
Lensless coherent imaging by phase retrieval 
with an illumination pattern constraint 

James R. Fienup 
The Institute of Optics, University of Rochester, Rochester, NY 14627 

fienup@optics.rochester.edu 
 

http://www.optics.rochester.edu 
 

Abstract:  It is often possible to reduce the requirements on an imaging 
system by placing greater demands either on an illumination system or on 
post-detection processing of the data collected by the system. An extreme 
example of this is a system with no receiver optics whatsoever. By 
illuminating an object or scene with coherent light having a shaped 
illumination pattern, the receiver can be a simple detector array with no 
imaging optics, detecting the speckle intensity pattern reflected from the 
object; an image of the object can be reconstructed by a phase retrieval 
algorithm. 
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1. Introduction 

This paper describes a concept for an active imaging approach that forms images without 
imaging optics, allowing the receiver to be wide, allowing fine spatial resolution, but is thin in 
the axial direction, making it compact and light weight. It reduces the requirements on the 
optical hardware by increasing the requirements on the post-detection processing. An 
illustration of the system concept is shown in Fig. 1. If an object is flood-illuminated by a 
coherent laser beam, the reflected optical field at the object propagates to produce a speckle 
pattern in a plane a distance from the object. If the coherent field were measured in that plane, 
by heterodyne detection, then it would be possible to reconstruct an image in the computer by 
digitally propagating the field back to the object plane using a Fresnel or Fourier transform. 
However, heterodyne detection over a large array of detectors, needed to form an image of a 
complicated object, is expensive and beyond the current state of the art at visible and near-IR 
wavelengths. 

Conformal Array
of DetectorsCoherent

Illuminator

 

Fig. 1. Lensless imaging with a detector array, sensing the intensity of a laser speckle pattern 
backscattered from the object. [Figure modified from a figure from Brad Tousley 
(DARPA/TTO)] 

 
If just intensity measurements are made, then it is also possible to reconstruct an image 

under some circumstances. One such circumstance is holography [1]. If near the plane of the 
object there is a suitably placed corner reflector satisfying the holographic separation 
condition, then the measured intensity pattern is a Fourier transform hologram of the object, 
and an image of the object can be reconstructed by simply inspecting the autocorrelation 
function obtained by Fourier transforming the detected intensity pattern [2]. An appropriate 
holographic reference (often referred to as a beacon) is, unfortunately, not available for most 
scenarios. A second approach is imaging correlography [3,4]. If one can collect a large 
number of independent realizations of the speckle intensity patterns, and compute the 
autocovariance (the ensemble averaged autocorrelation, after subtracting the mean) of the 
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speckle patterns, then one arrives at the squared magnitude of the Fourier transform of the 
incoherent object (the object intensity reflectivity had it been incoherently illuminated), in a 
manner equivalent to Hanbury Brown-Twiss intensity interferometry. Then a phase retrieval 
algorithm using a nonnegativity constraint and a support constraint, based on the illumination 
pattern, can reconstruct an image. Phase retrieval algorithms for real-valued, nonnegative 
images are usually successful even if the support constraint is fairly loose. A problem with 
imaging correlography is that the signal-to-noise ratio (SNR) of this process is very low for 
higher spatial frequencies, yielding images of poor resolution unless a very large number of 
speckle realizations (which can be had by translating the detector or rotating the object) are 
used. A third approach is PROCLAIM, which involves illuminating a 3-D object with a series 
of laser wavelengths or optical frequencies [5] to collect a “cube” of data. The opacity of 3-D 
objects makes reconstruction of 3-D images from the cube of data fairly robust, but the object 
is not allowed to move appreciably during the entire data-collection time, which is 
problematic for many scenarios. A fourth approach is to have an object that exists on a dark 
background, such as an airborne target or a satellite orbiting the earth. If the object has abrupt 
(sharp) edges, and the shape of the object is favorable, then it is possible to reconstruct an 
image of the object with a phase retrieval algorithm [6,7]. One must, however, make an 
accurate estimate of the support of the object (the set of points outside of which the object is 
zero) [8,9], and not all objects have favorable supports for phase retrieval. 

