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Abstract. This paper discusses an iterative computer method that can
be used to solve a number of problems in optics. This method can be
applied to two types of problems: (1) synthesis of a Fourier transform
pair having desirable properties in both domains, and(2) reconstruction
of an object when only partial information is available in any one
domain. lllustrating the first type of problem, the method is applied to
spectrum shaping for computer-generated holograms to reduce quanti-
zation noise. A problem of the second type is the reconstruction of
astronomical objects from stellar speckle interferometer data. The solu-
tion of the latter problem will allow a great increase in resolution over
what is ordinarily obtainable through a large telescope limited by at-
mospheric turbulence. Experimental results are shown. Other applica-
tions are mentioned briefly.
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INTRODUCTION

There exist a number of mathematical problems in optics that, because
of their enormous complexity, do not yield to analytical solutions.
When analytical methods fail, it is often possible to solve a problem by
an iterative method, of which there are many. In this paper we discuss an
iterative method for solving a large class of such problems. The prob-
lems fall into two general categories: (1) synthesize a Fourier transform
pair having desirable properties in both domains, and (2) reconstruct an
object when only partial information is available in each of two do-
mains. A synthesis problem typically arises when one wants the Fourier
transform of an object ( or a signal, aperture, antenna array, etc.) to have
certain desirable properties (such as uniform spectrum, low sidelobes,
etc.) while the object itself must satisfy certain constraints or have
certain desirable properties. There may not exist a Fourier transform
pair that is completely desirable and satisfies all the constraints. Never-
theless, one seeks a Fourier transform pair that comes as close as
possible to having the desirable properties and satisfying the constraints
in both domains. A reconstruction problem arises when only partial
information is measured in one domain, and in the other domain either
partial information is measured or certain constraints are known a
priori. The information available in any one domain is insufficient to
reconstruct the object or its complex Fourier transform. Both the
synthesis and the reconstruction problems can be expressed as follows:
Given a set of constraints placed on an object
and another set of constraints placed on its
Fourier transform, find a Fourier transform
pair (i.e., an object and its Fourier trans-
form) that satisfies both sets of constraints.
Once a solution is found to such a problem, the question remains: is
the solution unique? For synthesis problems, the uniqueness is usually
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unimportant—one is satisfied with any solution that satisfies all the
constraints; often a more important problem is whether there exists any
solution that satisfies what may be arbitrary and conflicting constraints.
For reconstruction problems, the uniqueness properties of the solution
are of central importance. If many different objects satisfying the con-
staints could give rise to the same measured data, then a solution that is
found could not be guaranteed to be the correct solution. Fortunately,
as will be described later, the uniqueness of the solution is often not a
problem.

Another useful way to classify such problems is according to the type
of information available. For one set of problems, the modulus (magni-
tude or amplitude) of the Fourier transform is measured (or is given)
and the object function is known to be real and nonnegative. These
include the phase problems of x-ray crystallography, Fourier transform
spectroscopy, and imaging through atmospheric turbulence using inter-
ferometer data.

For another set of problems, the modulus of a complex-valued object
and the modulus of its Fourier transform are measured (or are given),
and one wishes to know the phase in both domains. These include the
phase retrieval problem in electron microscopy, the design optimization
of radar signals and antenna arrays having desirable properties, and
phase coding and spectrum shaping problems for computer-generated
holograms.

In this paper, we describe the iterative method and show results of
computer experiments applying it to two different problems: phase
coding for spectrum-shaping and reduction of quantization noise in
computer-generated holograms, and reconstruction of space objects
from interferometer data. The former is an example of a synthesis
problem, and the latter is a reconstruction problem. The extension of
the method to solve other problems is reasonably straightforward.

The iterative method is shown to be very effective in solving these
problems. The results obtained by the iterative method could not have
been achieved by any other practical method. The results of the recon-
struction problem are particularly significant: they indicate the possibil-
ity of obtaining images of space objects with resolution many times finer
than what is ordinarily allowed by the turbulent atmosphere. The
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iterative method should prove to become an important tool in a
number of areas of optics and related fields.

THE ITERATIVE METHOD

The iterative method is not limited to a single fixed algorithm—a
number of useful variations exist. The basic Gerchberg-Saxton! algo-
rithm, which was originally used to solve a problem in electron micros-
copy, can be applied to the more general class of problems; we refer to
this generalization of the Gerchberg-Saxton algorithm as the “error-
reduction” approach. In an attempt to speed up the convergence of the
Gerchberg-Saxton algorithm, we arrived at a more powerful approach,
which we call the “input-output” approach. In the following, both the
error reduction approach and the input-output approach will be

described.

