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Abstract: A spatial mode analyzer based on a Michelson interferometer with a bucket detector
is experimentally implemented. The delay line in the interferometer is an optical implementation
of the fractional Fourier transform (fFT) which enables the spatial mode analysis of a given input
field in the Hermite-Gaussian (HG) mode basis. Modal weights for both 1D and 2D input fields
are experimentally measured. Results for input fields comprising of multiple HG modes are also
presented.
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1. Introduction

With recent advancements in quantum information and communication [1, 2] and the increasing
demand on the information capacity of optical communication systems, higher-order spatial modes
of laser light, such as Hermite-Gaussian (HG) modes or Laguerre-Gaussian modes are being
actively considered for encoding and sending information [3–8]. The sorting and demultiplexing
[9, 10] of these modes is therefore instrumental in high capacity optical communication. The
ability to analyze and decompose an optical beam into a specific modal basis is also essential for
optical system analysis [11–14]. Currently, there exist a variety of approaches that can handle
specific pre-defined modal sets. For example, q-plates can unwrap the azimuthal phase of optical
beams carrying orbital angular momentum to facilitate the sorting of these specific modes [15].
Modal content of a beam comprising of incoherent mixtures of HG modes can be evaluated using
the intensity profile of the beam [16]. Mode sorting of spatial modes with well-defined parity
can be realized using Mach-Zehnder and Sagnac interferometers [17–19]. Each of the previous
modalities handles a specific set of modes and it would be desirable to have reconfigurable optical
hardware that can sort arbitray modes on the fly — spatial, temporal, spectral and polarization.
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This is not only critical for studying simple optical beams, but it is essential to interrogate optical
beams carrying so-called classical entanglement [20–23].

In the following, we describe an approach to arbitrary spatial mode analysis based on two-path
interferometry. Recently spatial mode sorting based on controlled strong scattering was also
reported in [24]. As described in [25, 26], by generalizing the delay line in a conventional
Mach-Zehnder interferometer to an arbitrary unitary transformation, it becomes possible to
unlock the full mode-analyzing ability of the Mach-Zehnder. Specifically, the eigenfunctions
of the generalized delay line are the basis in which beam modal analysis is possible. A Fourier
transform of the output interferogram reveals which eigenmodes of the generalized delay line are
active in the input optical beam.
Our proof-of-principle mode-analyzing demonstration is based on a Michelson fractional

Fourier transform (fFT) delay line. The fFT has a long and rich history in optics [27, 28]. It
emerges naturally in considering scalar field propagation between two parallel planes [29] and
also describes the propagation of fields in a quadratic GRIN medium [30]. It can be nicely
visualized as a rotation of the field’s Wigner function in phase space [31] where the angle of
rotation is related to the order of the fFT. Important for the following studies is the fact that the
HG modes are the fFT eigenfunctions and that this can be used for analyzing the HG modal
content of an optical beam [32]. When replacing the conventional temporal delay line in a
Michelson interferometer, the interferometer is able to decompose an input optical beam in terms
of its constituent HG modes. In the following we first describe our optical implementation of
both 1D and 2D fFT. Next, we provide a proof-of-principle experiment where we demonstrate a
mode-analyzing Michelson based on a fFT generalized delay line. We use this to measure the
modal content of a 1D optical slit and a 2D superposition of HG modes by extracting the modal
weights of the constituting HG modes. In contrast to [26] the present work utilizes a two-path
Michelson interferometer and demonstrates complete two-dimensional spatial mode analysis. In
this work, we report the extraction of the amplitudes of the modal weights only, their complex
phase are not extracted. However, the complex phases can also be retrieved using phase retrieval
techniques as we have recently shown in [33].

