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1 introduction
When an inverse synthetic-aperture radar (TSAR) system is
used to image a moving target, unknown motions ofthe target
induce phase errors that cause a smearing of the image. 5ev-
eral algorithms are available for correcting phase errors. Al-
gorithms for correcting higher-order phase errors usually de-
pend on an isolated prominent point on the target. However,
for some targets there may be no suitable prominent points
on which to base a focusing algorithm. Then an algorithm
not relying on prominent points is required to form a well-
focused image.

A class of algorithms referred to as ' 'phase-retrieval"
algorithms can correct phase errors without the need for
prominent points. They instead depend on knowledge of the
support of the target (i.e., its spatial extent). This paper de-
scribes a phase-retrieval algorithm that finds a phase-error
correction that minimizes the energy outside a support con-
straint. It uses a gradient-search nonlinear optimization tech-
nique that employs an analytically defined gradient with re-
spect to either a point-by-point description of the phase-error
function or a polynomial expansion of it. We show the ef-
fectiveness ofthe algorithm for an image of a CV-580 aircraft
using ERIM's Ground-to-Air Imaging Radar (GAIR). In this
case we roughly know the outline of the object and wish to
determine its interior detail.

2 Model
We assume that the signal history (phase history) experiences
phase errors 4)e(tt, v), so that instead of the ideal signal history
F(u, v), we measure the aberrated signal history
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G0(U,') F(u,v) exp[i4e(u,v)] , (1)

where u is the frequency (fast time) coordinate and v is the
azimuth (slow time) coordinate. Although more generally
eO,1)) 5 a 2-D phase error, in many circumstances it is well
approximated as a l-D phase error e(V), a function of azi-
muth only. The phase error in radians is 4irr(v)/ X , where
r(v) is the instantaneous distance from the SAR to a reference
point on the target, and X is the center wavelength. The other
dimension of the phase error is usually proportional to the
absolute frequency (u plus the center frequency). For sim-
plicity we will restrict our attention in what follows to l-D
phase errors only. This is appropriate for rigid-body trans-
lational motion in the plane of apparent rotation. The phase-
retrieval approach can be generalized to 2-D phase errors.

The model above is appropriate only for spatially invariant
phase errors, as would be caused by translational motion of
the target. Other motions, such as rotational acceleration, may
cause spatially variant errors, such as formatting errors. Spa-
tially variant errors require a more sophisticated algorithm
for correction, and they are beyond the scope of what we are
considering here.

Inverse Fourier-transforming the signal history G (u, v) in
frequency/range yields the range-compressed signal history

G0(x,v) =F(x,v) exp[i4e(v)] , (2)

where x is the range coordinate.
The target may have traveled through several range bins

during the aperture time. In that case we should translate each
pulse G0(x,v) by an appropriate distance Lx(v) in range to
align it with the neighboring pulses. We can find this distance
by locating the peak of the cross-correlation of G0(x,v)J with
IGo(x,v — 1)J. Using upsampling of the peak, and fitting a
quadratic cap to the peak, we can easily determine this dis-
tance with fractional-pixel accuracy.
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Performing a length-N inverse FFT in azimuth of the
range-aligned G0(x, v) yields the image

g0(x,y)= - '[G0(x,v)] = N 'G0(x,v) exp

=f(x,y)*c(y) , (3)

where is an azimuth Fourier transform, f(x,y) is the
diffraction-limited image, c(y) is the azimuth impulse re-
sponse, and all summations are over 0, 1 N— 1 unless
explicitly given otherwise. Our goal is to reconstructf(x,y)
from the smeared image g0(x,y) or, equivalently, F(x, v) from
G0(x, v) by determining the phase error 4e(V) and subtracting
it from the phase of G0(x, v).

3 Phase-Correction Algorithms
Wecan use any of several different phase-retrieval algorithms
to solve this problem. For example, with the traditional it-
erative transform algorithm,' we iteratively transform (FFT)
back and forth between the signal history domain, where we
reinforce the magnitude of the signal history, and the image
domain, where we reinforce the support constraint, until we
arrive at a Fourier-transform pair that simultaneously satisfies
both sets of constraints. The traditional iterative transform
algorithm is designed to correct fully two-dimensional phase
errors and does not take advantage of the 1-D nature of the
phase error. We can do so by a gradient-search algorithm as
described below. Gradient-search phase-retrieval algorithms
were invented some time ago ' ; they have recently been gen-
eralized and have demonstrated good results when deter-
mining the aberrations of the Hubble Space Telescope
(HST).2'3 For the TSAR problem the algorithm is significantly
different, however.