Error-reduction approach

The first published account of the error-reduction approach was its use
by Gerchbergand Saxton! to solve the electron microscopy problem in
which both the modulus of a complex-valued image and the modulus of
its Fourier transform are measured, and the goal is to reconstruct the
phase in both domains. Apparently unknown to them, the error reduc-
tion approach was invented somewhat earlier by Hirsch, Jordan, and
Lesem? to solve a synthesis problem for computer-generated holograms
which has a similar set of constraints. (This will be described later in
more detail.) The method was again reinvented for a similar problem in
computer holography by Gallagher and Liu.? The error reduction
approach was also used by Gerchberg* for a problem in which the
complex Fourier transform is measured out to a maximum frequency,
and the object is known to have a certain width; the goal is to achieve
super-resolution of the object by analytic continuation of its Fourier
transform to frequencies beyond the maximum measured frequency.
By far, the most concentrated use of the error-reduction approach has
been for the electron microscopy problem.!»s

For areconstruction problem, suppose that the object is given by the
function f(x) and its Fourier transform by

F(w) = | Fw)| ) = & [ f)] = f flx) e2muxdx (1)

where the vector x may represent spatial, angular, or other coordinates,
and the vector u represents spatial, angular, or other frequencies. The
coordinates may be one-, two-, or three-dimensional, depending on the
problem. For a reconstruction problem, only partial information is
available in each domain. Given limited information (or constraints) in
each domain, the problem is to reconstruct f(x) and/or F(u). For
example, in the Fourier domain, only|F(u)| may be measured and 6(u)
is unknown. For a synthesis problem, one sees an f(x) and F(u) having
certain desirable properties (or satisfying certain constraints). For ex-
ample, in the Fourier domain, it may be desirable to obtain a specified
value of |[F(u)| while simultaneously having a specified value of | f( x)| in
the object domain. Notice that for digital image processing, only a
sampled version of the object and Fourier functions are available. We
use continuous function notation only as a matter of convenience.
The problem of finding a Fourier transform pair satisfying the
constraints in both domains can often be solved by the error-reduction
approach, a block diagram of which is shown in Figure 1. One iteration
(the kth iteration) of the error-reduction approach proceeds as follows.
A trial solution for the object (or an estimate of the object) g (x) is
Fourier transformed, yielding G(u)=|G(u)| exp[i¢p W(Wl=Fg (x)].
G, (u) is then made to satisfy the Fourier domain constraints. That is, a
new Fourier-domain function G (u) is formed from Gy (u) by making
the smallest possible changes in Gy(u) that allow it to satisfy the
constraints. For example, if the Fourier domain constraint is that the
Fourier transform has a modulus equal to|F(u)|, then G/(u)is given by

Gy'(u) = |F(u)| el®Kv) )
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Figure 1. Block diagram of the error-reduction approach.

That is, the given (or measured) modulus |F(u)| is substituted for the
modulus of G, (u), and the phase of G, (u) is left unchanged. The
resulting G, '(u), which satisfies the Fourier-domain constraints, is
inverse Fourier transformed vyielding the object-domain function,
g,'(x). Then the iteration is completed by forming a new function,
g+ 1(x) by making g, /(%) satisfy the object-domain constraints. In
summary, one transforms back and forth between the two domains,
forcing the function to satisfy the constraints in each domain. The first
iteration can be started in a number of ways, for example, by setting
g (x) or ¢,(u) equal to an array of random numbers. The iterations
continue until a Fourier transform pair is found that satisfies all the
constraints in both domains (or until the money runs out),

A measure of the progress of the iterations, and a criterion by which
one can determine when a solution has been found, is the mean-squared
error, which ii defined in the Fourier domain by

S 16w - G (w)l? du
Ep = —=— (3)
S16, ()2 du

or in the object domain by
f 'gk+1(x) - gk'(x)]2 dx
E2 = —=— . 4)
f ng'(x)lz dx

When the mean—scoqouared error is zero, then the object and its Fourier
transform satisfy all the constraints, and a solution has been found.

It has been shown for a particular problem!* (and it is perhaps true
in the general case) that the mean-squared error can only decrease after
each iteration. This fact gives rise to the name error-reduction
approach.

