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Space object imaging through the turbulent atmosphere
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Abstract

For telescopes operating at optical wavelengths, the turbulence of
the atmosphere limits the resolution of space objects to about one
second of arc, although the diffraction limit of the largest
telescopes is many times as fine. We discuss an image processing
technique that uses interferometer data (the modulus of the
Fourier transform) to reconstruct diffraction limited images. Data
from a stellar speckle interferometer or from an amplitude in-
terlerometer can be used. The processing technique is an iterative
method that finds a real, non-negative object that agrees with the
Fourier modulus data. For complicated two-dimensional objects,
the solutions found by this technique are surprisingly unique. New
results are shown for simulated speckle interferometer data having
realistic noise present.

I. Introduction

The aim of the research deseribed here is to develop a new method
of recovering imagery through the turbulent atmosphere. Or-
dinarily, atmospheric turbulence limits the resolution of an image
obtained through a large telescope. Under good “seeing” condi-
tions, the atmospheric resolution limit is typically one second of
arc, which is the diffraction limit of an optical telescope of aper-
ture 10 em. Thus, the turbulent atmosphere limits the resolution
of imagery obtained through a five-meter telescope to 1/50 the
resolution of which it would otherwise be capable.

A number of interferometric techniques,' including the intensi-
ty interferometer of Hanbury Brown and Twiss,? the speckle in-
terferometer of Labeyrie,® and the amplitude interferometer of
Currie," have been developed for obtaining diffraction-limited in-
formation about the modulus of the Fourier transform of the ob-
ject. The autocorrelation of the object can be computed from the
Fourier modulus, allowing the diameter of the object to be deter-
mined. However, without knowledge of the Fourier transform
phase, the object itsell generally cannot be computed except for
the special cases of objects with nearby isolated point sources or
objects known to be centro-symmetric. This is known as the phase
problem of optical coherence theory.

Previous attempts at reconstructing an object from the modulus
ol its Fourier transform®™ have not proven to be practical for com-
plicated two-dimensional imagery. We describe in this paper a
new method for reconstructing an object from its Fourier
modulus which is practical for complicated two-dimensional im-
agery, even when a considerable amount of noise is present in the
Fourier modulus data, In addition, we will show preliminary ex-
perimental results using data that is a realistic simulation of a
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speckle interferometer process, including the effects of at-
mospheric turbulence, a finite number of short-exposure images,
an imperfect compensation for the MTF of the system, and
multiplicative photon noise. These preliminary results indicate
that, using this reconstruction method with speckle data, we can
realistically expect to reconstruct images with resolution many
times better than what is ordinarily allowed by the turbulent at-
mosphere. -

The reconstruction method, which is iterative and relies only on
the Fourier modulus and the non-negativity of the object, is
described in Section 11 of this paper. In Section 111, experimental
results will be shown for the case of ideal noise-free Fourier
modulus data. In Section IV is described the computer simulation
of the speckle interferometer process, and the noise characteristics
of that data are discussed in Section V. The reconstruction results
using the simulated speckle data are shown in Section VI.

II. Description of the Method

Let the two-dimensional sky-brightness function which we wish to
image be f(x, y). Its Fourier transform is

F(u, v) = |F(u, v)| exp [i8(u, v)] = # {f(x, v)}

= ff f(x, v) exp [-i2n{ux + vy)]|dxdy (1)

where (x, v) are spatial (or angular) coordinates and (u, v) are
spatial (or angular) frequencies. f(x, y) is a real, non-negative
function and F(u, v) is complex valued and hermetian. It is as-
sumed that only |F(u, v)| is measured. The diameter of the object
can be computed, since it is just half the diameter of the autocor-
relation, { % [ = # {|F(u, v)|?}.

The mathematical problem to be solved is the following: find a
Fourier transform pair G(u, v) = # {g(x, y)} that satisfies all the
known constraints: the Fourier-domain constraint that |G(u, v
equals the measured Fourier modulus, and the object- {or image-)
domain constraint that g(x, v) be non-negative. An auxiliary
object-domain constraint is that the diameter of the object be half
the diameter of the autocorrelation. Although it is not necessary to
impose this diameter constraint (since it follows directly from the
knowledge of the Fourier modulus and the object’s non-
negativity), it can be useful for finding solutions. If such a Fourier
transform pair is found, then a possible solution has been found to
the physical problem: what physical object could give rise to the
measured data. Unfortunately, it may be that many different ob-
jects could give rise to the same Fourier modulus data: however,
as will be discussed later, we have not found the question of
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uniqgueness to be a problem for complicated two-dimensional im-
ages.

