




Equations ( 10) and (12) are similar in form to
Eqs. (25) and (26) in [ 15].

3. Digital Simulations

A triarm-9 aperture was modeled in digital simula-
tion to compare the two types of phase diversity,
quadratic and sub-aperture piston, through a series
of Monte Carlo simulations. The amount of each type
of diversity was varied, and for each amount of diver-
sity three images were simulated, one image with no
diversity phase and two images with equal but oppo-
site amounts of diversity phase. Figure 1 shows the
sub-aperture piston phase and focus diversity imple-
mentations used. Each type and magnitude of diver-
sity was then tested at varying levels of signal-to-
noise ratio (SNR).

For these simulations, a hyperspectral AVIRIS [ 16]
data cube was used as the object. We extracted a
spectral bandwidth of 96 nm centered about 1 μm
with 10 nm separation between adjacent wave-
lengths (L ¼ 11 bands). Since the object was not truly
gray-world, the spectrum averaged over all of the
pixels was used for the spectral coefficients, Φλ.
Figure 2 shows a panchromatic representation of
the 350 × 350 object. Note that in the simulations
the images were computed without the gray-world
assumption, as in Eq. ( 1), but in our reconstructions
we used the gray-world assumption, a realistic model
mismatch.

Five independent phase realizations were tested
with an average RMS wavefront error of 0:18λ, which
consisted of global Zernike terms up to 6th order and
sub-aperture Zernike terms up to 2nd order. A repre-
sentative phase realization is shown in Fig. 3. For
each phase realization, five independent noise reali-
zations were simulated. The results were then aver-
aged over the 25 trials.

Three criteria are used here to compare the two
types of diversity. The first criterion is the error in
the phase estimation, which must be insensitive to
global piston, tip, and tilt phase errors, which the
phase diversity algorithm cannot estimate and do
not affect image quality. We choose to quantify the
phase error in terms of the Strehl ratio, given by

S:R: ¼
max
u;v

½sresðu; vÞ�
sperð0; 0Þ ; ð13Þ

where sper is the PSF resulting from an aberration-
free pupil and sres is the PSF resulting from a pupil
aberrated by the residual OPD error, Wresðx; yÞ ¼
Wactðx; yÞ −Westðx; yÞ, where Wact is the actual OPD
of the pupil and West is the OPD estimated by the
algorithm. A Strehl ratio near unity corresponds to
accurate phase estimation. To accurately evaluate
the maximum in Eq. ( 13), the PSFs are upsampled
by a factor of 10 using a fast, efficient upsampling
algorithm by matrix-multiply discrete Fourier trans-
form (DFT) [ 17,18].

Fig. 1. Example of phase diversity implementation: (a) sub-
aperture piston diversity, (b) focus diversity. The scale has units
of waves.

Fig. 2. Panchromatic representation of multi-spectral object. The
object consists of 11 spectral bands, centered about 1 μm and span-
ning 96 nm.

Fig. 3. Example phase realization composed of up to 6th order
Zernike terms on the global aperture and up to 2nd order Zernike
terms on each sub-aperture. The scale has units of waves.
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The second criterion of comparison is the amount
of computation required by each type of diversity,
quantified by the number of iterations required be-
fore the algorithm met the exit criteria. The amount
of time involved in evaluating the error metric and
its gradients was nearly identical for each type of di-
versity. Therefore, comparing the number of itera-
tions provides a comparison of the computational
burden of each type of diversity.

The final criterion is the error in the reconstructed
object. A multi-frame Wiener –Helstrom filter is com-
puted using the estimated phase [ 19] and then used
to reconstruct a gray-world image of the object. For a
fair comparison, a series of diffraction-limited, gray-
world images were simulated and noise was added,

dDL ðu; vÞ ¼
�X

λ
f λðu; vÞ

�
�

�X
λ
sDL ;λðu; vÞ

�
þ nðu; vÞ;

ð14Þ

with similar noise statistics as the aberrated images.
The multi-frame Wiener –Helstrom filter provides an
SNR benefit according to the number of frames being
used. Since the diffraction-limited images have no
phase diversity, just three frames were simulated,
each with a different noise realization, for each
SNR level. This allows for a comparable SNR benefit
from the multi-frame Wiener –Helstrom filter as the
aberrated diverse images would achieve.

The reconstructed, aberrated, gray-world images
were then compared to the reconstructed, diffraction-
limited, gray-world images by means of a normalized
root mean squared error (NRMSE) metric that is in-
variant with image translation [ 18].

4. Results

A. Phase Estimation

Figure 4 shows the results for the Strehl ratio for
three SNRs. Focus diversity exhibits expected beha-
vior giving the best performance for one to two waves
of focus diversity. Piston diversity shows a different
behavior. As the amount of diversity increases, the
phase estimation goes through a cycle. At integer
values of the center wavelength of the band, the pis-
ton diversity performs very poorly, because at integer
wavelength values there is little diversity, unless the
spectral bandwidth is very large. In these simula-
tions, the bandwidth was a modest 10%. However,
piston diversity performs well for non-integer num-
bers of wavelengths. At half-integer values of the
center wavelength a slight decrease in performance
is seen due to the fact that for small bandwidths
there are effectively only two diversity images, one
in-focus and one with only a half wave of diversity.
For these examples, at the optimum diversity value
for each type of diversity, focus diversity performed
better than SAPPD for low SNR, but SAPPD per-
formed better at high SNRs.

B. Computational Burden

Figure 5 shows the number of iterations required be-
fore the algorithm reached its exit criteria. The algo-
rithm typically stops iterating when there is no

Fig. 4. (Color online) Phase estimation results in terms of Strehl
ratio: (a) average pixel SNR of 20, (b) SNR 74, (c) SNR 170. Vertical
axis shows Strehl ratio, horizontal axis is the peak-to-valley
amount of diversity in units of waves. Each data point is an aver-
age of 25 trials ( 5 phase realizations × 5 noise realizations); error
bars show a single standard deviation.
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