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Phase diversity is a method of image-based wavefront sensing that simultaneously estimates the un-
known phase aberrations of an imaging system along with an image of the object. To perform this es-
timation a series of images differing by a known aberration, typically defocus, are used. In this paper we
present a new method of introducing the diversity unique to segmented and multi-aperture systems in
which individual segments or sub-apertures are pistoned with respect to one another. We compare this
new diversity with the conventional focus diversity. © 2009 Optical Society of America

OCIS codes: 100.5070, 100.3020, 110.6770, 120.0120.

1. Introduction

Modern ground-based and space-based observatories
are nearing the limits on the size and weight of
monolithic primary mirrors, hindering an increase
in both light collecting efficiency and imaging resolu-
tion. In response, technology is heading in the direc-
tion of segmented and multi-aperture systems as the
next generation of telescopes. Segmented systems
such as the Keck Observatory in Hawaii, the Thirty
Meter Telescope (TMT), and the James Webb Space
Telescope (JWST) to be launched after 2013 use an
array of actuated hexagonal segments to create a pri-
mary mirror that is easier to fabricate than a mono-
lithic mirror of equivalent size, and, in the case of the
JWST, capable of being stowed in a launch vehicle
and deployed in orbit. Proposed multi-aperture sys-
tems, such as the Terrestrial Planet Finder Interfe-
rometer [1], Keck Interferometer, and MIDAS [2] use
an array of afocal telescopes that are interferometri-
cally combined to achieve a resolution comparable to
a primary mirror equivalent to the entire array size.
In either configuration, the segments or sub-

apertures must be aligned to very tight tolerances
in order to achieve the resolution benefit of the entire

array. Some form of actuation is necessary to main-
tain equivalent optical path distances (OPDs) be-
tween the segments or sub-apertures. In the case
of segmented systems such as the JWST, actuation
is achieved by mounting each hexagonal segment
on a hexapod, allowing for seven degrees of freedom:
x and y translation, clocking, piston, tip, tilt,
and intra-segment radius of curvature. For multi-
aperture systems, a system of optical delay lines
equalizes the path length between each sub-
aperture. These optical delay lines are tunable, al-
lowing for adjustments of sub-aperture piston phase,
and in some cases tip and tilt.

It is necessary to know the state of each segment or
sub-aperture to within a small fraction of a wave-
length in order to apply the appropriate corrections
to the actuators. Given the complexity of modern seg-
mented and multi-aperture systems, laser interfero-
metry is not a practical method of wavefront sensing;
furthermore, frequent recalibration is likely neces-
sary due to drift in the mechanical mounting and
actuating systems. Shack–Hartmann wavefront sen-
sors have proved useful for large ground-based sys-
tems, but generally do not work as well for extended
objects or for wavefronts having high complexity.
Laser guide stars can provide an isolated point
source for ground-based systems, but do not work0003-6935/09/0100A5-08$15.00/0
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for space-based systems since they use the properties
of the sodium layer of the upper atmosphere.
Image-based wavefront sensing techniques such as

phase retrieval and phase diversity allow for an es-
timate of the pupil phase to be made directly from
images produced by the system and have been iden-
tified as enabling technologies for space-based sys-
tems, where the aberrations do not change with
extreme rapidity. Phase retrieval algorithms require
a known object which is usually an unresolved point
source. Phase diversity algorithms do not require the
object to be known and will estimate the object in ad-
dition to the system phase.
Phase diversity was first proposed as a method of