The new approach to determining an object from the modulus
of its Fourier transform is a modification of an iterative approach
originally used by Gerchberg and Saxton to solve a problem in
electron microscopy,'' and later by others in connection with
computer-generated holograms.'* We first modified the
Gerchberg-Saxton algorithm to fit this problem simply by using
the object constraints discussed above. We refer to this algorithm
as the error-reduction approach. We also modified the algorithm
in a fundamental way to arrive at the more powerful input-output
approach.

In the error-reduction approach, one iteratively transforms
back and forth between the Fourier and object domains, imposing
the constraints in cach domain before returning to the other do-
main (as indicated in Figure 1), seeking to find a solution that
satisfies the constraints in both domains. In the Fourier domain,

g— 70} }~6=|olei*

! l
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Figure 1. Block diagram of the error-reduction approach.

G'(u, v) is formed by replacing the modulus of G(u, v) with the
measured modulus, |[F(u, vj|. In the object domain, g(x, v) is
formed by setting g'(x, y) =0 where it violates the constraints.
The iterations can be initialized in a number of dilferent ways, for
example, by using a sequence of random numbers ecither for g(x,
y), the estimate of the object, or for ¢(u, v), the estimate of the
Fourier transform phase.

The mean-squared error at each iteration can be defined in the
Fourier domain by

[+a]
/]
2 —oo
HF_ =
]f [EF(u, v)[* du dv

or in the object domain by

[ / [g'(x, v)]? dx dy
Y

y? = _— 3)

0 =
ff [g(x, v)]* dx dy
—o

where y includes all points at which g'(x, y) violates the con-
straints. It can be shown that the mean-squared error can only
decrease (or at least not increase) at cach iteration, giving rise to
the name error-reduction approach., However, although the
mean-squared error decreases rapidly for the [irst [ew iterations. it
decreases extremely slowly for later iterations.''+!? For the present

Glu, v)| = [F(u, v)|]* du dv

(2)
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application, the error-reduction approach requires an imprac-
tically large number of iterations for convergence.

During an attempt to alter the algorithm in order to achieve a
more rapid decrease of the error, a new and more powerful ap-
proach was developed: the input-output approach.'®'* The first
three operations ol the input-output approach are the same as
those of the error-reduction approach: g(x, v) is Fourier
transformed, the transform modulus is made equal to the
measured Fourier modulus, and the result is inverse-Fourier
transformed, giving the image ¢'(x. v). Together, those three
operations can be viewed as a nonlinear system having an input
g(x, ¥) and an output g'(x, v), as depicted in Figure 2. A

INPUT ( F{ )
SATISFY
FOURIER
CONSTRAINTS
output ('= g7 { }

Figure 2. Block diagram of the system for the input-output concept.

characteristic of this system is that the output, ¢'(x, v), has a
Fourier transform having a modulus equal to |[F(u, v)|. Therefore,
if we can manipulate the input in such a way as to force the output
to be non-negative, then the output is a solution to our problem.
The new input is not necessarily a modified version of the previous
output, nor does it have to satisfy the constraints: rather, it is the
driving function for the next output.

For a previous application, analysis was performed to deter-
mine what ellect a change in the input would have on the output.
Suppose that at the kth iteration, the input g)(x, ¥) results in the
output g'(x, v). Then al the next iteration, the inpul is

e 4 1(5y) = gr(x.y) + Aglx, y) (4)

which results in the output

Er+ 1y = glx, y) + 8g'(x,¥) (5)

The result of the analysis' is that the expected change in the out-
put is approximately given by

E[Ag'(x. y)] = abdg(x, y) (6)

where I -] is the expected, or mean, value and e depends on the
statisties of |G(u, v)| and |[F(u. v)|. [Ag'(x. v) also has a non-zero
variance: thal is. its value cannot be exactly predicted. ] Thus, il,
in order to drive the output to satisfy the constraints, we desire the
change in the output to be Agg(x, y). then a good choice of the
change in the input would be a”tAgg(x, v).
As shown in Ref. 14, despite the fact that there is no guarantee
that the error will decrease on each iteration, the approach has
been very successful and is superior to the error-reduction ap-
proach. The input-output method allows for considerable flex-
ibility and inventiveness in the selection of the next input. The
error-reduction approach can be thought of as just one of the
alternatives allowed in the more general input-output approach.
As was the case for the previous applications, there are a
number of different methods of choosing gy | 1(x, ¥), given g} '(x.
v} and gp(x, v}, based on different points of view and dilferent
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tradeoffs inherent in the input-output approach. A particularly
successful method of choosing the next input is given by

ERX.v) (X v)ey
O 4+ 1(x,8) (7)
grlx, v) = BER(x. V). (X, v)Ey
where y is defined as in Eq. (3). and f§ is a constant. In practice,
we found that periodically changing the method of choosing
£k + 1(x, v) after a few iterations works better than using any one
method for all iterations.

