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Image synthesis from nonimaged laser-speckle patterns
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We demonstrate that unspeckled images of coherently illuminated, diffuse objects can be formed from measure-
ments of backscattered laser-speckle intensity. The theoretical basis for this imaging technique is outlined, and
results of computer experiments that successfully construct images from digitally simulated laser-speckle measure-
ments are presented.

It is well known that the spatial structure of a fully
developed laser-speckle pattern-produced by the co-
herent interference of light backscattered from a suffi-
ciently diffuse, reflecting surface-is dependent on
the macroscopic features of the illuminated surface.1
In this Letter we demonstrate that measurements of
the backscattered speckle intensity are sufficient to
(uniquely) construct a high-resolution, unspeckled,
incoherent image (or brightness distribution) of the
coherently illuminated object.

Our approach to image synthesis is based on the fact
that from the average energy spectrum of a laser-
speckle intensity pattern one can obtain the autocor-
relation function of the illuminated object's bright-
ness distribution.2 Here, the object's brightness dis-
tribution corresponds to the object's reflectance
function or, alternatively, to its irradiance distribution
had the object been illuminated by an incoherent light
source. Since the Fourier transform of the autocorre-
lation of the object brightness function is equivalent to
the squared modulus of the Fourier transform of the
brightness function,3 an image of the object can be
obtained if the phase associated with this Fourier
transform can be determined. Fortunately, a practi-
cal solution to this phase-retrieval problem has been
demonstrated by Fienup,' 6 in which an iterative
transform algorithm can be used to recover the phase
associated with the modulus of the Fourier transform
of a real, nonnegative object function, provided that
certain boundedness and nonnegativity constraints
are continually reinforced throughout the iteration
process. The iterative transform algorithm, together
with certain digital preprocessing operations (which
are described below) permit us to recover complete,
unspeckled images from nonimaged speckle data.

Let us suppose that a diffuse object is flood illumi-
nated with a laser whose coherence length is at least
twice as long as the object is deep. An array of photo-
detectors measures the backscattered light intensity
in a far-field plane some distance from the object. We
assume that the object is optically rough, so that its
microscale surface height variations are random and
comparable in size with the wavelength of light. This

being the case, the reflected laser light is randomly
(and coherently) dephased, and the photodetectors in
the observation plane record a fully developed laser-
speckle pattern.

Each realization of the observed speckle intensity
In(u) may be expressed as the squared modulus of the
Fourier transform of the complex object field:

In(U) = I F.(u)l 2 = 15f, 0(x)}I 2,

where 5 denotes a Fourier transform, f0 (x) =
I fo(x)I exp[in5(x)] is the field reflected by the object,
I fo(x) I is the object's field amplitude reflectivity, and
On(x) is the (random) phase of the nth realization of
the reflected object field associated with the object's
surface height profile. In the above expression, x rep-
resents a two-dimensional spatial (or angular) coordi-
nate vector in object space; u represents a two-dimen-
sional coordinate in the measurement plane. The in-
verse Fourier transform of the observed speckle
pattern is proportional to the autocorrelation of the
object field, which may be written as

rn(x) = 95'IFn(u)1 2 H(u)1
= [ fn(x) * fn(x)] * h(x),

where 5-1 denotes an inverse Fourier transform, *
denotes a convolution operation, and * denotes an
autocorrelation. The aperture function H(u) denotes
the region of the measurement plane over which the
speckle pattern is observed: H(u) = 1 for points with-
in the measurement aperture, and H(u) = 0 elsewhere.
The function h(x) = 5-1{H(u)1 is the (diffraction-lim-
ited) coherent impulse response; hence rn(x) is a dif-
fraction-limited (albeit speckled) autocorrelation of
the laser-illuminated object.

Using the iterative transform algorithm, one could
attempt to reconstruct a complex-valued, speckled
image of fn(x) from I Fn(u) 1 2 H(u) or equivalently from
rn(x). However, at present the practical reconstruc-
tion algorithm is effective only for certain classes of
complex-valued objects if the object's support is
known a priori7 and for even more restrictive classes of
complex-valued objects if the object support is un-
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known. (The support is the closed set of points out-
side which the object is zero.) For this reason we
concentrate, in this Letter, on a method that allows us
to reconstruct a real, nonnegative image-a case for
which the iterative transform algorithm is effective for
a broad class of objects.