Typically, the error is reduced very rapidly for the first few iterations
of the error-reduction approach, but more slowly for later iterations.
For some applications, the error-reduction approach has been very
successful in finding solutions using a reasonable number of iterations.
However, for some other applications, the mean-squared error de-
creases very slowly with each iteration, requiring an impractically large
number of iterations for convergence.

Input-output approach

Resulting from an investigation into the problem of the slow conver-
gence of the error-reduction approach, a new and faster converging
approach was developed, the input-output approach.”® The input-
output approach differs from the error-reduction approach only in the
object-domain operation. The first three operations—Fourier trans-
forming g(x), satisfying Fourier domain constraints, and inverse Fourier
transforming the result—are the same for both approaches. Those three
operations, if grouped together as shown in Figure 2, can be considered
as a nonlinear system with an input g(x) and an output g'(x). A property
of this system is that its output is always a function having a Fourier




ITERATIVE METHOD APPLIED TO IMAGE RECONSTRUCTION AND TO COMPUTER-GENERATED HOLOGRAMS

INPUT ( F{ )
SATISFY
FOURIER
CONSTRAINTS
ouTPUT '~ F{ )

Figure 2. Block diagram of the system for the input-output concept.

transform that satisfies the Fourier-domain constraints. Therefore, if
the output also satisfies the object-domain constraints, then all the
constraints are satisfied and it is a solution to the problem. Then it is
necessary to determine how to manipulate the input in such a way as to
force the output to satisfy the object-domain constraints.

For the error-reduction approach, the next input g(x) is chosen to be
the current best estimate of the object, satisfying the object-domain
constraints. However, for the input-output approach, the input is not
necessarily an estimate of the object or a modification of the output, nor
does it have to satisfy the constraints; instead, it is the driving function
for the next output.

How the input should be changed in order to drive the ouput to
satisfy the constraints depends on the particular problem at hand.
Specific examples will be shown in the sections that follow. The analysis
given in the Appendix for a specific application can be generalized as
follows. Consider what happens when an arbitrary change is made in the
input. Suppose that at the kth iteration, the input g,(x) results in the
output g, (x). Further, suppose that the input is then changed by adding
Ag(x):

B1(¥) = g (x) + Ag(x) . (5)

Then we would expect the new output resulting from gp11(¥) to be of
the form

21 4+1(x) = g (x) + 0Ag(x) + additional noise . (6)

That is, the expected (or statistical mean) value of the change of the
output, due to the change Ag(x) of input, is  Ag(x), a constant times the
change of the input. The system shown in Figure 2 is not linear;
nevertheless, changes of the input tend to result in similar changes of the
output. The expected value of the change of the output can be pre-
dicted, but its actual value cannot be predicted since it has a nonzero
variance. In Eq. (6), this lack of predictability is indicated by the
“additional noise” term. The constant o depends on the statistics of
G, (u) and F(u) and on the Fourier-domain constraints.

If the output g,/(x} does not satisfy the object-domain constraints
and if g, (x) + Ag4(x) does, then we might try to drive the output to
satisfy tﬁe constraints by changing the input in such a way as to cause the
output to change by Ag(x). According to Egs. (5) and (6), the change
of the input that will, on the average, cause a change Ag (%) of the
output is

Ag(x)=alAgy(x) . (7)
Then a logical choice for the new input is
gk-H(x) = gk(x) + ,BAgd(X) (8)

where 8 is a constant ideally equal to @ "1, and where Ag 4(x)is a function

such that g, (x) + Ag 4(%) satisfies the object-domain constraints. If a is
unknown, 1tixen a value of 8 only approximately equal to a1 will usually
work nearly as well. The use of too small a value of 8 in Eq. (8) will only
cause the algorithm to converge more slowly. The noise-like terms in
Eq. (6) are kept to a minimum by minimizing | Ag(x)|.

As mentioned earlier, for the input-output approach g (%) is not
necessarily an estimate of the object; it is instead the driving function for
the next output. Therefore, it does not matter whether its Fourier
transform, G, (u), satisfies the Fourier domain constraints. Conse-
quently, for the input-output approach the mean-squared error, E2F, is
unimportant; EZO is the meaningful quality criterion.