wavefront sensing by Gonsalves [3] and later devel-
oped by Paxman and Fienup for multi-aperture sys-
tems [4]. Paxman, Schulz, and Fienup formulated
phase diversity from a statistical model that better
captured the affect of noise on the algorithms [5].
Further developments by Paxman and Seldin com-
bined the method of phase diversity with speckle
imaging and introduced a broadband model of phase
diversity incorporating a gray-world model of the ob-
ject [6] that was later tested by Bolcar and Fienup
[7]. In this paper we continue the development of
phase diversity by utilizing the unique architecture
of segmented and multi-aperture systems to intro-
duce sub-aperture piston phase as the diversity func-
tion, as an alternative to focus diversity. This
technique of sub-aperture piston phase diversity
(SAPPD) was first reported in [8]. We include here
the effects of a broadband object and algorithm, as
well as compare the performance of sub-aperture
piston diversity and focus diversity with respect to
object reconstruction error.
SAPPD can be useful for Fourier transform ima-

ging spectroscopy with a multi-aperture system [9]
where the sub-apertures are purposely pistoned to
collect spectral data. Also, SAPPD can be useful as
a risk reduction method on systems where the focus
diversity mechanism fails or is disabled.
In Section 2 we review the phase diversity concept,

incorporating the statistical techniques of [5] and the
broadband techniques of [6,7] and introducing the
implementation of sub-aperture piston phase. In
Section 3 we describe digital simulations that com-
pare SAPPD to conventional focus diversity. In
Section 4 we present the results and in Section 5
we summarize and conclude the paper.

2. Statement of Problem

A. Image Model

The detected images are modeled as

dkðu; vÞ ¼
X
λ
f λðu; vÞ � sk;λðu; vÞ þ nkðu; vÞ; ð1Þ

where dk is the kth detected image, ðu; vÞ are the im-
age plane coordinates, f λ are the object pixel values
at wavelength λ, sk;λ is the kth intensity point spread

function (PSF) at wavelength λ, nk is the noise in the
kth image, and * denotes a convolution. The intensity
PSF is the magnitude squared of the coherent
impulse response,

sk;λðu; vÞ ¼ jhk;λðu; vÞj2; ð2Þ

which in turn is a Fresnel-like transform of the pupil,

hk;λðu; vÞ ¼ exp
�
i
πDk

λBk
ðu2 þ v2Þ

�

×
Z Z

Pk;λðx; yÞ exp
�
i
πAk

λBk
ðx2 þ y2Þ

�

× exp
�
−i

2π
λBk

ðxuþ yvÞ
�
dxdy; ð3Þ

where ðx; yÞ are the pupil plane coordinates and
Ak, Bk, and Dk are the elements of the ABCD ray-
transfer matrix that relates the pupil plane to the
image plane [10] for the kth diversity image. The gen-
eralized pupil, Pk;λðx; yÞ, is given by a sum over the
sub-aperture functions,

Pk;λðx; yÞ ¼
XQ
q¼1

Pq;k;λðx; yÞ

¼
XQ
q¼1

jPqðx; yÞj

× exp
�
i
2π
λ ½Wqðx; yÞ þWdiv

q;kðx; yÞ�
�
; ð4Þ

whereQ is the number of sub-apertures or segments,
Wq is the unknown contribution of the phase on sub-
aperture q in terms of optical path delay (OPD), and
Wdiv

q;k is the known diversity contribution to the phase
on sub-aperture q in terms of OPD.

The unknown OPD,Wqðx; yÞ, can be parameterized
in a number of ways. Themost straightforwardmeth-
od is as a pixel-by-pixel phase map,

Wqðx; yÞ ¼
X
m;n

αq;m;nδðx −mΔx; y − nΔyÞ; ð5Þ

where αq;m;n is the value of the OPD at pixel index
ðm;nÞ in the qth sub-aperture, ðΔx;ΔyÞ are the pixel
spacings, and δ is a delta function. Another popular
method is to estimate the phase by an expansion over
basis functions:

Wqðx; yÞ ¼
XJ
j¼1

αq;jZq;jðx; yÞ; ð6Þ

where J is the number of terms in the expansion
and Zq;jðx; yÞ is the jth basis function defined over
the qth sub-aperture. Zernike-like polynomials are
commonly chosen for the expansion since each
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polynomial represents a balanced optical aberration.
In either representation, the phase is parameterized
in terms of the vector of coefficients, α.
The goal of phase diversity is to estimate the phase

parameters, α, and the object pixels, f λðu; vÞ, at each
wavelength λ, from the set of detected images
fdkðu; vÞg.
B. Nonlinear Optimization