3.1 Gradient-Search Algorithms Using Image-
Support Error Metric

Our objective is to minimize the image-domain error metric

E0= g(x,y)2=[1_S(x,y)]g(x,y)f2
x,yS x,y

whereS(x,y) is unity within the image-support constraint and
zero outside it. We define our current estimate of the (range
compressed) signal history as

G(x,v)=G0(x,v) exp[—i4(v)]

where G0(x, v) is the measured signal history and (v) is our
current estimate of the phase error e(V). Letp be an unknown
parameter of G(x, v). Then

ag(xy)= [1 _S(x,y)]g*(x,y) + cc.
8ji

x exp(3') 84(v')
N (—i)G(x,v') +c.c.

a4(v')= —iN' G(x,v')G(x,v') +c.c.

= 2N ,8(v Im[G;(x,v' )G(x,v')]
v, x

where

g(x,y) = [1 —S(x,y)]g(x,y)

and G(x,v) = [g(x,y)I

3.2 Gradient with Respect to Phase-Function
Values

(6) 3.3 Gradient with Respect to Polynomial
Coefficients
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We readily see that for p representing a parameter of the
phase-error estimate,

t3G(x,v) . ä4(v)= —iG(x,v)————- . (8)
ap ap

Inserting Eqs. (7) and (8) into Eq. (6) yields

8E0— = [l —S(x,y)]g*(x,y)N
ap

(9)

(10)

First we consider minimizing over a point-by-point descrip-
tion of the unknown phase error in the signal history domain.
Ifthe parameterp is a sample value ofthe phase-error estimate
4(v), then

34(v')
t34(v)

=i(v, v ) , (11)

where a the Kronecker delta function. Inserting this into
Eq. (9) and performing the v' summation yields

(4) 8(v)
=2N ' Im[G(x,v)G(x,v)] . (12)

This is the gradient of the error metric with respect to a point-
by-point description of the phase-error function.

All the partial derivatives that make up the gradient of E0
with respect to (v) can be computed by two FFTs (actually,
two sets ofFFTs, each set consisting ofNlength-N 1-D FFTs,

(5) which together cost half the computations of a single 2-D
FFT), the product to compute g(x,y), and the summation
over x of Im[G(x,v) G(x,v)]. The terms Im[G(x,v) G(x,v)]
are the contribution to the derivative of the error metric for
each of the range bins.

where cc. stands for the complex conjugate of the term that
precedes it, and

t9g(x,y) =N ' (i2irvY) 0G(x,v)

ap exp—--- 8

Using the same definition of the error metric E0 given above,
we can minimize it with respect to the coefficients of a poly-
nomial expansion of the phase error. Let

(7) (v) = L1 (v) , (13)
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where (v) is the j 'th polynomial and a1 is its coefficient.
A logical choice of polynomials would be normalized Le-
gendre polynomials that are orthonormal over an interval.
The unnormalized Legendre polynomials are given by

P0(v)=l

P1(v)=v

and the remaining polynomials can be computed by the re-
cursion relationship

2n—l n—i
P(v) = vP,— 1(v)

— —Pa— 2(v)n n

The Legendre polynomials that are scaled to be orthonormal
over the interval [— 1, 11 are given by

12N+ i\h/2

L(v)= 2 ) P(v)

The interval over which the polynomial is normalized should
ideally be scaled to correspond to the width of the nonzero
signal history (i.e., not including any zero-pad area). Since

= L1 (v)
8a1

we have

— = 2N ' L1 (v)E Im[G(x,v)G(x,v)j
aa

=L(V)°).
Note that this gradient requires all the same computations as
the gradient with respect to 4(v), plus an additional projection
operation—the summation over v that we must perform for
each of the J polynomial coefficients.

