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Synthetic-aperture radar autofocus by maximizing sharpness
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To focus a synthetic-aperture radar image that is suffering from phase errors, a phase-error estimate is found

that, when it is applied, maximizes the sharpness of the image.

Closed-form expressions are derived for

the gradients of a sharpness metric with respect to phase-error parameters, including both a point-by-point

(nonparametric) phase function and coefficients of a polynomial expansion.
for a highly efficient gradient-search algorithm for high-order phase errors.
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is demonstrated with an example.
OCIS codes:

The maximization of image sharpness was originally
developed to correct phase errors in incoherent op-
tical imagery.! Paxman and Marron? showed that
similar approaches could be used for speckled, co-
herent imagery, including synthetic-aperture radar
(SAR). However, use of sharpness maximization on
coherent imagery has been computationally inefficient
and restricted to lower-order phase errors.?® In this
Letter a computationally efficient implementation of
image sharpening is described that uses closed-form
expressions for the gradient of the sharpness with re-
spect to the phase-error parameters. Nonlinear opti-
mization algorithms that use the gradient expressions
can efficiently maximize the sharpness for arbitrarily
high-order phase errors.

Suppose that we have a SAR image degraded by a
spatially invariant phase error, ¢.(v). We model the
measured range-compressed SAR signal, degraded by
phase errors, as

Gi(x,v) = F(x,v)explig.(v)], (1)

where F(x, v) is the ideal SAR range-compressed signal
history without phase errors, x is the range coordinate,
and v is the pulse number (or slow-time coordinate). If
there is significant motion through range bins during
the integration time, as commonly occurs for inverse
SAR’s, then we assume that the pulses have already
been range aligned.* The inverse Fourier transform of
G4(x, v) in the slow-time dimension gives the complex-
valued SAR image, gq(x, y), where y is the azimuth
(or cross-range) coordinate. Because the phase error
is only in the v direction, the image is smeared only in
the azimuth direction.

For the case of imaging a ground scene with SAR
platform motion errors, it is possible to determine
the phase error for the entire image from one or
more patches of the image. One would choose the
more favorable (higher-contrast) areas. This would
also allow for a more efficient computation of the
phase error. We may, optionally, break up the SAR
image into K patches, ggqr(x, y), each of length N
pixels in azimuth. We Fourier transform each in the
azimuth dimension to arrive at their degraded range-
compressed signal histories:
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Use of these expressions allows
The effectiveness of the algorithm

Gar(x,v) = Flgar(x,y)]

N-1

= > garlx,yexp(—i2zvy/N).  (2)
y=0

We assume that each patch is blurred by the same one-
dimensional phase error:

Gar(x,v) = Fi(x,v)explid.(v)], (6))

where F}, is the ideal range-compressed signal history
(without phase errors) for patch £ and ¢, is the phase
error. If we estimate the phase error to be ¢ (v), then
our estimates of the signal histories are

Gr(x,v) = Gar(x,v)exp[—id(v)], (4)

and our corrected image patches are

grx,y) = F U Gi(x,0)]. (5)

The goal is to form an accurate estimate, ¢(v), of
¢.(v) and compute a corrected image. We accomplish
this by seeking a value of ¢(v) that maximizes the
sharpness of the image, using the sharpness metric

S1=> > wilx,y) gelx, I
k xy

=3 wilx, y) [lgn(x, )PP, 6)

kXY

where wg(x,y) is an optional weighting function that
allows one to place more weight on different patches
and on different areas within a patch, the summation
over k is for £k = 1, ..., K, and the summation over
(x, y) is for all values of (x, y) within each image
patch. The summation over . allows us to optimize
simultaneously over all the patches jointly. Because
|gx(x, y)|? is the intensity of the image, this metric
is a generalization of the classic Muller—Buffington
squared-intensity sharpness metric."? Alternatively,
one can choose to optimize over one patch at a time
(K = 1), average the phase estimates or compute the
principal component among the different phase-error
estimates, and employ that net phase-error estimate
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for the entire image. One may also optimize over the
entire image (K = 1).

In some instances in coherent imaging the phase er-
rors are two dimensional. For example, because phase
errors are proportional to instantaneous frequency,
when the product of the SAR fractional bandwidth and
the size of the phase error is sufficiently large it is
not accurate to represent the phase as a simple one-
dimensional function. The algorithm can be adapted
to this circumstance, and the Fourier transforms must
then be two dimensional instead of one dimensional.

A variety of options are available for the weighting
function. For example, one might choose patches or a
weighting function within a patch to emphasize bright,
high-contrast areas in the scene or to deemphasize or
eliminate undesirable areas such as water, low-return
areas, and wind-blown trees. An example of a useful
weighting function is

Wro

[yz e y/)ﬂz

J (7

wy(x) =

where wy, is an optional weight for each patch. This
weighting function has the same effect as normalizing
the image, so each range bin has the same energy (sum
of intensities) as the others, making each range bin
within a patch weighted equally rather than weighting
bright range bins more heavily, thereby preventing a
single range bin from dominating the estimation of the
phase error.

Using a normalized version of the sharpness metric,

3 wilx, y) lgrlx, y)I*
Spp = ——2 , (8)

2
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is advantageous because it is unitless and independent
of any multiplicative constants. It is proportional to
S; because the denominator, the square of the total
(weighted) image energy, is independent of the phase
error; consequently, when optimizing, one need not
recompute the denominator. This will hold for any
weighting functions that are functions of range only.