In this paper we discuss an approach to lensless imaging that can get around the problems 
mentioned above. If we illuminate the object or scene with a laser beam having a known, 
favorable shape, then we can use that shape as a support constraint for a phase retrieval 
algorithm to reconstruct an image. It is important to realize that the illumination pattern 
should come from a projection system that is much smaller in diameter than the array of 
speckle intensity measurements at the receiver. If the transmitter (illumination) optics had a 
large, diffraction-limited aperture, then one could just use that as the receiver optics as well, 
and lensless imaging would not be needed. Hence we restrict our attention to transmitter 
diameters small compared with the diameter of the receiving detector array. For this reason, 
the illumination pattern would have soft, tapered edges. While phase retrieval of complex-
valued objects can be robust for sharp-edged patterns, it has been shown to work poorly for 
soft-edged support constraints [10]. In this paper we show that it is possible to reconstruct 
images with such soft-edged illumination patterns if one employs special illumination patterns 
and advanced forms of the phase retrieval algorithm. 

Such an imaging system has several advantages over conventional imaging systems. First, 
the system is thin in the axial direction; whereas a conventional f/1 optical system has a depth 
comparable to its width, this system can have a depth many times smaller than its width. 
Similarly, the weight of the receiver can be many times less than a conventional telescope. 
The array of detectors can be on a flat or curved surface, allowing it to be conformal to, say, 
the fuselage of an airplane. The detector array does not have to be steered, omitting the large 
gimbal system used conventionally, and that allows the aperture to be wider, for a given 
platform, improving the resolution of the system. With the laser illumination, it is also 
possible for the detector array to be one-dimensional, sweeping out the second dimension in 
time as a synthetic aperture, further reducing the size and weight of the detector array. 
Disadvantages of this approach include the need for a moderately high-power, coherent laser 
illuminator, substantial computational requirements, and a coherent image, which suffers from 
speckle. 

Section 2 of this paper describes the support constraint formed by the illumination pattern. 
Section 3 describes the advanced phase retrieval algorithm: the hybrid input-output algorithm 
using an expanding Fourier modulus [9], and image refinement using an improved form of a 
“patching” algorithm [11]. Section 4 shows some digital simulation results, including the 
effects of noise on the image reconstruction, and Section 5 draws conclusions. 
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2. Support constraint 

Since a main advantage of the imaging concept is to have a compact, thin, and possibly 
conformal sensor, it would be disadvantageous to have a large-aperture optic projecting the 
illumination pattern. If, for example, the diameter of the projection optics were 1/4 that of the 
receiver array, then the volume of the projection optics would be approximately the cube of 
this, or 1/64 the volume that the optics would be if it were of the full diameter. For this reason, 
we consider projection optics having a diameter 1/4 that of the receiver optics to be small 
enough. Since atmospheric turbulence would be greatest nearer the ground, the projection of 
the illumination pattern should be minimally affected by turbulence (although if one were 
projecting in the opposite direction, it would be a problem). Furthermore, since the 
illumination pattern has soft edges, minor blurring of it should not have a large effect on the 
phase retrieval algorithm, which does not assume a tight support constraint. 

It has long been known that certain classes of support constraints are more favorable than 
others. For example, support constraints that are highly asymmetric work better for phase 
retrieval than do symmetric supports [6], partially because phase retrieval is “more unique” in 
that case [12,13] and partly because it avoids the “twin image” mode of stagnation [11]. 
Similarly, support constraints with separated parts are favorable. While phase retrieval is 
ordinarily unique for 2-D objects, it is usually highly ambiguous for 1-D objects [14]. 
Nevertheless, phase retrieval for 1-D objects with supports having separated parts is usually 
unique, despite the general non-uniqueness of 1-D phase retrieval [15]. Furthermore, phase 
retrieval has been shown to work better in practice for 2-D objects with supports having 
separated parts [6]. For these reasons we choose an illumination pattern that is both highly 
asymmetric and has separated parts, as will be shown in Section 4. 

3. Phase retrieval algorithm 

Many types of phase retrieval algorithms have been developed, the two most prominent being 
the hybrid-input-output (HIO) version of the iterative transform algorithm and gradient-search 
nonlinear optimization algorithms [16,17]. For this study we employed HIO, but it does not 
work well for this application in its simplest form, since it usually stagnates when one has a 
complex-valued object and only a soft-edged support constraint [10]. 