2. Concept

2.1. Interferometric spatial mode analysis

A Michelson interferometer is an amplitude dividing interferometer in which the two beams
travel different paths (a two-path geometry) and one of the beams is delayed with respect to the
other before they interfere. When a quasi-monochromatic beam with mean frequency ω and
amplitude E0 illuminates this interferometer, the part of the beam that experiences the delay
(∆t) in temporal domain acquires a phase delay proportional to (−iω∆t) in the spectral domain.
When this phase-delayed beam interferes with the beam from the reference arm, the resultant
interferogram varies sinusoidally as |E0(1 + eiω∆t )|2 = 2|E0 |2[1 + cos(ω∆t)] when ∆t is varied.
Harmonic analysis (in the spectral domain) of this interferogram reveals a delta function at the
spectral frequency ω. When an optical pulse, which can be expressed as a linear superposition
of time harmonics

∫
c(ω)eiωtdω with weights c(ω), illuminates this interferometer, harmonic

analysis reveals the spectral content of the pulse |c(ω)|2. This works since the time harmonics
{eiωn t } are the eigenfunctions of the temporal delay with eigenvalues eiωn∆t . Recasting the
interferogram delay as a unitary transformation provides a bridge to utilize interferometers to
analyze optical beams in arbitrary basis sets.
In this current work, we will experimentally demonstrate how with a bucket detector the

fractional Fourier transform, implemented in the delay arm of the Michelson interferome-
ter, helps reveal the transverse spatial modal structure of an optical beam in the Hilbert
space spanned by HG basis vectors

{
HGm,n(x, y)

}
. Note that

{
HGm,n(x, y)

}
are eigenfunc-
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tions of the linear canonical transform- fFT with eigenvalues ei(mαx+nαy ) [29], where αx,y

is the parameter of the transform along x (y) dimension. HG modes of order (m, n) are
defined as HGw0

m,n(x, y) ∼ Hm(x)Hn(y) exp (−π x2+y2

w2
0
) where Hm(x) [Hn(y)] is the Hermite

polynomial in x [y] of order m[n]. These 2D spatial modes are orthonormal and form a
complete set with the Gaussian mode being the first member of this family (n=m=0). Each
function HGm,n(x, y) is a basis vector of countably infinite dimensional Hilbert space where
(m, n) ∈ (0, 1, 2, 3, ...∞). Any spatial distribution U(x, y) can be written in this Hilbert space
of modes as U(x, y)=∑∞m,n cmnHGm,n(x, y), where cmn are the expansion coefficients or modal
weights and can be complex numbers. Since HGm,n(x, y) is not a complex function, modal
weights can be computed from cmn=

∫ ∞
−∞U(x, y)HGm,n(x, y)dxdy ∀m, n=0, 1, 2...

Fig. 1. Schematic of a Michelson interferometer designed for spatial mode analysis in
the Hermite-Gaussian (HG) basis. The delay line in the interferometer is replaced with a
fractional Fourier transform (fFT delay line) of parameters αx, αy . An exampleinput field
which comprises of three HG modes is shown (intensity of this field is shown as ‘Input’). The
intensities of the constituent HG modes in the input, and their weights, are shown adjacent
to the input in the schematic (see text for details). The phase delays imparted to each of these
HG modes by the fFT, which depend on the index (m, n) of the mode and the delay parameter
αx, αy , are shown above the fFT delay line. The corresponding numerically simulated
interferogram, recorded by the bucket detector, is shown as ‘Interferograms’. Finally, the
modal weights revealed by Fourier analysis are shown next to the interferogram. Note that
the fFT delay line in the interferometer is implemented using a set of three generalized
lenses. 1(a) shows the schematic of this fFT set-up in transmission for simplicity.

Figure 1 describes the schematic of a Michelson interferometer with a fFT delay line, for
parameters (αx, αy), designed for spatial modal analysis in the HG modal basis. As shown
in Fig. 1, an input beam U(x, y), which in the Hilbert space of HG modes is comprised
of 40% of HG0,2(x, y) (|c02 |2), 20% of HG1,3(x, y) (|c13 |2) and 40% of HG2,1(x, y) (|c21 |2)
(approx.), illuminates the interferometer. Half of the amplitude of this beam reflects at the
beam splitter onto the fFT delay line and the other half transmits to the mirror (shown as
‘m’ in the figure) and reflects back as the reference beam. When the entire beam undergoes
the fractional Fourier transform with parameters (αx, αy), each of its modes (in the Hilbert
space of modes) acquires a phase proportional to its eigenvalue: ei2αx , ei(αx+3αy ) and ei(2αx+αy )