Image recovery begins by estimating the average
energy spectrum of the observed speckle pattern by
averaging together the squared moduli of many inde-
pendent speckled autocorrelations r,(x). This may be
referred to as noncoherent averaging of the coherent
autocorrelations. Independent realizations of the
speckle pattern can be obtained, for example, by later-
ally displacing the observation plane with respect to
the object or by measuring the speckle pattern for
slightly different rotations of the object. One can
show that as the number N of independent speckle
realizations increases, the computed average energy
spectrum converges to 8

N

lim. N 1 I Irn(x)1J2 = blh(x)42 + cro(x) * I h(X)J 2

n=1

where

b = c[Jlfo(x')l2d2xI 2

is the square of the total measured irradiance,

ro(x)A I fo(x)l 2 * I fo(x)l 2

is the autocorrelation of the object brightness func-
tion, and c is a constant. Thus the average energy
spectrum converges to the sum of an autocorrelation
of the desired incoherent image plus a dc term bl h(x)I 2,

where the dc term is simply the (incoherent) point-
spread function of the collecting aperture, possessing a
strength b. On subtracting the dc term from the aver-
aged energy spectrum, we obtain a diffraction-limited
autocorrelation of the incoherent object. The square
root of the Fourier transform of this incoherent object
autocorrelation, then, provides us with an estimate of
the modulus of the Fourier transform of the object's
brightness function. Note that one can obtain the
same results by subtracting a bias from an average of
the autocorrelations of In(u) and then taking the
square root. One can see that the latter approach is
analogous to a highly redundant, multichannel inten-
sity interferometer.9

We conducted a series of computer experiments to
demonstrate that phase retrieval can be used to recov-
er imagery from speckle data processed in this way.
Original object data for these experiments were con-
tained in a digitized photograph of a satellite model
illuminated with incoherent light. These data com-
prised approximately 40 X 60 pixels embedded in a
128 X 128 discrete array. Each realization of a coher-
ent (speckled) image of the object was obtained from
the digitized photograph by (1) replacing each pixel
with a circular-complex Gaussian random variable
whose real and imaginary parts possessed variances
equal to half of the pixel intensity value and (2) low-
pass filtering the result. The filter used to smooth the
complex object data corresponds to the aperture func-

tion H(u), which was represented by a 64 X 64 square
of detector pixels embedded in 128 X 128 array. Mul-
tiple realizations of the coherent object data were ob-
tained by using different random-number seeds in the
computation of the complex Gaussian random vari-
ables. Each coherent image autocorrelation r,(x) was
computed by inverse Fourier transforming the
squared modulus of the apertured Fourier transform
of the simulated coherent image. Averages of both
the speckled autocorrelations and their squared mod-
uli (i.e., the energy spectrum of the speckle-intensity
patterns) were then taken. A function proportional to
the square of the former, an estimate of the dc term,
was subtracted from the latter (the noncoherent aver-
age) to arrive at an estimate for the autocorrelation of
the incoherent image.

The process of noncoherently averaging object-field
autocorrelations and subtracting the dc term is illus-
trated in Fig. 1. The first column contains averages of
the squared inverse Fourier transforms of N simulated
speckle measurements providing estimates of the
speckle energy spectrum, where N is the number of
independent speckled autocorrelations noncoherently
averaged. The second column shows the correspond-
ing dc term, which, for the case of a square aperture, is
a squared sinc[(7rx)-' sin(7rx)] function. The third
column shows the results when the dc term is subtract-
ed from the noncoherently averaged autocorrelations
of the first column. Note that the speckle artifacts in
the averaged autocorrelations (in the first and third
columns of Fig. 1) disappear as N increases.