We here employ a more robust version of the algorithm using an expanding, weighted 
Fourier magnitude [9]. Since that version of the algorithms is not in wide use, it will be briefly 
described here. It begins by multiplying the measured Fourier magnitude (the square root of 
the measured intensity) by a narrow weighting function (effectively using an aperture of 
narrower diameter), which reduces the resolution of the reconstructed image. Additionally, by 
virtue of the tapered nature of the weighting function, it reduces the sidelobes of the impulse 
response, thereby minimizing the energy due to diffraction that would fall far outside the 
support constraint. During the early iterations, the narrow width of the weighting function 
effectively allows only the phases over a narrower aperture to be retrieved. Since at this point 
only a low-resolution image of the object is being reconstructed, it finds a solution many 
times faster than it would for an image with the full space-bandwidth product. Also, for such 
low resolution images there are fewer local minima in which the algorithm can become 
trapped. After the algorithm has converged for this low-resolution image, the weighting 
function is replaced by a modestly wider one, over a wider effective aperture. At this stage we 
keep the previously retrieved phases over the narrower aperture, and the new phase values 
being retrieved by the iterative algorithm are those in the wider aperture just beyond that 
narrower aperture. After a few iterations, we also allow the previously retrieved phases to 
change as well. This process is repeated with weighting functions of successively larger 
diameters, as illustrated in Fig. 2, until the entire aperture is included. Effectively one 
bootstraps from phases over smaller apertures to the phase over the entire aperture. 

A second algorithm enhancement employed here is an improved version of the patching 
algorithm. A given reconstructed image can have some residual artifacts due to the failure of 
the phase retrieval algorithm in certain areas of the Fourier plane [11]. By reconstructing the 
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image multiple times, each time from a different starting guess, one can get multiple 
reconstructed images, each with different residual artifacts. By combining information from 
these multiple images one can reconstruct an improved composite image. The patching 
algorithm described previously [11] can be generalized to employ more than two images, as 
follows [18]. Run the HIO algorithm with multiple starting guesses to arrive at K different 
initial reconstructed images, each with different residual artifacts. If one of them is artifact 
free (which will be known if the reconstruction is in agreement with the Fourier data and 
support constraints to within the measurement noise), then no further work is required. If there 
is no artifact-free image, continue as follows. By finding the location of the maximum of the 
cross-correlation of the images, register (to within a fraction of a pixel) the images to one 
another. Zero out each of the images in their region of support, leaving the energy outside the 
support constraint. Fourier transform each of these. The location of the energy in the Fourier 
transforms are where the Fourier phase is in error for each reconstruction. Produce a smooth 
version of the magnitude of these Fourier transforms by convolving each with a kernel of 
several pixels in diameter, producing a smoothed map of the Fourier phase error. At each 
pixel in the Fourier domain, select the phase of the Fourier transform (of the entire initial 
reconstructed image) having the smallest Fourier phase error as computed above. This results 
in a composite Fourier transform. Inverse Fourier transforming that result gives a composite 
reconstructed image. That image is input to the HIO algorithm for further iterations. This 
extended patching algorithm is meant only as a refinement when the initial reconstructed 
images are of fairly good quality so that each has regions of its Fourier transform with a good 
approximation to the true Fourier phase. 
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Fig. 2. Radial cut through expanding weighting function on the Fourier magnitude. Lower 
curves are used for earlier iterations and upper curves for later iterations. The diffraction cut-
off frequency is at pixel 192. 

 
For a given illumination pattern, only a limited area of the scene is illuminated and 

imaged. To arrive at an image of the entire scene, one would use multiple lasers pulses with 
the illumination pattern translated to cover different, but partially overlapping, portions of the 
scene, and collect the far-field speckle patterns and perform image reconstruction for each. 
The partial overlap is important in order to more accurately register the multiple images and 
further to provide speckle reduction when the overlapping images are averaged in intensity. 
With a sufficient number of appropriately placed illumination patterns, one can arrive at a 
speckle-reduced, mosaicked image of the entire scene. 

4. Digital simulation and reconstruction results 

Figure 3 shows computer-simulated data used for digital reconstruction experiments. Figure 
3(a) shows the magnitude of a portion of a complex-valued synthetic-aperture radar (SAR) 
image of Michigan Stadium taken with ERIM’s (now, General Dynamics Advanced 
Information Systems’) DCS SAR. Shown is the upper left quadrant of the 384x384 image. 
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Square roots of the SAR image magnitudes are shown here because of their large dynamic 
range. Figure 3(b) shows the upper left quadrant of a simulated laser illumination pattern. 
Unless otherwise indicated, subsequent SAR images show just the upper left quadrant, since 
that is all that was illuminated. Figure 3(c) shows the illuminated scene, which is the product 
of the object and the illumination pattern. The width of the illumination pattern, being less 
than 1/2 the width of the 384-width array, ensures that the intensity of the Fourier transform of 
the illuminated scene is Nyquist sampled. 