In [5], the phase diversity problem is formulated as a
nonlinear optimization in which the appropriate
likelihood function is maximized for a given noise
mechanism. We follow the same treatment here
and maximize the Gaussian log-likelihood function
in the Fourier domain, given by

L½fdkðu; vÞg; f;α� ¼ −
XK
k¼1

X
f u;f v

����Dkðf u; f vÞ

−
X
λ
Fλðf u; f vÞSk;λðf u; f vÞ

����
2
; ð7Þ

where now f ¼ ff λðu; vÞg is an estimate of the object,
K is the number of diversity images, ðf u; f vÞ are spa-
tial frequency coordinates, Dk is the Fourier trans-
form of the kth detected image, Fλ is the Fourier
transform of the object estimate at wavelength λ,
and Sk;λ is the kth optical transfer function (OTF) es-
timate at wavelength λ.
Maximizing Eq. (7), or equivalently minimizing

the negative of Eq. (7), with respect to f and α pro-
vides an estimate of the object pixel values and phase
parameters. If the phase is parameterized as polyno-
mial coefficients and is limited to J terms, and an
M ×N array of pixels at L spectral bands of the object
is estimated, the dimensionality of the search space
of the optimization is given by M ×N × Lþ J. For ex-
ample, amoderately sized problem including 45 poly-
nomial coefficients, 5 spectral bands, and a 256 × 256
pixel region of the object requires searching a
327,000-dimensional space, the bulk of which is
due to the estimation of the object.
Gonsalves derived a method [3] that involves sub-

stituting an estimate of the object into Eq. (7) that
reduces the metric to a function of only the phase
parameters. The most common execution of Gon-
salves’ method uses an inverse-filtered version of
the object as an object estimate for a given phase es-
timate. To make this work for broadband objects, a
gray-world assumption must first be made, where
it is assumed that each pixel in the object has the
same spectrum,

f λðu; vÞ ¼ Φλf ðu; vÞ; ð8Þ

where Φλ is a spectral coefficient at wavelength λ.
Under this assumption, the reduced Gaussian metric
becomes

LRG½fdkðu; vÞg;α� ¼
X

f u;f v∈χ

�XK
k¼1

jDkj2

−

����PK
j¼1 Dj

P
λ
ΦλS�

j;λðαÞ
����
2

P
K
m¼1

����P
λ
ΦλSm;λðαÞ

����
2

�
; ð9Þ

where χ is the set of pixels where the denominator
does not equal zero and the dependence of Dj and
Sj;λ on ðf u; f vÞ has been left out for brevity. Notice
the object does not appear explicitly in Eq. (9). In-
stead, the object is implicitly estimated jointly with
the phase parameters when the metric is minimized.
After the phase is estimated, the object can be recon-
structed with a Wiener–Helstrom filter.

Numerous regularization schemes have been pro-
posed for improving the robustness of the reduced
Gaussian metric with respect to noise [11–14]. For
this work we use only the regularization imposed
by restricting the summation over χ. Furthermore,
we assume the spectral coefficients Φλ are known
a priori.

Typically, Eq. (9) is minimized with a gradient
search algorithm. To assist the computation and
avoid costly finite difference calculations, analytic
gradients of the metric with respect to the unknown
phase parameters can be computed and are given by

∂LRG

∂αξ;j
¼ 8πIm

�XK
k¼1

X
λ

Φλ
λ

X
f 0u;f 0v

Zξ;jðf 0u; f 0vÞPξ;k;λðf 0u; f 0vÞ

× exp
�
i
πAk

λBk
ðf 02u þ f 02v Þ

�

×
X

f u;f v∈χ
Y�

kðf u; f vÞH�
k;λðf 0u − f u; f 0v − f vÞ

�
; ð10Þ

where Hk;λ are the generalized pupil functions given
by

Hk;λðf u; f vÞ ¼ Pk;λðf u; f vÞ exp
�
i
πAk

λBk
ðf 2u þ f 2vÞ

�
; ð11Þ

and

Ykðf u; f vÞ ¼
P
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Equations (10) and (12) are similar in form to
Eqs. (25) and (26) in [15].