Another interesting property of the system shown in Figure 2 is that
if an output g’(x) is used as an input, then its output will be itself. Since
the Fourier transform of g(x) already satisfies the Fourier-domain
constraints, g'(x) is unaffected as it goes through the system. Therefore,
no matter what input actually resulted in the output g’(x), the output
g'(x) can always be considered to have resulted from itself as an input.
From this point of view, another logical choice of the next input is

Br1 () = g1 (x) + BAg(x) . 9

Note thatif 8= 1inEq. (9), then the input-output approach reduces
to the error-reduction approach. Since the optimum value of 8 is
usually not unity, the error-reduction approach can be looked on as a
suboptimal subset of one version of the more general input-output
approach. Depending on the problem being solved, other variations on
Egs. (8) and (9) may be successful ways for choosing the next input.

COMPUTER HOLOGRAPHY PROBLEMS
Reduction of quantization noise

The objective of computer holography!? is to synthesize a transparency
that can modulate a wavefront according to a calculated wavefront,
usually corresponding to Fourier coefficients (or samples of the Fourier
transform of an image) computed from the discrete Fourier transform.
Let F = %[f] be the desired wavefront modulation and f be the
complex-valued function describing the desired image. Due to the
limitations of the display devices and materials used to synthesize
computer holograms, it is often not possible to exactly represent any
arbitrary complex Fourier coefficient. For example as illustrated in
Figure 3(a), Lohmann’s binary detour-phase hologram!! can represent
only a discrete set of complex values, depending upon the number of
resolution elements of the display device used to form one cell to
represent a Fourier coefficient. The kinoform!? allows nearly continu-
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Figure 3. {(a) Lohmann binary detour-phase hologram. Magnitude and
phase are determined by the area and position, respectively, of an aperture
within the cell. For 5X5 subcells per Fourier coefficient, only 26 points in
the compliex plane can be addressed. (b) Kinoform.Phase is determined by
the thickness of the film, and the magnitude is quantized to a single level.

ous phase control, but quantizes all the magnitudes to a single level, as
illustrated in Figure 3(b). (If a gray-level display device, or recorder,
used to synthesize a kinoform has a finite number of gray levels, then the
phase is quantized as well.) In either case, the desired complex coeffi-
cient F is only approximated by a quantized value Q= F + N, where N is

OPTICAL ENGINEERING / May/June 1980 / Vol. 19 No. 3/ 299



FIENUP

the Fourier domain (hologram plane) quantization noise. The resulting
image is f* = F"[Q] = FF] + FI[N] = f + n, where n is the
image-domain quantization noise. Quantization noise is described in
more detail in Ref. 13 and 14.

Since only the squared magnitude (the intensity) of the image is
observed, we are free to choose the phase of the object {phase code the
object) in such a way as to reduce the variance (dynamic range) of | F|,
which reduces the quantization noise in kinoforms and, to a lesser
extent, in the Lohmann hologram. Random phase and various deter-
ministic phase codes!® cause a considerable reduction in the variance of
{F|, but substantial errors remain.

This problem of phase coding to reduce quantization noise fits the
problem statement in the introduction: it is a synthesis problem in
which the Fourier domain constraint is that the values of the Fourier
transform F fall on a set of prescribed quantized values, and the magni-
tudes of the image f” equal that of the desired image at each point. In
fact, the nonlinear system shown in Figure 2 can represent a system for
making quantized computer-generated holograms, where the input g is
the digital description of the ideal image, the operation of satisfying
Fourier-domain constraints is the fabrication of a quantized hologram,
and the output g’ is the image produced by the quantized hologram. The
error-reduction approach was used for kinoforms by Hirsch et al.2 and
by Gallagher and Liu? in order to reduce quantization noise to much
lower levels than what is ordinarily achieved by random or determinis-
tic phase codes. It was for this problem that the input-output approach
was first developed” in order to improve on the convergence properties
of the error-reduction approach.