III. Experimental Results: Noise-Free Case

Figure 3(a) shows a computer-synthesized object resembling a sun
having solar flares and bright and dark sunspots. The diameter ol

Figure 3. (a) Sun object; (b) modulus of its Fourier transform; (c)
autocorrelation; (d) autocorrelation, displayed at high intensity
(overexposed).

the sun’s disc is 52 pixels in a field of 128 x 128 pixels. Figure 3(b)
shows the modulus of the Fourier transform of the sun object, It is
highly peaked at zero spatial frequency (u = v = 0), as is usually
the case tor Fourier transforms of real, non-negative functions.
The periodic circular fringes seen in Figure 3(b) are due to the
basically circular shape of the object. The nulls of these fringes are
equivalent to the nulls of the visibility function as seen through the
Michelson stellar interferometer, which was used in the first
calculations of stellar diameters.'* Both Figures 3(c) and 3(d) show
the autocorrelation of the sun object, displaved at different inten-
sities [Figure 3(d) is highly overexposed in order to bring out the
edges of the autocorrelation]. From the autocorrelation, the cir-
cular shape and the diameter of the object are obvious, and the ex-
istence of the largest solar flare might be inferred: but the struc-
ture of the sunspots could not be guessed.

Figure 4 shows the results of two tests of the iterative approach
using the Fourier modulus of the sun object. Figure 4(a) shows the
initial estimate of the object used for the first test: a 64 x 64 square
ol uniformly distributed random numbers imbedded in the 128 x
128 array (only 80 x 80 pixels are shown). Figures 4(b)—(f) show
the reconstruction results after 20 (E, = 0.117), 100 (K,
0.068). 230 (E,, = 0.042), 330 (E, = 0.024). and 600 iterations
(E, = 0.0055), respectively, Figure 4(g) shows the initial estimate
of the object for the second test: a circle of random numbers.

(g) (h) (i)

Figure 4. (a) Initial estimate of the object (first test); (b)-(f)
reconstruction results—number of iterations: (b) 20, (c) 100, (d) 230, (e)
330. (f) 600; (g) initial estimate of the object (second test); (h)-(i)
reconstruction results—number of iterations: (h) 20, (i) 215.

Figures 4(h) and 4(i) show the reconstruction results of the second
test alter 20 iterations (E, = 0.051) and 215 iterations (E, =
0.019). respectivelv. In this case and the cases that follow. for
reasons of economy the iterations were halted before the error was
driven to zero.

The reconstruction method was also subjected to a blind test
with noise-free  Fourier modulus data supplied by B. L.
McGlamery (Visibility Laboratory, Scripps Institution of
Oceanography, U. C. San Diego). The 128 x 128 Fourier modulus
array provided by McGlamery is shown in Figure 5(a) and the
autocorrelation computed from it in Figure 5(b). Figure 6(a)
shows the initial estimate of the object, and the reconstruction
results after 10, 60, 200, 240, 280, and 400 iterations are shown in
Figures 6(b) through 6(g), respectively. Using a different initial

(a) (b)

Figure 5. (a) Noise-free Fourier modulus data; (b) noise-free autocor-
relation.

estimate, the second reconstruction result shown in Figure 6(h)
was obtained. The rms error I, is 0.073 and 0.051 for the images
shown in Figures 6(g) and 6(h), respectively, Only after these
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Figure 6. Reconstructions from noise-free Fourier modulus data. (a)
Initial estimate of the object (first test); (b)-(g) reconstruction
results—number of iterations: (b) 10, (c) 60, (d) 200, (e) 240, (f) 280, (g)
400; (h) reconstruction result (second test); (i) the object.

results were obtained did McGlamery send a picture of the object,
which is shown in Figure 6(i).

Comparing Figures 4(f) and 4(i) with Figure 3(a) and compar-
ing Figures 6(g) and 6(h) with Figure 6(i). we see that the
reconstruction results differ very little from the respective original

objects. Note that inverted solutions are allowed, since | .7 {f(-x,

-WH = | #{f(x, y)}H.