respectively. When this spatially transformed beam interferes with the reference beam on a bucket
detector, which integrates the intensity over all space, only those constituting modes interfere
with each other which have the same (mn) index (orthogonality). The resultant interferogram
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goes as P(αx, αy) = |c02 |2 |(1+ ei2αy )|2 + |c13 |2(1+ ei(αx+3αy ))|2 + |c21 |2(1+ ei(2αx+αy ))|2 which
is shown as the interferogram in Fig. 1. Since this has weighted sum of three 2D sinusoids:
2(|c02 |2+ |c13 |2+ |c21 |2+ |c02 |2 cos(2αx)+ |c13 |2 cos(αx +3αy)+ |c21 |2 cos(2αx +αy)), harmonic
analysis of this interferogram reveals 3 delta functions at corresponding |cmn |2 and is shown as
the modal weights in the same figure.

Therefore, the fractional Fourier transform is a spatial transformation which delays the optical
beam in the Hilbert space spanned by discrete modes by an amount which is linear in the
modal index and the order of the transform. This delay, when implemented in an interferometer,
facilitates the extraction of modal weights from the interferogram by Fourier analysis. The general
form of the interferogram is given as:

P(αx, αy) =
∑
m,n

|cmn |2 +
∑
m,n

|cmn |2 cos(mαx + nαy). (1)

2.2. Generalized delay line: optical implementation of the fractional Fourier transform

The 2D fFT for a distribution f (x, y) with parameters αx and αy is defined as:

Fαx,αy (xo, yo) =
exp

[
i(αx + αy)/2

]
i
√

sinαx sinαy

×
∬

f (x, y)exp
{
iπ[(x2 + x2

o) cotαx − 2xxo cscαx]
}

× exp
{
iπ[(y2 + y2

o) cotαy − 2yyo cscαy]
}
dxdy.

(2)

A 1D fFT of U(x) with parameter α ∈ (0, 2π) and can be viewed as the clockwise rotation of the
Wigner function associated with f (x) in Wigner phase space [31]. The transformation parameter
α is also often defined as α = q ∗ π/2 where q is known as the fFT order. Therefore, fFT of order
q = 1 corresponds to a rotation of π/2 and is the Fourier transform of the function. The fFT of
order q = 0 corresponds to the identity transform and q = 2 corresponds to image reflection. This
operator is linear and follows additivity of rotation, i.e. Fα,βFα1,β1 = Fα+α1,β+β1. Four successive
operations of fFT along a given direction correspond to identity operator. As mentioned earlier,
HG modes are eigenfunctions of fFT such that Fαx,αy [HGm,n(x, y)] = ei(mαx+nαy )HGm,n(x, y)
where ei(mαx+nαy ) are the corresponding eigenvalues.

Our optical implementation of the fFT is based on the set-up described in [34]. Figure1(a)
shows the schematic of this fFT set-up in transmission for simplicity. This set-up implements
the full fFT (including the phase of the fFT) of the input field for the transformation parameters
α ∈ [π/2, 3π/2]. Implementing the fFT along with its phase requires three generalized lenses
(L1,L2,L3) separated by a fixed distance z where the first (L1) and the last lens (L3) are
identical [34]. Each of these generalized lens is an assembly of two cylindrical lenses crossed
at angle of π/2. The optical power of each of the generalized lenses lenses varies with the fFT
parameter αx,y and the separation between the lenses z. The power is given as:

p(L1,L3)
x,y =

[
1 −

cot
(
αx,y/2

)
2

]
/z

p(L2)
x,y = 2

[
1 − sin

(
αx,y

) ]
/z

αx,y = qx,y × π/2 and qx,y ∈ [0, 4]. (3)

These three generalized lenses needed to obtain the fFT of the input are implemented
electronically in our set-up using SLMs. We use reflective phase only Hamamatsu SLMs having
792×800 LCD pixel displays with each pixel measuring 20 µm on each side which respond to
horizontal polarization only. The phase φ(x, y) corresponding to the transmittance function of a
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generalized lens with power px and py [as defined in Eq. (3)] is written on the SLM by addressing
its each pixel (x,y) using LabView. The family of HG modes that are eigenfunctions to the fFT
implemented by this set-up have a waist wo given by

√
2λz where z is the separation between the

generalized lenses.