The incoherent autocorrelation estimate (with the
dc term removed) was then Fourier transformed, and
the square root was taken, to arrive at an estimate of

Fig. 1. Estimating the energy spectrum of speckle intensity
by noncoherently averaging many coherent speckled image
autocorrelations. (A) Noncoherent average of N = 4 auto-
correlations; (B) estimate of dc term; (C), (A) minus (B);
(D)-(F) N = 32; (G)-(I) N = 128; (J)-(L) N = 1024.
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Fig. 2. Image recovery from noncoherently average auto-
correlation data (N = 10,000): (A) dc-adjusted, noncoher-
ently averaged autocorrelations, (B) estimate of the Fourier
modulus of the incoherent object, (C) image reconstructed
from (B) using the iterative transform (phase-retrieval) al-
gorithm, (D) Wiener filter, (E) filtered Fourier modulus
estimate, (F) image reconstructed from (E), (G) original
incoherent object, (H) Wiener filtered, incoherent object, (I)
result of Wiener filtering (C).

the modulus of the Fourier transform of the object
brightness function. Negative numbers, resulting
from noise associated with the finite-average approxi-
mation to an ensemble average, were set to zero before
the square root was taken. Images were reconstructed-
from the Fourier modulus estimates by using the itera-
tive Fourier-transform algorithm,5'6 using several cy-
cles of the hybrid input-output algorithm (using f =
0.7) and the error-reduction algorithm until the algo-
rithm appeared to stagnate. The object-domain con-
straints used were honnegativity (since an incoherent
image is being reconstructed) and a loose support con-
straint (a rectangle half the size of the smallest rectan-
gle enclosing the autocorrelation).

Data along the first row of Fig. 2 illustrate a direct
application of the phase-retrieval algorithm to the
Fourier modulus estimate. Figure 2(A) represents the
dc-subtracted autocorrelation for N = 104 indepen-
dent speckle patterns. Figure 2(B) shows the corre-
sponding Fourier modulus data produced by Fourier
transforming the averaged autocorrelation [Fig. 2(A)]
and then taking the square root. Figure 2(C) is the
reconstructed image produced by applying the phase-
retrieval algorithm as outlined above. Note that this
image is very noisy compared with the original inco-
herent object, shown in Fig. 2(G). Noise in the recon-
structed image is due to the fact that a finite number
of speckle realizations were used to estimate the Fou-
rier modulus. To reduce these noise effects, we multi-
plied the Fourier modulus estimate [Fig. 2(B)] by a
Wiener filter of the form

OTF(u)Ej(u)
W(u) =

I OTF(u)I 2Ej(u) + En

where OTF(u) = H(u) * H(u) is the optical transfer
function of the receiver aperture, Es(u) is an average
energy spectrum for objects of this type (estimated by
taking an angular average over the squared Fourier
modulus of the object), and En is the energy spectrum
of the noise. We approximated En by a constant
whose value was obtained by averaging the squared
Fourier modulus estimate over those higher spatial
frequencies where the signal-to-noise ratio was less
than one. Figure 2(D) shows the Wiener filter used
for this example.

Figure 2(E) shows the filtered Fourier modulus esti-
mate equal to the product of Figs. 2(B) and 2(D).
Figure 2(F) shows the image reconstructed from the
Wiener-filtered Fourier modulus estimate using the
phase-retrieval algorithm. Note that the Wiener fil-
ter has significantly improved the quality of the recon-
structed image in Fig. 2(F) over that in Fig. 2(C) recon-
structed without Wiener filtering. For comparison,
the original object [shown in Fig. 2(G)] was passed
through the Wiener filter of Fig. 2(D), with the result
shown in Fig. 2(H). The image reconstructed from
speckle-correlation measurements, shown in Fig. 2(F),
compares favorably with the filtered object [Fig.
2(H)], indicating good performance on the part of the
iterative transform reconstruction algorithm. Final-
ly, Fig. 2(I) shows the result of applying the Wiener
filter to the reconstructed image shown in Fig. 2(C).
Apparently, Wiener filtering followed by image recon-
struction is superior to image reconstruction followed
by Wiener filtering.

These results demonstrate the possibility of recov-
ering images from nonimaged laser speckle patterns:
by averaging over many realizations of the coherent
(speckle) intensity data, an estimate of the autocorre-
lation and Fourier modulus of the incoherent object
can be obtained. And, from the Fourier modulus esti-
mate, it is possible to reconstruct an unspeckled image
by applying a phase-retrieval algorithm with a non-
negativity constraint.
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