimate the speckle autocovariance.
Were all the noise sources additive and uncorrelated with the
signal component, one would logically implement the MTF
boosting procedure by applying a Wiener-Helstrom filter!” to
the Fourier modulus estimate so that the mean-square error
between the estimated image and the true (full-resolution)
image is minimized. Even if the signal and noise sources do
not exactly satisfy these conditions, a Wiener-Helstrom filter
is still very advantageous to use.'’

For conventional incoherent imaging systems the Wiener-
Helstrom filter is of the form

B OTF(Au)|T'(Au)|?
|OTF(Au)](Auw))? + Ey(Au)

W(Au) (6)

where |[['(Au)|? is the energy spectrum of the object’s bright-
ness function, OTF(Au) is the OTF of the collecting aperture,
and E,(Au) is the energy spectrum of the image-domain noise.
This filter is based on a model of the imaging process, which
is given in the Fourier domain as OTF(Au)['(Au) + noise.
However, a better model for imaging correlography is

Ci(Au;N) = OTF(Aw)|T(Au)|? + N(Au) , )

where N.(Au) is additive noise, for which the appropriate
filtering operation to estimate the object’s energy spectrum is

IFawP = WeawCiauN) , ®)
where the filter is given by

B OTF(Au)|T'(Au)|*
|OTF(Auw)])T(Auw)|* + Ec(Au)

W(Au) &)

with E.(Au) being the variance of N.(Au).

Whether taking the square root of the speckle autocovari-
ance and then filtering with Eq. (6) or filtering the speckle
autocovariance with Eq. (9) and then taking the square root,
the MTF is boosted where the signal-to-noise ratio is high and
is depressed where the signal-to-noise ratio is low, thereby
resulting in a better Fourier modulus estimate. Indeed, results
of the computer simulations presented in the next section
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Fig. 2. Golay configurations containing six subapertures. Upper left:
aperture functions P(u) for the Golay-6. Right: OTFs corresponding
to the Golay-6 aperture functions shown in the upper left. Lower
left: point-spread function associated with the wider-segment
Golay-6 aperture.

demonstrate that such filtering techniques improve the overall
quality of imagery recovered in imaging correlography.

4. COMPUTER SIMULATIONS

We conducted a series of computer experiments to demon-
strate that phase retrieval can be used to recover imagery from
far-field speckle intensity data collected over a sparse array.
The procedure followed here is essentially the same as that
reported in Refs. 5 and 6, with the exception that here the
speckle realizations used to compute an estimate of the in-
coherent object’s energy spectrum are masked with a pupil
function P(u) emulating a sparse collecting array.

The original object data for these experiments were con-
tained in a digitized photograph of a satellite model illumi-
nated with incoherent light [see Figs. 4(G) and 5(G)]. The
object’s brightness function was represented by an array of
approximately 40X 60 pixels imbedded in a 128X 128 discrete
array. Each realization of a (coherent) speckled image of the
object was obtained from the digitized photograph by (1)
replacing each pixel with a circular-complex Gaussian ran-
dom variable having a variance for the real and imaginary
parts each equal to half the original pixel brightness value and
(2) low pass filtering the result. The filter used to smooth the
complex object data corresponds to the pupil function P(u)
that defines the detector array area in the measurement aper-
ture. For the sparse aperture simulations, we used a Golay-
type array'® comprising six subapertures. Figure 2 shows the
Golay aperture configurations used for this study together
with the corresponding OTFs and point-spread functions. The
narrower- and wider-segment Golay arrays were both config-
ured to have a 16 pixel separation between adjacent subaper-
tures; the diameters of the individual subapertures in the nar-
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Fig. 3. Cross sections of the wider-segment Golay-6 aperture. (A)
Horizontal cut through origin of OTF pictured in Fig. 1; (B) vertical
cut through origin.

rower- and wider-segment arrays were 11 and 13 pixels,
respectively.