3. Methods

3.1. Experimental setup

The layout of our experimental set-up is given in Fig. 2. The gray box shows the Michelson
interferometer where the reflected arm of the interferometer implements the fFT of the input and
the transmitted arm acts as the reference. The “mode generation input" channel prepares and
sends a horizontally polarized input beam either as a HG mode or a back-illuminated slit with
a wavelength of 795 nm. The HG mode with appropriate waist is prepared using a hologram
written on a spatial light modulator (SLM), not shown in the schematic, as described in [35].
Both the slit and the HG modes are imaged on the input plane (shown as a black dashed line) of
the interferometer.

Fig. 2. Schematic of the optical set-up: the gray box shows the Michelson interferometer.
The fFT is implemented using SLMs in the upper arm. The stabilization channel sends a
second optical beam cross-polarized with respect to the signal input in order to generate an
error signal which is used to path stabilize the interferometer. Experimentally generated test
modes are also shown.

This field distribution at the input plane of the interferometer is imaged on the first generalized
lens, L1 (implemented on SLM1) using a 4f lens system with unit magnification (f(L1)=f(L2)=
200 mm) through the reflecting port of a plate beam splitter (BS2). The second generalized lens
L2 (implemented on SLM2) is placed at a distance z= 600 mm away from the first generalized
lens at normal incidence and the light is reflected back onto SLM1 (the power of the first and the
third generalized lenses is same so SLM1 implements both these lenses). This field distribution
on SLM1 gives the fFT of the input field. In the reference arm, the image relayed from first the
4f system (L1, L2) is relayed to the reference mirror on a piezo using another 4f system with
0.5 magnification (f(L3)=200 mm, f(L4)=100 mm). The fFT of the input interferes with the
reference field on BS2 where the total field is transmitted and imaged using a third 4f lens system
(f(L5)=200 mm, f(L6)=100 mm) with magnification of 0.5 on a bucket detector.

Note that the set-up described in [34] and in Fig. 1(a), only outputs the intensity corresponding
to the fFT of the input. In order to obtain full fFT with phase [36], an additional global phase
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ei(αx+αy−π)/2 is added to SLM2 in our set-up. To record an interferogram P(αx, αy), all of the
optical elements are fixed and only the phases on the two SLMs are changed. The phase displayed
on each SLM corresponds to the phase transmittance tA(x, y) of the generalized lens displayed.
This transmittance depends on the power of the lens p(L)x,y which depends upon the fFT parameter
(αx, αy) and is given in Eq. (3):

tA(x, y) = exp {iφ(x, y)} ;

φ(x, y) =
(
−πp(L)x x2

λ

)
+

(
−
πp(L)y y2

λ

)
. (4)

The path length of each arm of the interferometer was 600 mm. To ensure that the two arms stay
in phase during the acquisition time, we stabilize the interferometer using control loop feedback
mechanism. The error signal is derived from the interference of a second optical beam collinear
to the input signal and prepared in vertical polarization and Gaussian profile. A polarizing beam
splitter (BS3) is placed before the bucket detector to sort the signal beam to detector D1 and
the error signal to detector D2. If the two arms dephase due to slight change in path length,
the intensity at D2 varies and the PID adjusts the piezo on the reference mirror to change the
reference arm path length accordingly.

3.2. Numerical modelling

To compute the interferograms for various inputs into our mode analyzer, we numerically modeled
the propagation of the optical beam through our set-up in MATLAB. The fractional Fourier
transform of the input distribution was computed by modeling the phase delays imparted by each
of the three generalized lenses [Eq. (3)] and each of the two free space propagation intervals. We
used the Fresnel transfer function propagator (Fourier transform of the impulse response of free
space propagation under Fresnel’s approximation), H( fx, fy), to model propagation over each
free space interval from the input plane U1(x, y) to the output plane [Uout(x, y)] [37]:

H( fx, fy) = exp
(
i
2π
λz

)
exp

[
−iπλz

(
f 2
x + f 2

y

)]
(5)

Uout(x, y) = F−π/2
[
Fπ/2 [U1(x, y)]H( fx, fy)

]
. (6)

where Fπ/2(−π/2) represents Fourier transform (inverse Fourier transform).