The illumination pattern consists of three patches formed from three square areas of 
uniform intensity, each of width 38 pixels, convolved with the impulse response due to the 
projection-optics aperture. That illumination aperture was a circle of diameter 1/4 the width of 
the detector array, and it was weighted with a radial version of the Hanning (raised cosine) 
weighting function to reduce sidelobes in the illumination pattern. Three separated parts to the 
illumination pattern can be accomplished by a number of approaches, e.g., using a diffractive 
optical element. Figure 4 shows a horizontal cut through the center of the amplitude of the two 
horizontally displaced patches of the illumination pattern. The upper curve is the same cut 
multiplied by 50, to better show the sidelobes. This illustrates that the illumination pattern 
does not go to zero between the patches or outside of the patches. Yet the phase retrieval 
algorithm, employing a support constraint, assumes zero values in those areas. Despite the 
fact that this is not strictly true, the phase retrieval algorithm reconstructs an image by finding 
one agreeing with the measured Fourier intensity pattern that has the minimum energy outside 
the support constraint. 

    

 (a) (b) (c) 

Fig. 3. Simulated data. (a) Magnitude of SAR complex-valued SAR image, (b) illumination 
pattern, (c) illuminated image. 
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Fig. 4. Cut through illumination pattern amplitude (lower curve). Upper (dashed) curve is 50x.



 
Figure  5 shows the 384x384-pixel magnitude of the Fourier transform of the illuminated 

scene, which is the data collected at the detector array. Photon noise was simulated in the 
Fourier intensity data with, for this case, an average of 100,000 photons per pixel, for an SNR 
of 316. (Lower SNR cases are shown later.) Shown here, it includes a separable Hanning 
weighting on the magnitude, apodizing the values at the edges of the detected data in order to 
reduce sidelobes in the reconstructed image, thereby making the support constraint work 
better. Fine fringes in the horizontal, vertical, and 45-degree directions can be seen throughout 
the pattern, a result of the interference between the fields from the separated parts of the 
illuminated object. This pattern is not a hologram, since none of the separated parts of the 
object is a delta function. Nevertheless it is conceivable that these fringe patterns help to 
encode the phase of the field into the intensity (perhaps the local deviation of a fringe is 
approximately related to the phase, as it would be for an interferogram), thereby making phase 
retrieval more robust for objects like this with separated supports than for objects with 
contiguous supports. 

 

Fig. 5. Simulated speckle pattern collected at sensor. 

The initial estimate of the image was a field of complex-valued random numbers 
multiplied by a version of the illumination pattern magnitude thresholded at 0.2 times its 
maximum magnitude. Sequences of iterations were performed, each with 40 iterations of HIO 
followed by 5 iterations of the error-reduction algorithm (i.e., just satisfying constraints in 
each domain).  For the first six sequences of iterations, the support constraint was the 
illumination pattern magnitude thresholded at 0.2 times its maximum. For the next seven 
sequences of iterations, the threshold was decreased to 0.05, and for the final subsequent 
sequences of iterations, the threshold was decreased to 0.01. Hence, the support constraint 
started narrower and was relaxed to a wider support constraint for later iterations. The Fourier 
taper function used was the autocorrelation of a circular aperture having a radius that was 
some fraction of the width of the sensor aperture. That fraction was 0.1 for the first sequence 
of iterations, 0.15 for the second, 0.2, for the third, and was increased by 0.1 to 1.0, which is 
the sequence shown in Fig. 2. After that, no additional Fourier tapering was performed aside 
from the Hanning weighting. Figure 6 shows a partially reconstructed image as the iterations 
progressed, starting with a low-resolution image with a narrow Fourier weighting function for 
early iterations and finishing with a fine resolution image for late iterations using the entire 
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Fourier magnitude. This reconstruction sequence was repeated two more times, with different 
random-number starting guesses. The three resulting partially reconstructed images were 
combined using the extended patching method, and then two more sequences of iterations 
were performed on that result to arrive at the final reconstructed image. 

    

 (a) (b) (c) 

    

 (d) (e) (f) 

Fig. 6. Partially reconstructed images with increasing iterations and increasing resolution 
owing to the use of the expanding Fourier magnitude. (a) through (f) are for the first six 
weighting functions shown in Fig. 2. 