These results are very significant because (1) they demonstrate a
practical method for finding solutions from the Fourier modulus
and (2) they suggest that the uniqueness problem is not a serious
limitation for complicated two-dimensional objects (despite the
theory which shows that the solution is not generally unique'),

IV. Simulation of the Speckle Interferometer Process

Another blind test of the reconstruction method was performed on
data that is a realistic simulation of the stellar speckle in-
terferometer (or speckle imaging) process. In this section, the
simulation of the speckle data, which was performed by
McGlamery, is briefly described (it is described by McGlamery!?
in detail),

The object used was a lower-resolution version of the object
shown in Figure 6(i). 320 different point spread functions (PSFs)
smix y)im = 1, 0 o0, 320, were computed from phase arrays
representing the effects of atmospheric turbulence. After proper
scaling, 160 blurred images, dm!x. v), were computed by convolu-
tion of the undegraded object. f(x. y). with the PSFs:

A y) =[x, y) * sp(x0y)

= # YF(u,v):S(u,v)},m=1,..., 160 (S)

m

Making realistic assumptions about the object and the sensor
system, including the spectral power falling on the object. the
reflectivity of the object, the distance to the object, the transmit-
tance of the atmosphere, the diameter of the telescope aperture
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(1.2 m), the transmittance of the optical system. the spectral sen-
sitivity of the detector, and the exposure time (5 msec). the
degraded images were converted into photon counts, which were
then subjected to a Poisson noise process. Each pixel of d (x. v)
was replaced with a noise sample drawn from a Poisson noise
distribution with mean and variance equal to the photon count for
the pixel. The result is the noisy degraded images i, (x, v). To
simulate the speckle processing, the square of the modulus of the
Fourier transform

i (u, v)F = | 7 i (x, »}° (9)

of each of the noisy degraded images was taken, and the sum over
all of the frames was computed. That sum was then divided by the
sum of the squares of the moduli of the Fourier transforms of the
second 160 PSFs. This division provides an approximate compen-
sation for the MTI of the speckle process.

The data provided by McGlamery was the square root of the
result:

160

E [Lp(u, V)

m=1
Ru,v) =] ——mM8M8M8M— (10)
320

Z 1S (u. v)J?

m = 161

= -
R(u, v) is the simulation of the data that would be provided by the
speckle interferometer process. It is a noise-degraded approxima-
tion of the undegraded Fourier modulus, |F(u, v)|.

V. Characteristics of the Simulated Speckle Data

The data R(u, v) was provided in a 256 x 256 array and is
shown in Figure 7(a). It is bounded by a circle due to the shape
of the telescope aperture. Although R(u.,v) is of size 256 x 256,

it is of somewhat lower resolution (i.e., lower maximum spatial

Figure 7. Simulated speckle data. (a) 256 x 256 array Rlu, v); (b)
degraded autocorrelation computed from (a); (c) 128 x 128 subarray of
Rlu, v); (d) degraded autocorrelation computed from (c); (e) same as
(d), with negative values shown as bright areas.
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frequency) that the Fourier modulus data shown in Figure
5(a). This results from the fact that R(u, v) was sampled at more
than twice the rate of the noise-free |F(u. v)|. A degraded autocor-
relation is given by .7 “'[|R(u, v)[*], which is an approximation to
the autocorrelation of the undegraded object. Figure 7(b) shows
the degraded autocorrelation computed from R(u, v). The
degraded autocorrelation is dominated by a pattern of concentric
circles that bears no relationship to the undegraded object. The
pattern of concentric circles is an artifact that arises from a noise
component of R(u, v) that is heavily concentrated in an annulus at
the perimeter of the circle [which can be seen in Figure 7(a)].
The source of the annulus of noise is as follows. Included in the
numerator of Eq. (10) are noise terms that are non-zero for all
spatial frequencies. However, the denominator of Eq. (10) goes to
zero at [, the cut-off spatial frequency of the telescope, as shown
in Figure 8: consequently, R(u. v) is large near f.,. Had the

1.0 Diffraction
MTF

1074
[ 24
= 10 3
= 3

1073

10-4_ ! L lG 1 i

0 .2 .4 . B I.OICO
Relative Spatial Frequency

Figure 8. Modulation transfer functions: of the telescope aperture
{uppermost curve); of the actual speckle process (second curve); of a
second speckle process, used to approximately compensate for the
actual speckle process (third curve). (From Figure 2 of Ref. 17).

simulation been performed including the noise process in the
denominator of Eq. (10), then the strong annulus of noise may not
have occurred.