4. Results and discussion

4.1. 1D mode analysis

Figure 3(a), 3(d) and 3(g) show the input intensities corresponding to HG1,0(x), HG2,0(x) and
HG10,0(x) respectively. These modes are eigenfunctions of the fFT and preserve their spatial
profile as the fFT parameter α is swept from 0 to 2π and acquire a phase corresponding to
their eigenvalues of eiα, ei2α and ei10α. Therefore, as explained in Sec 2.1 and as shown from
theoretical modeling in the upper panels of Figs. 3(b), 3(e) and 3(h), the interferograms are pure
sinusoids varying as cos(α), cos(2α) and cos(10α). As shown in lower panels in Figs. 3(b), 3(e)
and 3(h) experimentally generated interferograms also exhibit sinusoidal variations of one full
cycle for HG1,0(x), two cycles for HG2,0(x) and ten cycles for HG10,0(x). Modal weights, |cn |2,
were computed by fitting these experimentally generated interferograms with a sum of cosines
function. Figs. 3(c), 3(f) and 3(i) show the modal weights for first ten HGn,0(x) modes where the
ordinate shows the square of modal weights, |cn |2. For HG1,0(x) input, we obtained a maximum
contribution of |c1 |2=0.8 from n=1 mode and for the HG2,0(x) input, |c2 |2=0.85 was obtained
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Fig. 3. Results for 1D mode analysis: First column shows the intensities of the various
input distributions as recorded on the CCD (located in place of the bucket detector): 3(a)
HG1,0(x), 3(d) HG2,0(x), (g) HG10,0(x) and 3(j) 1D slit, rect(x/a), with width a= 2.3
mm. Numerically modeled interferograms are shown in red circles in upper panels and
experimentally generated interferograms are shown in blue circles in lower panels of 3(b),
3(e), 3(h) and 3(k) for each of the inputs respectively. The red lines in the experimentally
generated interferograms in 3(b), 3(e) and 3(h) show the fits from which the modal weights
are extracted. Extracted modal weights are shown in 3(c), 3(f), 3(i) and 3(l) (red bars show
theoretical values of |cth |2 for slit input). The error in the measured modal weights for the
slit input are shown in blue bars in lower panel of 3(l).

from n=2 mode and for HG10,0(x) maximum contribution from n = 10 mode was obtained with
|c10 |2=0.91.
Next, we used the mode analyzer to measure the modal deconstruction of a rect(x/a) function,

i.e. 1D slit, which is not an eigenfunction of the fFT. The number of HGn,0(x) modes needed to
completely describe the rect(x/a) function depends on the width of the slit and the waist of the
HGn,0(x) modes used as the basis vectors. In this experiment, we used a slit with width 2.3 mm.
The upper panel of Fig. 3(h) shows the numerically modeled interferogram for this slit and the
lower panel shows the experimentally generated interferogram which had a similar functional
dependence on the fFT parameter α as expected from the numerical modeling. Figure 3(i) shows
both the numericallymodeledmodal weights, |cth |2, as obtained form cth=

∫
rect(x/a)HGw0

n (x)dx
in red bars and the modal weights extracted from the experimentally generated interferogram,
|cn |2, in yellow-blue bars. The lower panel of Fig. 3(i) shows the difference between these modal
weights defined as ∆|c|2=|cth |2 − |cn |2.
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Fig. 4. Results for 2D mode analysis: First column shows the intensities of the various input
distributions: 4(a) HG2,2(x, y), 4(d) HG4,1(x) and 4(i) superposition state LGw

0,1(x, y) =
HG1,0(x, y)+iHG1,0(x, y), with w=1.6 mm. Second and third columns show the numerically
modeled interferograms and experimentally generated interferograms in 4(b), 4(e) and 4(h)
for each of the inputs respectively. Modal weights extracted from data are shown in 4(d), 4(f)
and 4(i).