We can maximize the sharpness by using a standard
gradient-search technique. Applying an approach
that was previously used for phase-retrieval problems,?
we make the computation of the gradient highly
efficient by employing an expression for the gradient,
which we derive as follows: If we treat each pixel of
¢ (v) as an independent parameter:

aS;
60 2% ny wi(x,y)

3l grlx, y)I*
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where c.c. denotes the complex conjugate of the term
that precedes it, we find that

S, _ 1
o~ %%wk(x,y)

X Im(Gk(x,U){f[gk(x,y)|gk(x,y)|2]}*), (11)

where the Fourier transform is in the y dimension.

So far we have described a point-by-point (or non-
parametric) phase function estimation. It is also
possible to compute gradients with respect to the
coefficients of a polynomial-type expansion of ¢ (v), in

the manner shown in Ref. 5. If we let
J
¢ (v) = Z a;L;v), 12)
j=1

where L ;(v) is some set of basis functions (Legendre,
Fourier, etc.), then we can optimize over the coeffi-
cients aj, where the partial derivatives are

981 _ oy 951
ga; Z L;@) 9 (v) (13)

which involves the computation of the nonparametric
gradient followed by a projection onto the basis set.
This parameterization is particularly useful when the
phase error is known to be a low-order polynomial,
which is often the case. Then we can make the
number of unknown parameters roughly match the
true dimensionality of the phase function, thereby
avoiding overparameterizing the problem. One could
further add to the sharpness metric a penalty function
of the form Y ; aja;? to encourage the solution to
go in the direction (as determined by the values
of a;) of some previous distribution of the expected
values of a;2. For example, in many circumstances
the quadratic phase term is by far the largest, and the
magnitudes of the higher-order terms tend to decrease
with increasing order j. The penalty function can be
viewed as a form of regularization.

S1 would be maximized by a nonlinear optimization
algorithm that employed the objective function expres-
sion in Eq. (6) or (8) together with the one of the gra-
dient expressions above. An example of software to
perform such an optimization would be Matlab’s fminu
(quasi-Newton) nonlinear optimization routine. This
and other off-the-shelf nonlinear optimizers, such as
that of Levenberg and Marquardt, can be used if N or
J is not too large. For large N or J, a purely gradient
approach, such as the method of conjugate gradients,
would be more efficient.

The major expense of computing S; is the fast-
Fourier transform needed to compute the g(x, y) from
the Gi(x, v). The major expense of computing the non-
parametric gradient of S; is the fast Fourier transform
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Fig. 1. Simulation example. (a) Original image, (b) im-
age smeared in the azimuth (vertical) direction by random
phase errors, (c) image after 50 iterations, (d) final focused
image, with recentering.
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Fig. 2. Sharpness as a function of number of interations
(sharpness evaluations).

needed to compute g (x, y) and F[gr(x,y)|gr(x, y)I*].
The computational expense of the gradient is com-
parable with that required for computing the image.

Paxman and Marron®? found that there can be a
false maximum for a phase-error estimate ¢(v) =
—arg[Ggr(x, v)], effectively making the phase of
G(x, v) constant for some dominant range bin x. A
weighting function such as that in Eq. (7) would reduce
the chance of such a false maximum because it would
prevent any single range bin from dominating the
sharpness. Furthermore, if we use image sharpness
as a refinement technique after having corrected most
of the phase error with another algorithm, then false
maxima should not be much of a problem.

Figure 1(a) shows the magnitude of an example
SAR image of Michigan Stadium, of size 384 X
384 pixels, collected by ERIM International’s DCS
SAR. Figure 1(b) shows the smeared image that re-
sulted after addition of a one-dimensional white-noise
random phase error, with a root-mean-squared value
of 4 rad, to the phase of the signal history (Fourier
transform) of the undegraded image. This image
was not subdivided into patches (K = 1). Figure 1(c)
shows the image partially corrected after 50 iterations
(sharpness function evaluations) by optimization of the
sharpness over a pixel-by-pixel phase function by use
of a conjugate-gradient algorithm. Typically three
objective function evaluations are made during the
line search for each gradient calculation. Because
the sharpness is insensitive to translations caused by
linear phase errors, the image is shifted in azimuth.
Figure 1(d) shows the final focused image, recentered
in azimuth. The normalized sharpness of the recon-
structed image was 475.4, compared with the sharp-
ness of the original image, 8.8. Figure 2 shows the
sharpness as a function of the number of objective
function evaluations during the conjugate-gradient
search. At the 50th evaluation the conjugate gradient
search was reinitialized (one step of steepest descent
was performed). The result changed little after itera-
tion 100. When another popular autofocus algorithm®
was tried on this example, it improved the image
considerably but left substantial residual high-order
phase errors.

In conclusion, the new SAR focusing algorithm uses
a gradient search technique to maximize the sharp-
ness of the image by employing a computationally ef-
ficient expression for the gradient. Unlike previous
sharpness-based SAR focusing algorithms, it can work
either with a nonparametric (point-by-point) represen-
tation of the phase or with the coefficients of a polyno-
mial (or some other basis set) expansion of the phase.
It was shown to work well for phase errors of very
high order. It should be useful in other imaging sys-
tems such as medical ultrasound, MRI, and laser radar
as well.
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