To gain a better understanding of how the input-output concept
applies to this problem and how we arrived at Eq. (6), in the Appendix
we consider the kinoform case in some detail. A more rigorous proof of
Eq. (6) is available elsewhere.8

For the computer holography quantization problems, the Fourier-
domain constraint is that the values of the Fourier transform fall on
allowed quantized values; the object-domain constraint is that the
magnitude of the image equal a desired magnitude, [f(x)|. Since any
image phase is allowable, there is an infinity of changes of the output
that would cause it to satisfy the constraint. A logical choice of the
desired change of the ouput is the smallest change Ag (%) such that g'(x)
+ Ag (x) = |f(x)|. That would be Agy(x) = 1) g'(x)/ | (%)]- ¢'(%).
We also noticed that the phase difference between g'(x) and g(x) tends
to have the same sign as the change of phase of g’(x) on successive
iterations. Therefore, it is desirable to choose a Agy(x) that tends to
rotate the phase angle of the new input toward that of the last output.
For these reasons, a good choice for the desired change of the output is

Agyx) = [ |£(x)| g—(&—g'(x)]

[g'(x)]
g'(x) g(x)
f —
+[ 1o o ool 22 (10)

in which the first component boosts (or shrinks) the magnitude of the
output to the desired level, and the second component rotates the phase
angle toward the angle of the output. The next input is then given by
inserting Eq. (10) into Eq. (8) or (9). Other algorithms for choosing
Ag4(x) were also found to be successful 8

The iterative method was tested using a binary (= 0 or 1) image of
the block letters SU. The first example is for a hologram with four
magnitude and four phase quantization levels, plus the zero level, as
would be the case for a Lohmann hologram (see Figure 3(a)) using only
4 x4 subcells to represent a Fourier coefficient. The object was random
phase coded and Fourier transformed. The Fourier transform was
quantized, and the inverse transform was computed, resulting in the
sampled image shown in Figure 4(a). After 13 iterations of the input-
output approach using Egs. (10) and (8) with 8 = 1, the greatly
improved image shown in Figure 4(b) was obtained. (Grayscales shown
below the images are for calibration purposes.)

A quality criterion pertinent to the optical memory application is the
ratio of the intensity of the weakest “‘one bit” (image sample with ideal
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Figure 4. Computersimulated images from hologram with 4 magnitude
and 4 phase quantized levels. (a) object random phase coded; (b) after
13 iterations of the iterative method.

intensity equal to unity) to the strongest “zero bit” (image sample with
ideal intensity equal to zero). Figure 5 shows a plot of the range of
output image intensities| g’(x)|2 for one bits and for zero bits (that s, the
maximum and minimum one bit and the maximum zero bit) as a
function of the number of iterations. Initially there was very little
difference between the weakest one bit and the strongest zero bit,
indicating a relatively high error rate: however, after a few iterations,
there is a comfortable gap between the weakest one bit and the strongest
zero bit, despite the severe quantization involved in the hologram.

The second example is for a kinoform, which has continuously
controlled phase but only one magnitude level. Figure 6(a) shows the
resulting output image when the input image was random phase coded.
Figure 6(b) shows the output image after 8 iterations of the error-
reduction approach, using 8+1(%) = [f(x) g(x)/| g (x)]; and Figure
6(c) shows the output image after 8 iterations of the input-output
approach using Egs. (10) and (8) with 8 = 1. Despite the severe
magnitude quantization, the image is greatly improved by both ap-
proaches. Figure 7 shows the range of output intensities for the one bits
and zero bits for both cases: the greatest error of the intensity of the one
bits is considerably less when the input-output approach is used. When
judged by the mean-squared error, the results in the two cases were
comparable.

Spectrum shaping

Spectrum shaping is a synthesis problem that can be stated as follows:
given the magnitude|f(x)| of a complex-valued object, g(x) = [(x)| exp
[16(x)], find a phase function 8(x) such that|#Tg(x)]] is equal to a given
spectrum | F(u)|. The problem of reducing quantization noise for kino-
forms, discussed in the previous section, is a special case of spectrum
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Figure 5. Range of output intensities vs number of iterations, for holo-
gram with 4 magnitude and 4 phase quantized levels.

shaping for which|F(u)| is a constant. A more complex problem is one
suggested by the Escher engraving shown in Figure 8, in which a bird
transforms into a fish. We wish to find a function with magnitude being
a picture of a fish, which has a Fourier transform of magnitude being a
picture of a bird. Or, in terms of computer holography, find a phase
function to assign to the image of a fish so that the hologram will look
like an image of a bird. Figure 9(a) shows the actual “bird”* and “fish”
binary patterns used for our experiment. For the first iteration, the fish
object was random phase coded, Fourier transformed, and the magni-
tude of the Fourier transform was replaced with the magnitude of the
bird pattern shown in Figure 9(a). The result was inverse Fourier
transformed, yielding the very noisy output image shown in Figure
9(b). The input-output approach was then used for seven iterations,
resulting in the improved image shown in Figure 9(c¢). For this as well as
for the examples shown earlier, increasing the number of iterations
resulted in a further improvement of the quality of the image.