FFor spatial frequencies exceeding f.,/2. the noise dominates (u.
v) as can be seen from Figure 9. At [ /2 the signal-to-noise ratio is
about 2:1. Consequently, R(u, v) for spatial [requencies above
foo/2 is not useful for image reconstruction. For this reason, we
discarded the values of R(u, v) for the higher spatial frequencies,
and processed the data at hall resolution using our method. Figure
7(c) shows the 128 x 128 portion of R(u, v) used for our reconstruc-
tion experiments. Figure 7(d) shows the degraded autocorrelation
computed from the 128 x 128 version of R(u. v). The degraded
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Figure 9. Square of Fourier modulus data from simulated speckle
process |R|% and square of Fourier modulus of object, |F*. (From
Figure 3 of Ref. 17).

autocorrelation is displaved at half the size as before, since it is at
half the resolution. The pattern of concentric circles in the
autocorrelation is gone: however, the level of noise in the 128 x
128 portion of R(u, v) is still quite large. An indication of this is
that the autocorrelation computed from the 128 x 128 R(u, v) has
areas ol negative values. This cannot be seen from Figure 7(d)
since the negative values were arbitrarily set to zero for the display
of that autocorrelation. Figure 7(e) shows the same autocorrela-
tion, except that in this case, the negative values were displayed as
bright areas, showing the extent of the area with negative values.
It can easily be shown that an autocorrelation with negative
values can arise only from an object with negative values. That is,
there ean be no non-negative (physical) object that would give rise
to a Fourier modulus equal to R(u, v). Nevertheless, as will be
shown in the next section, our reconstruction method, which relies
on the non-negativity of the solution, finds a solution that has a
minimum amount of negative values; in doing so, it reconstructs
an image that contains much useful information about the
original object.

V1. Reconstruction Results from the Noisy Modulus Data

The reconstruction results from the 128 x 128 R(u, v) are shown in
Figure 10. Three tests of the method were performed, each with a
different initial estimate of the object. The three reconstructed im-
ages are shown in Figure 10(a)-(c), having rms errors E; of 0.078,
0.091, and 0.073, respectively. For comparison. Figure 10(d)
shows the undegraded object (provided by McGlamery alter the
tests were completed) displaved at the same bandwidth (resolu-
tion) at which the reconstruction was performed on R(u. v). Also
for comparison, two realizations of the noisy, degraded images.
given by i, (x, v) in Section IV, are shown in Figures 10(e) and (f).
These correspond to the short-exposure images that would or-
dinarily be seen through a telescope.

In this case with noise present. the solution is no longer unique,
as seen by comparing the three reconstructed images in Figures
10(a)-(¢) with one another. Nevertheless, the three reconstructed
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(d) (e) (f)

Figure 10. (a)-(c) Images reconstructed from simulated speckle
data; (d) original object; (e)-(f) examples of simulated short-exposure
images.

images do share a number of common features, and they correlate
well with the original object. Most important, the reconstructed
images contain significantly more information than the images
that would ordinarily be obtained through a telescope.

VII. Discussion and Conclusions

We have shown that our image reconstruction method is suc-
cessful in reconstructing images from speckle interferometer data.
Still better performance is possible if (a) a larger telescope is used
(giving better photon statistics), (b) a greater number of short-
exposure photographs is used to compute the Fourier modulus
data R(u. v), and (¢) the Fourier modulus data is preprocessed to
increase the signal-to-noise ratio. An example of preprocessing
R(u, v) is to subtract out a ]mrtimllur constant noise term which is
described by Goodman and Belsher:' another is to weight it. em-
phasizing the spatial frequencies where the signal-to-noise ratio is
higher (i.e., the lower spatial frequencies). In addition,
possibilities exist for combining the various solutions that are
generated to form a single best estimate of the object, for example,
by forming the sum or the product of all the solutions or by extrac-
ting common features. The results shown here represent only a
first-try effort, and further research is expected to vield improved
results.

We have demonstrated an iterative approach to the reconstrue-
tion of an object from the modulus of its Fourier transform, and
have shown it to succeed even in the presence of large amounts of
noise. This method can be expected to reconstruct images with
resolution many times better than what is normally allowed by
the turbulent atmosphere. using data from a speckle (or other) in-

terferometer. Using the Fast Fourier Transform (FFT), the itera-
tions are relatively fast, making it practical for use on two-
dimensional images of large space-bandwidth product. Alter-
native approaches for performing the iterative computations may
also be developed using electro-optical techniques.

This work was performed under an ERIM internal research
program.
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