In both cases the OTF, which is the autocorrelation of the
pupil function, consists of a large central peak surrounded by
30 satellite peaks. Although the widths of the subapertures for
both cases were chosen to be large enough that the OTF does
not drop to zero within the bandpass, the narrower-segment
array OTF does drop to low values in the regions between the
satellite OTF peaks. In the presence of noise, these dips in the
OTF could result in information loss at these spatial frequen-
cies. For the wider-segment case, the OTF stays above half
the value of the satellite peaks in the areas between the satel-
lite peaks, as can be seen in Fig. 3. For this reason the
wider-segment Golay array was chosen for the simulation. To
perform the filtering operation on the complex object data, the
sampled Golay arrays were embedded in a 128X 128 array.
Multiple realizations of the coherent object data were then
obtained by using different random number seeds in the com-
putation of the complex Gaussian random variables.

An estimate of the object energy spectrum was formed by
processing multiple arrays of pupil-plane speckle intensity
data computed from realizations of the filtered coherent ob-
ject. Several different estimators of the object energy spec-
trum can be used, such as the one given by Eq. (2). For these
experiments, first the average energy spectrum of the speckle
intensity was computed by inverse Fourier transforming the
squared modulus (i.e., the speckle intensity) of the Golay-
apertured Fourier transform for each simulated coherent
image, and then these speckled energy spectra were averaged
together. After a large number N of independent coherent
speckle data sets were processed in this fashion, a dc term (in
fact a function, corresponding to a scaled version of the
squared modulus of an average of the Fourier transforms of
the windowed speckle intensity arrays observed over the
measurement aperture) was subtracted, and the result was
Fourier transformed, providing an estimate of the autocovari-
ance of the observed speckle pattern, which by Eq. (5) is an
OTF-weighted estimate of the incoherent object’s energy
spectrum.

Results of image reconstruction experiments applying
phase retrieval to the estimate of the object’s energy spectrum
are shown in Fig. 4. Figure 4(A) shows the averaged energy
spectrum (with the dc term removed) of the pupil-plane
speckle intensity for the wider-segment Golay-6 array shown
in Fig. 2, for which N = 10,240 independent realizations of
speckle intensity were averaged. Figure 4(B) is an estimate of
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Fig. 4. Image recovery using the Golay-6 aperture, N = 10,240. (A)
Average energy spectrum of the measured speckle patterns (with dc
term removed); (B) estimate of the Fourier modulus of the object
brightness distribution; (C) image reconstructed from 4(B) using the
iterative transform (phase retrieval) algorithm; (D) Wiener-like filter
for the Golay-6 aperture; (E) filtered Fourier modulus estimate; (F)
image reconstructed from 4(E); (G) original incoherent object; (H)
filtered incoherent object; () result of filtering 4(C).

the Fourier modulus of the object’s brightness distribution
computed by taking the square root of the Fourier transform
of Fig. 4(A). Negative numbers, resulting from noise asso-
ciated with the finite-average approximation to an ensemble
average, were set to zero prior to taking the square root.
Figure 4(C) is the image produced by applying the iterative
transform phase retrieval algorithm'®'? to the Fourier modulus
data contained in Fig. 4(B). The procedure for accomplishing
phase retrieval involved applying several cycles of the hybrid
input-output algorithm (using B = 0.7) and the error reduc-
tion algorithm until the algorithm appeared to stagnate. The
object-domain constraints used were nonnegativity (since an
unspeckled, or incoherent, image is being reconstructed) and
a loose support constraint, a rectangle half the size of the
smallest rectangle enclosing the average energy spectrum of
the observed speckle pattern. The object is guaranteed to fit
within this support constraint. '’

Note that the recovered image shown in Fig. 4(C) is very
noisy compared with the original incoherent object, shown in
Fig. 4(G), although a general semblance of the object has
been recovered. Noise in this reconstructed image is due to
the fact that a finite (albeit large) number of speckle realiza-
tions were used to estimate the Fourier modulus. To reduce
these noise effects, we multiplied the Fourier modulus esti-
mate shown in Fig. 4(B) by the Wiener-like filter of Eq. (6).
For these simulations, the energy spectrum of the object was
taken to be an angular (spin) average over the squared Fourier
modulus of the true object. The noise spectrum was approxi-
mated by a constant whose value was obtained by averaging
the squared Fourier modulus estimate over those higher
spatial frequencies where the signal-to-noise ratio was less
than one. Figure 4(D) shows the resulting Wiener filter used
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for this example. Figure 4(E) shows the product of the filter of
Fig. 4(D) with the original Fourier modulus estimate of
Fig. 4(B).