IMAGE RECONSTRUCTION FROM
INTERFEROMETER DATA

For telescopes operating at optical wavelengths, atmospheric turbu-
lence limits the resolution of astronomical objects to one second of arc
or worse, although the theoretical diffraction limit is fifty times as fine
for the largest telescopes. Despite atmospheric turbulence, it is possible
to measure the modulus of the Fourier transform of a space object out
to the diffraction limit of the telescope using interferometric tech-
niques.'"1° The autocorrelation of the object can be computed from the
Fourier modulus, allowing the diameter of the object to be determined.
However, unless the Fourier transform phase is also measured, it has
not been possible to determine the object itself, except for some special
cases. Previous attempts to solve this problem?? have not proven to be

LT

6(c)

Figure 6. Computer-simulated images from kinoform. {a) object random
phase coded; (b) after 8 iterations of the error-reduction approach; (c)
after 8 iterations of the input-output approach.

practical for complicated two-dimensional objects.

The problem of reconstructing an object from interferometer data
can be sovled by the iterative method. The Fourier-domain constraint is
that the Fourier modulus equal the Fourier modulus measured by an
interferometer, and the object-domain constraint is that the object
function be real-valued and nonnegative. Where the output image
satisfies the constraints, Ag (x) = 0. Where it violates the constraints
(where it is negative or where its extent exceeds the diameter of the
object as determined from its autocorrelation), it can be made to satisfy
the constraints by having it become equal to zero, and so Ag f(x) =
-g(x). For the error-reduction approach, the next input would be given
byg  (x)= g1(x} + Agy(x). For the input-output approach, the next
input would be given by Eq. (8) or Eq. (9). We found that a particularly
successful method of choosing the next input is to use Eq. (9) where the
output satisfies the constraints and Eq. (8) where it violates the con-
staints. In experiments using computer-simulated data, we found that
the error-reduction approach decreased the mean-squared error rapidly
for the first few iterations, but extremely slowly for later iterations.
Much faster convergence was obtained using the input-output approach
or by alternating between the two approaches every few iterations.
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Figure 7. Range of output intensities vs number of iterations for kino-
form: dashed lines for the error-reduction approach, solid lines for the
input-output approach.

Figure 10(a) shows a computer-synthesized object used for the
experiment®—a sun-like disk having “solar flares” and bright and dark
“sunspots.” The modulus of its Fourier transform is shown in Figure
10(b). Figure 10(c) shows a square of random numbers used as the
initial input for the iterative method. Figures 10(d), (e)and (f) show the
reconstruction results after 20, 230, and 600 iterations, respectively.
Figure 10(g) shows the initial input for a second trial, and the recon-
struction results after 2 and 215 iterations are shown in Figures 10(h)
and (i), respectively. Comparing Figures 10(f) and 10(i) with the
original object in Figure 10(a), we see that for both trials, the recon-
structed images match the original object very closely. Note that in-
verted solutions such as Figure 10(f) are permitted for this problem
since|F(w)| =|F[f(x)]| =|F[f(-x)]|. Other examples of reconstruction
experiments, including blind tests using data simulated to have the noise
that would be present in an actual speckle interferometer, are described
in Ref. 21. These results with computer-simulated data indicate that,
using the iterative method with speckle interferometer data, it should be
possible to reconstruct images having resolution many times finer than
what is ordinarily allowed by the turbulent atmosphere.

CONCLUSION

In this paper, we have described an iterative method for solving a
number of diverse problems in optics and related fields. Experimental
results were shown for synthesis problems and for a reconstruction
problem, each having a different set of constraints on the solution. The
method can also be applied to a number of other problems. One version
of the iterative method, the error-reduction approach, which is a simple
modification of the Gerchberg-Saxton algorithm, was found to be
successful for some applications but not for others. The more powerful
input-output approach was found to converge faster and make the
iterative method practical for a wider range of problems. The iterative
method promises to be a very valuable tool for the field of optics.
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APPENDIX