Based on our experience with the HST problem,2'3 we
hypothesize that the best procedure will be to minimize the
image-domain error by the following steps:

1. Perform a polynomial-fitting gradient search of the
phase error. Start with a low-order fit (say, J =2 to 4),
and then on that result perform a higher-order fit (say,
J= 10 to 20).

2. Evaluate the phase-error function from the polynomial
coefficients, and, starting with that result, perform a
point-by-point phase-error-function gradient search.

3.4 Gradient with Respect to Fourier Coefficients
One final parameterization of the phase error that we will
consider is a particular case of polynomials, namely Fourier
series. This will be of great interest if the target has a sinu-
soidally varying position (e.g., a vibration). Furthermore, as
we will see, the Fourier case has computational advantages.
The Fourier series expansion of the phase function is

(v)=(y) exp(i2)
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where 1?( y) =a(y) + ib( y), a complex number, is the coef-
ficient of the y'th Fourier kernel. Since by definition (v) is
a real-valued function, a( y) must be even, b( y) odd, and
F( y) Hermitian when we define the interval of y to be sym-
metric about the origin. Choosing the parameter p to be

(14) a(y) or b(y), we have

(15) 84(v) (2rrvy= 2 cosl (21)
8a(y) \ N
and

(16) a(v) . I2'rrvy\= —2 sinl I (22)
8b(y) \NJ
where we have used the symmetry properties a( — y) =a(y)
and b( —y) = — b(y). Therefore we have

(17) 3E 2irv '0 =4N ' cos( ) Im[G(x,v)G(x,v)] . (23)
aa(y) v N1
Letting

H(v) = : G;(x,v) G(x,v) , (24)

(18)
we have

3E0 (2'rrvy\=4N 1 cost j Im[H(v)]
3a(y) v \N/

=2 Im{h(y)+h(—y)J , (25)

( 19) where h( y) = — ' [H(v)]; and similarly

=2 Re[h(y)—h(—y)] . (26)
Etb(y)

This gradient requires three FFTs (two to compute G and
one to compute h), but avoids the separate summation for
each polynomial coefficient that the Legendre (or other)
polynomials require. Therefore it will be faster when using
a large number of (Fourier) polynomial coefficients.

3.5 Support Constraint
One should take special care to define a support constraint
as well as possible. The support constraint should be as tight
(small) as possible while still including all the mainlobe re-
turns from the target. If the support constraint is much too
large, then the algorithm tends to stagnate without correcting
the phase error. If the support constraint is too small, then
the algorithm will inadvertently try to truncate true parts of
the image, and it may perform poorly. Take care to include
within the support constraint any returns from vibrating or
rotating parts of the target (such as a propeller) that are Dop-
pler shifted (in azimuth) away from the target proper. Define
S(x,y) = 1 over an azimuth extent that includes the Doppler-
shifted returns in those range bins. If we know that a whole
range bin is unreliable, we can exclude it from the definition
of the error metric (and from the computation ofthe gradient)

(20) by defining S(x,y) = 1 over the entire azimuth extent of the
array for those range bins. We would, however, correct those



range bins according to the phase-error estimate. If we do
not know the support constraint a priori, then we can at least
determine upper bounds on it from the support of the auto-
correlation function,4 which we can compute from the giv-
en data.

3.6 Gradient Search
Given the definition of the error metric E0 and the analytic
expressions for the gradient of the error metric derived above,
we used standard gradient-search routines to estimate the
phase error. We obtained similar reconstruction results using
MATLAB-based software (using the fminu minimizer,5
which employs a Broydon-Fletcher-Goldfarbshanno quasi-
Newton method with a mixed quadratic and cubic line search
procedure) and a C program (using the frprmn optimizer from
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Numerical Recipes,6 which is a Fletcher-Reeves-Polak-
Ribiere minimizer).