4.2. 2D mode analysis

Figure 4 shows the results for 2D optical field inputs to the mode analyzer. The input intensity
distribution is shown corresponding to two HGm,n(x, y) modes: Fig. 4(a) HG2,2(x, y) and 4(d)
HG4,1(x, y). A 2D fFT of this input was implemented in the delay line by sweeping the fFT
paramter αx for each αy . P(αx, αy) behaves like a 2D sinusoid function of the form cos(2x + 2y)
and cos(4x + y) for these two HG2,2(x, y) and HG4,1(x, y) input states respectively. This was
also achieved in the numerical modeling of the interferograms and is shown in the left column of
Figs. 4(b) and 4(e) where the maximum/minimum intensity value of P(αx, αy) is color coded as
yellow and black respectively. The experimentally generated interferograms also showed similar
2D sinusoidal behavior and are shown in the second column of Figs. 4(b) and 4(e) corresponding
to HG2,2(x, y) and HG4,1(x, y) respectively. The extracted modal weights, |cmn |2 for these two
input states, corresponding to the 25 HGm,n(x, y) modes with m, n ∈ (0, 4), are shown in Figs.
4(c) and 4(f). The modal weights in Figs. 4(c) and 4(f) show strongest contributions from m=2,
n=2 and m=4, n=1 modes as expected.

Next, we measured the modal weights of a 2D superposition state of multiple HG modes. We
used LGw

0,1(x, y) mode as the input state with waist w=1.6w0. For w= w0 (eigen waist for the HG
modes), this state is a superposition of first two HG modes HG1,0(x, y) and HG0,1(x, y) only.
However, as the waist is increased, higher order HG modes also contribute to the field. The
intensity of the input mode as recorded on a CCD is shown in Fig. 4(g). The numerically modeled
interferogram and the experimentally measured interferogram are shown in Fig. 4(h). Modal
weights extracted from the experimentally generated interferogram are shown in Fig. 4(i). The
strongest contributions from the m=1, n=0 and m=0, n=1 modes can be seen with |c10 |2=0.32
and |c01 |2=0.37 as compared to theoretically expected values of 0.32 each.
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4.3. Discussion

Note that both 1D and 2D interferograms have an overall shift, for example in Fig. 4 (e), the
interfered intensity should go as cos(2α) but it is measured to be shifted by ∝ π/4. This phase
shift results from stabilizing the path difference between the two arms of the interferometer at a
constant value. Also, note that both 1D and 2D interferograms appear distorted for certain fFT
parameters around values 0 and 2π. We believe this is a result of very short focal lengths of the
generalized lenses required to implement those orders. Since the SLMs are pixelated, spatial phase
transformations that can be encoded on the SLM are limited by the Nyquist sampling limit which
depends on the size of the SLM pixel, number of the pixels and the wavelength [26]. Regarding
signal-to-noise ratio, we operate the system such that constructive interference saturates the CCD.
Using the characterized detector noise, we estimate a maximum SNR of ≈ 30.
We have demonstrated an optical mode analyzer capable of measuring the spatial modal

content in Hermite-Gaussian basis of an optical beam with a bucket detector. Our experimental
results support and agree with the theoretical modeling of the interferograms and the modal
weights. Specifically, we used this set-up to experimentally extract modal weights of 1) 1D
superposition state, a slit and 2) 2D superposition of two first order HG modes. To the best of
our knowledge, this is a first demonstration of a two-path Michelson interferometer capable of
doing such a spatial modal analysis. As mentioned earlier, our mode analyzer only outputs the
amplitudes |cmn | and not the complex phase ϕmn of the modal weights |cmn |2=|cmneiϕmn |2. This
limitation, however, can be overcome by using phase retrieval techniques. We have reported
in [33] on retrieving phase using an array detector, by minimizing the error function constructed
from measured interferogram and an estimated interferogram with cn phases, using a nonlinear
gradient-based optimization to obtain the phase of cn from the experimentally measured |cn |
amplitudes. Additionally, we have also successfully created an algorithm to retrieve phase from a
bucket detector [38].

5. Conclusions and future work

We have built a Michelson interferometer with a non-conventional delay line- fractional Fourier
transform. This set-up enables analysis of the transverse structure of an optical beam in the
Hilbert space spanned by Hermite-Gaussian modes. We used this mode analyzer to measure the
modal wights of 1D superpositions and 2D superpositions of Hermite-Gaussian modes. In the
future, we will report on phase retrieval algorithms to recover the phase information of the modal
weights engaged by a given optical beam.
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