Figure 4(F) shows the image reconstructed from the filtered
Fourier modulus estimate in Fig. 4(E) using the phase re-
trieval algorithm. Note that the filter has significantly im-
proved the quality of the reconstructed image in Fig. 4(F)
over that in Fig. 4(C) reconstructed without filtering. For the
purposes of comparison, the original object in Fig. 4(G) was
passed through the filter in Fig. 4(D), with the result shown in
Fig. 4(H). The image reconstructed from speckle correlation
measurements, shown in Fig. 4(F), compares favorably with
the filtered object in Fig. 4(H), indicating good performance
on the part of the iterative transform algorithm. Figure 4(I)
shows the result of applying the Wiener filter to the recon-
structed image shown in Fig. 4(C). It appears, at least for this
example, that filtering followed by image reconstruction is
somewhat superior to image reconstruction followed by filter-
ing. We might expect to get even better results by using an
improved Wiener filter, for example, by using a better esti-
mate of the object power spectrum or by using Egs. (8) and
9).

One way to evaluate the MTF-boosting properties of the
filter of Eq. (6) is by inspection of the filter, which is shown
in Fig. 4(D). Notice that it has a local minimum in the center
(at zero spatial frequency) and a ring of local maxima at a
higher spatial frequency. This compensates, in part, for the
rapid drop-off of the OTF that can be seen in Fig. 3. The ratio
of the peak value of the filter to the zero-frequency value is
3.38, a sizable boosting of the OTF at that spatial frequency.
This falls short of a complete compensation due to the noise
energy spectrum term in Eq. (6). For the same reason, the
filter drops off for the highest spatial frequencies, where the
noise dominates the signal.

Another way to evaluate the MTF-boosting properties of
the filter of Eq. (6) is to compare the imaging results shown in
Fig. 4 with those obtained with a filled collecting aperture.
Figure 5 shows the results of image recovery from simulations
of imaging correlography obtained with a filled aperture, in
which the simulated speckle intensity data were filtered by a
square aperture comprising 64 X64 “detector” pixels fully
encompassing the sparse Golay aperture used above. (The
width of the Golay array is only 55 pixels.) The results shown
in Fig. 5 are those reported in Refs. 5 and 6. Except for the
form of filtering used to mask the speckle measurement data,
the digital processing steps used to produce each frame of Fig.
5 is identical to that of the corresponding frame of Fig. 4. The
top row of frames of Fig. 5 correspond to image retrieval with
a full aperture but without Wiener filtering. Note that the
resulting image in Fig. 5(C) is noisy but is significantly better
than its sparse array counterpart in Fig. 4(C). The filter shown
in Fig. 5(D) is that prescribed by Eq. (6), with the OTF given
by the autocorrelation of the filled square aperture. Figure
5(F) shows the image recovered from the Wiener-filtered
Fourier modulus in Fig. 5(E) for the filled aperture. Compar-
ing Figs. 4(F) and 5(F) indicates that most of the key features
of the object recovered in the filled-aperture case were also
recovered with the sparse Golay-6 aperture case. However,
some of the finer details of the object recovered in the full
aperture case were smoothed over in the Golay aperture re-
construction. This loss of resolution for the sparse-aperture
case is the result of a smaller OTF(Au) value (i.e., a lower
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Fig. 5. Image recovery using a filled aperture, N = 10,000. (A)
Average energy spectrum of the measured speckle pattern (with dc
term removed); (B) estimate of the Fourier modulus of the object
brightness distribution; (C) image reconstructed from 5(B) using the
iterative transform (phase retrieval) algorithm; (D) Wiener-like filter
for the filled aperture; (E) filtered Fourier modulus estimate; (F)
image reconstructed from 5(E); (G) original incoherent object; (H)
filtered incoherent object; (l) result of filtering 5(C).

redundancy), and hence a lower signal-to-noise ratio, for
larger spatial frequencies.