4 Examples of Results
Figure 1 shows an example of applying the phase-retrieval
algorithm to an image collected by ERIM's Ground-to-Air
Imaging Radar (GAIR).7 We started with a well-focused
512 X 512 image of ERIM's CV580 aircraft, as shown in
Fig. 1(a). Focusing was provided using motion data from an
on-board inertial measurement unit. We then Fourier-
transformed the image back to the signal history domain,
added a synthetic phase error, and then inverse Fourier-
transformed back to the image domain to obtain the image
shown in Fig. 1(b), which is smeared by the synthetic phase
error. The phase error we added is a fifth-order polynomial

Fig. 1 Image-correction result: (a) original focused image, (b) image smeared by fifth-order synthetic
phase errors, (c) support constraint and (d) image corrected using phase-retrieval algorithm.
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havingan integrated phase error of 4. 1 rad rms. Knowing the
orientation of the aircraft, we obtained the support constraint
required by the phase-retrieval algorithm from a CAD/CAM
model of the target, as shown in Fig. 1(c). The smeared image
shown in Fig. 1(b) was the starting point for our phase-
retrieval algorithm. We used the polynomial coefficient ver-
sion of the algorithm, using five coefficients, all initially val-
ued zero. Figure 1(d) shows the image corrected by the phase-
retrieval algorithm. It is considerably less smeared than the
given smeared image, and is of quality comparable to that
of the original focused image. In fact, the wings appear better
focused than in the original, whereas the tail appears more
poorly focused, indicating that part of the smearing is due to
a spatially variant error. Since the phase-retrieval algorithm
only attempts to correct spatially invariant phase errors, it
cannot perfectly focus all parts of this image simultaneously.

Figure 2 shows a second example. In this case we went
back to the original signal history by adding to the corrected
signal history the phase error that was previously removed
according to the motion estimate obtained from the on-board
inertial measurement unit. The phase error was huge:
2800 rad (max — mm) over 350 samples. This image, which
is completely smeared in azimuth, as shown in Fig. 2(a), is
what we would ordinarily obtain without information from
an on-board inertial measurement unit. The algorithm mi-
tially stagnated when given this image. We overcame the
stagnation problem by first performing a crude focusing. We
tried several different quadratic phase errors, each differing
by 200 rad, and chose the quadratic phase correction caus-
ing the sharpest image. This works because a large component
of the phase error is indeed quadratic. We measure sharpness
by spatially summing over the square of the image intensity.
Then we continued with the phase-retrieval algorithm, using
the point-by-point phase-function model, which no longer
stagnated. Figure 2(b) shows the reconstructed image. (For
this particular image, shear averaging8 also worked very
well.)

We performed experiments to determine the sensitivity of
the algorithm to the quality of the support constraint. To the
correct support constraint we added n pixels all around its
perimeter, making it 2n pixels too large in diameter. We found
that for ii= 0 to 4 we obtained results similar to those shown
in the figures. When n = 8, the phase-error estimate stayed
too close to the original estimate and the image would tend
to fill the support constraint. Since the energy Doppler-shifted
outside the support constraint by the propellers was a small
fraction of the total energy, including that energy in the error
metric degraded the reconstructed image only slightly.

5 Conclusions
We have developed a phase-retrieval algorithm, using a sup-
port constraint, for correcting phase errors in synthetic-
aperture radar data. We have derived analytic expressions for
the gradient of an error metric with respect to phase-error
parameters. This allows for efficient computation of the gra-
dient, which is used by a standard nonlinear optimization
algorithm. We have shown good reconstruction results with
actual SAR data. The results demonstrate that the phase-
retrieval approach can correct phase errors and reduce image conim,age-correction result: (aHrnage smeared by phase

smearing due to unknown target motion. However, the al- phase-retrieval algorithm. The support constraint is the same as in
gorithm can also get stuck in a local minimum and fail to Fig. 1.
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converge to the correct image. In this case multiple appli-
cations ofthe algorithm using different initial starting guesses
for the phase error can overcome this problem. If large quad-
ratic phase errors are present, then it helps to remove that
component first.

If a bright, isolated prominent point is available, then it
is best to use it to focus the image; and if multiple prominent
points are available, then we can correct for space-variant
errors as well.9'1° However, when a prominent point is not
available, and if one has a reasonably good estimate of the
support of the image, then a phase-retrieval algorithm using
a support constraint can work when other approaches fail.
Alternatively, the phase-retrieval algorithm can be one step
in a multiple-step image reconstruction procedure.

This phase-retrieval algorithm, based on a support con-
straint, is most useful for the special case in which we know
a priori, at least roughly, the outline of the object, and we
wish to reconstruct the interior details of the image. It may
also be useful when the support constraint is derived from
the measured data.4
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