Suppose that the input g(x) to a kinoform system (Figure 3(b)) results
in the output g’(x). The kinoform has a transmittance Q(u)=Kexp
[i¢(u)] where ¢(u) is the phase of G(u) = IG(W)| exp [ig(u)] =
Fe(x)], and K is a constant. The resulting imageisg’(x)=% [Q(u)].
Now consider what happens when a change Ag(x) is made in the input.
As illustrated in the phasor diagrams in Figure 11, the change Ag(x) in
the input causes a change AG(u) in its Fourier transform, which causes a
change AQ(u) in the kinoform and a corresponding change Ag’(x) =
F ' [AQ(u)] in the output image. Our goal here is to determine the
relationship between the change Ag’(x) of the output and the change
Apg(x) of the input. Figure 12 shows the relationship between AQ(u)
and two orthogonal components of AG(u). By similar triangles, we
have, for|AG| <<|G],

K
AQ(u) = AGt(u)[ m:l (A1)

where the two orthogonal components of AG(u) are

AGH(u) = |AG(u)| cos B(u) ei¢(w) (A2)
parallel to G(u), and

AGHu) = |AG(u)] sin B(u) el P(W+7/2], (A3)
orthogonal to G(u); and

AG(u) = AG™(u) + AGY(u) = |AG(u)| e[ #(WFHAW] (A4)

where B(u) is the angle between AG(u)and G (u). Only one of the two
orthogonal components of AG(u), namely AGYu), contributes to
AQ(u).

In order to compute the expected change of the output, E[Ag’(x}],
we treat the phase angles S(u) and the magnitudes [G(u)| as random
variables. Inserting [AG(u)] from Eq. (A4) into Eq. (A3), we have

AGY(u) = AG(u) e TPWHAWIT ¢ 5,y cid(u)
= AG(u){sin? B(u) + i sin B(u) cos Bu)] . (A5)
For B(u) uniformly distributed over (0, 27),4 the expected value of
AGYu) is
1 1
EAGYuw)] = AG(u)[ E+ i O] = zAG(u) . (A6)

Therefore, the expected value of the change of the output is, using Egs.
(A1) and (A6) and assuming that the magnitudes |G(u)| are identically
distributed random variables'* independent of Blu),

i

E[A¢'(x)] = E[F(aQ)] = FIE(AQ)]

237[ E(AGY- E(l_g_l)]
= J[ ‘;—AG(U)] . E(Ig')

= %Ag(X)E(%) . (A7)

That is, the expected change of the output is « times the change of the
input giving us the second term of Eq. (6), where a = (¥)E (K/|G)).
After a few iterations,| G(u)| will not differ greatly from K; then o = 1.

Similarly, the variance of the change of the output can be shown to

bed
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M

Figure 8. Bird transforms into fish (“Sky and
Water”” by M. C. Escher). This reproduction was
authorized by the M. C. Escher Foundation, The
Hague, Holland/G. W. Breughel.
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Figure 9. (a) Bird hologram and desired fish image; (b) fish output image after random phase coding of input; (c) output image after seven iterations.
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Figure 10. (a) Test object; (b) modulus of its Fourier transform; (c) initial
estimate of the object (first test); (d)-(f) reconstruction results—number
of iterations: (d) 20, (e} 230, (f} 600; (g) initial estimate of the object
(second test); (h)-{i} reconstruction results—number of iterations: (h) 2,
(i) 215.

E[|ag'(x)|?] - [E[Ag'(x)]|?
2 2
~{ =) -[:()]'}
: %f |ag(x)[? dx (1)

where A is the area of the image. That is, the variance of the change of
the output Ag’(x) at any given x is proportional to the integrated
squared change of the entire input. The predictability of Ag’(x), and the
degree of control with which we can manipulate it, decreases as we make
larger changes in the input. The difference between the actual change of
the output and the expected change of the output given by Eq. (A7) is
what is meant by the additional noise term in Eq. (6). If after a few
iterations,|G(u)| =K, then in Eq. (A8), the factor (1/4){2E(K2/|G|?)
—[E(K/|GH P} = 1/4.

Equations (A7) and (A8) are a justification for the input-output
concept; small changes of the input result in similar changes of the

Figure 12. Relationship between AQ, the change of the kinoform, and
two components of AG, the Fourier transform of the change of the input.

F.T.
g+ag O G+AG

Input
=

F.r.”!

C Q+aQ

gl +Agl

Qutput

Fourier Transform

Figure 11. A change Ag of the input results in a
change AQ of the kinoform and a change of Ag' of
the output.
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output, and so the output can be driven to satisfy the constraints by
appropriate changes of the input, as in Eq. (8) or (9).
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