Figure 7 illustrates the steps in the extended patching method. In this case, the entire 
384x384 array is shown. As discussed earlier, a composite Fourier transform is constructed by 
patching together the phase from the Fourier transforms of multiple partially reconstructed 
images. The selection of the best Fourier transform to use for a given spatial frequency (for a 
given detector pixel) is determined as follows. First, set to zero the field inside the region of 
support, leaving just the field outside the support, as shown in Fig. 7 (g)-(i). This is the 
component of the field we wish to suppress. Next, compute the Fourier transform each of 
those fields, as shown in Fig. 7 (j)-(l). Next, smooth the intensity of that pattern, and at each 
pixel note which one had the minimum value. The composite Fourier transform is then formed 
from the Fourier transforms of the entire partially reconstructed images according to which 
one had the minimum value at each pixel as computed above. For this particular case, each 
initial reconstruction was fairly good, with only minor artifacts, and the patching method 
served to clean up the image. It may be more important for other cases, in which the initial 
reconstructed images are of lower quality. If the initial reconstructed images are very poor, 
then patching together their Fourier transforms does little good. 

Figure 8 shows a second imaging example for which the illumination pattern has the shape 
of a triangle, but with soft edges owing to the effect of the diameter of the illumination optics. 
Ordinarily a triangle would be considered to be a shape very favorable to phase retrieval, 
since it is highly asymmetric and (if it has nonzero values at the three apexes) always has a 
unique solution in the absence of noise [6,12]. Hard-edged triangular-shaped complex-valued 
images reconstruct well [10]. The reconstructed image is significantly blurred, and the quality 
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of the image is substantially inferior to the case of an illumination pattern having separated 
parts as shown earlier. In this case the image quality is so poor that the patching method was 

    

 (a) (b) (c) 

    

 (d) (e) (f) 

    

 (g) (h) (i) 

    

 (j) (k) (l) 
Fig. 7. Illustration of extended patching method. (a)-(c) Three partially reconstructed images 
from different starting guesses; (d)-(f) same, but overexposed by a factor of 20; (g)-(i) same, 
but with region of object support masked out; (j)-(l), the magnitudes of the Fourier transforms 
of (g)-(i) respectively, showing the regions in which the Fourier transforms of the images in 
(a)-(c) are in error. 
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 (a) (b) (c) 

Fig. 8. Imaging example with triangular illumination pattern. (a) Illuminated object,  
(b) example partially reconstructed image, (c) result of patching algorithm. 

 

    

 (a) (b) (c) 

   

 (d) (e) 

Fig. 9. Images reconstructed with different SNRs. (a) Illuminated object (for comparison); 
reconstructed images with SNR of (b) 32, (c) 10, (d) 6.3, (e) 3.2. 

 
ineffective because the bad areas of the Fourier domain were so widespread. This result 

emphasizes the benefits of the separated parts within the illumination pattern. 
Figure 9 shows the effect of SNR of the measured data on the quality of the reconstructed 

image. Figure 9(a) shows, for reference, the illuminated object. Figure 9(b)-(e) shows the 
reconstructed images, including the effect of photon noise on the Fourier intensities, for an 
average intensity of (b) 1,000 photons/pixel (SNR = 32), (c) 100 photons/pixel (SNR = 10), 
(d) 40 photons/pixel (SNR = 6.3), and (e) 10 photons/pixel (SNR = 3.2). This shows that the 
quality of the reconstructed image degrades slowly and gracefully as the SNR decreases, and 
the phase retrieval algorithm can reconstruct good-quality images under relatively low light 
levels (100 photons/pixel). 
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5. Conclusions 

We have shown that it is possible to reconstruct a coherent image from a far-field speckle 
intensity pattern using a known illumination pattern, formed from a small-aperture 
illumination system. This allows one to image with a detector array with no imaging optics. 
Illumination patterns particularly favorable to phase retrieval are required, such as asymmetric 
patterns with separated parts. While straightforward applications of the iterative transform 
algorithm were not capable of reconstructing an image under these circumstances, more 
advanced forms were. Especially important was the use of an expanding weighted Fourier 
magnitude. An extended version of the patching algorithm for image refinement from multiple 
reconstructed images was also demonstrated. The phase retrieval algorithm was shown to be 
tolerant of noise in the data. 

Portions of this paper were presented in [19,20] 
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