The results of this section demonstrate the possibility of
recovering images from nonimaged (far-field) laser speckle
patterns observed with sparse arrays of intensity detectors.
The images obtained using a combination of a Wiener-filtered
speckle autocovariance together with the iterative transform
phase retrieval algorithm show marked improvement over
those obtained without filtering. The fact that the image in
Fig. 4(F), constructed with sparse arrays of detectors, ap-
proaches the quality of the full-aperture image in Fig. 5(F)
suggests that the MTF boosting filter is successful in remov-
ing image artifacts due to the sparse collecting aperture.

5. SIGNAL-TO-NOISE RATIO AND RESOLUTION

Up to this point, we have not addressed the role that the
number N of independently observed speckle patterns plays in
the quality of images recovered in imaging correlography. It
is clear that the error in the speckle autocovariance, and so the
Fourier modulus estimate, will improve as the number of
speckle measurements increases, whether these speckle
measurements arise from additional speckle pattern realiza-
tions (snapshots) or from an increased redundancy in the OTF
of the collecting aperture. This flexibility in choosing be-
tween the number of snapshots N and the collecting array
redundancy can be better appreciated by considering the
signal-to-noise ratio (SNR) of the autocovariance estimate
achieved in imaging correlography. Assuming that time-
sequential measurements of the speckle patterns are statistic-
ally independent, one can show that the SNR of the estimate
of the object’s energy spectrum at spatial frequency Au pro-
vided by the estimator of Eq. (2) is given by’
(NK)”|(Au)|?

SNRc(Au;N) = . —. (10)
(3 + 14{w(Au)* + 3|pn(Au)[*)”

where N is the number of independent speckle patterns (snap-
shots) observed, w(Au) = I'(Au)/I'(0) is the complex coher-
ence factor for the measured speckle field, and

K = K(Au) = N,OTF(Au) (11)

is the number of redundant pairs of speckle intensity in the
collecting aperture measured at pixel separation Au. In the
above, N, is the number of independent samples of intensity
(or number of speckles) contained in the measurement aper-
ture P(u). For the case in which the noise in the Fourier
modulus estimate is dominated by statistical fluctuations in
the autocovariance estimate itself (not by photon shot noise,
etc.), Eq. (10) specifies the tradeoff between array redun-
dancy K and number of speckle snapshots N needed to keep
the SNR of the estimate at an acceptably high level. Keeping
the SNR of the speckle autocovariance, and so the SNR of the
estimate of the object’s Fourier modulus, at a high level will
preserve an acceptable quality in the image recovered using
the iterative transform phase retrieval algorithm.

The above noise analysis included only the effects of ap-
proximating the ensemble average by averaging over a finite
number of realizations. The variance of the noise that includes
both finite averaging noise and photon noise is given by
(NK)™! times?'

(3 + 14|pf* + 3|ulh + [4(1 * 2) + s “t' ] .
M(n) M(n)*

where the first set of terms is due to finite averaging and the
second is due to photon noise, M is the number of detectors
(pixels) per speckle, and (n) is the mean number of photons
per detector. Thus, for [w|* < 1, the finite averaging noise
variance is proportional to 3, while the photon noise variance
is proportional to 4/(M(n)) + 1/(M(n)?). For M = 4, the two
noise variances are equal for (n) = 2 photon per detector or
M(n) = 2 photons per speckle. Consequently, independent of
the array redundancy and the number of realizations, photon
noise will be negligible as long as the number M(n) of photons
per speckle is much greater than two.

6. SUMMARY

We have demonstrated via computer simulations that it is
possible in principle to recover an incoherent image of a
laser-illuminated object from multiple realizations of de-
tected speckle intensities collected over sparse arrays. This
would permit the reconstruction of fine-resolution images
despite phase errors due to atmospheric turbulence. The ex-
pressions for signal-to-noise ratio as a function of spatial
frequency, array redundancy, and number of speckle realiza-
tions show that large amounts of array redundancy and/or
large numbers of speckle realizations are required to recon-
struct an image of large space-bandwidth product.
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