3. Digital Simulations

A triarm-9 aperture was modeled in digital simula-
tion to compare the two types of phase diversity,
quadratic and sub-aperture piston, through a series
of Monte Carlo simulations. The amount of each type
of diversity was varied, and for each amount of diver-
sity three images were simulated, one image with no
diversity phase and two images with equal but oppo-
site amounts of diversity phase. Figure 1 shows the
sub-aperture piston phase and focus diversity imple-
mentations used. Each type and magnitude of diver-
sity was then tested at varying levels of signal-to-
noise ratio (SNR).
For these simulations, a hyperspectral AVIRIS [16]

data cube was used as the object. We extracted a
spectral bandwidth of 96nm centered about 1 μm
with 10nm separation between adjacent wave-
lengths (L ¼ 11 bands). Since the object was not truly
gray-world, the spectrum averaged over all of the
pixels was used for the spectral coefficients, Φλ.
Figure 2 shows a panchromatic representation of
the 350 × 350 object. Note that in the simulations
the images were computed without the gray-world
assumption, as in Eq. (1), but in our reconstructions
we used the gray-world assumption, a realistic model
mismatch.
Five independent phase realizations were tested

with an average RMS wavefront error of 0:18λ, which
consisted of global Zernike terms up to 6th order and
sub-aperture Zernike terms up to 2nd order. A repre-
sentative phase realization is shown in Fig. 3. For
each phase realization, five independent noise reali-
zations were simulated. The results were then aver-
aged over the 25 trials.
Three criteria are used here to compare the two

types of diversity. The first criterion is the error in
the phase estimation, which must be insensitive to
global piston, tip, and tilt phase errors, which the
phase diversity algorithm cannot estimate and do
not affect image quality. We choose to quantify the
phase error in terms of the Strehl ratio, given by

S:R: ¼
max
u;v

½sresðu; vÞ�
sperð0; 0Þ

; ð13Þ

where sper is the PSF resulting from an aberration-
free pupil and sres is the PSF resulting from a pupil
aberrated by the residual OPD error, Wresðx; yÞ ¼
Wactðx; yÞ −Westðx; yÞ, where Wact is the actual OPD
of the pupil and West is the OPD estimated by the
algorithm. A Strehl ratio near unity corresponds to
accurate phase estimation. To accurately evaluate
the maximum in Eq. (13), the PSFs are upsampled
by a factor of 10 using a fast, efficient upsampling
algorithm by matrix-multiply discrete Fourier trans-
form (DFT) [17,18].

Fig. 1. Example of phase diversity implementation: (a) sub-
aperture piston diversity, (b) focus diversity. The scale has units
of waves.

Fig. 2. Panchromatic representation of multi-spectral object. The
object consists of 11 spectral bands, centered about 1 μm and span-
ning 96nm.

Fig. 3. Example phase realization composed of up to 6th order
Zernike terms on the global aperture and up to 2nd order Zernike
terms on each sub-aperture. The scale has units of waves.
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The second criterion of comparison is the amount
of computation required by each type of diversity,
quantified by the number of iterations required be-
fore the algorithm met the exit criteria. The amount
of time involved in evaluating the error metric and
its gradients was nearly identical for each type of di-
versity. Therefore, comparing the number of itera-
tions provides a comparison of the computational
burden of each type of diversity.
The final criterion is the error in the reconstructed

object. A multi-frame Wiener–Helstrom filter is com-
puted using the estimated phase [19] and then used
to reconstruct a gray-world image of the object. For a
fair comparison, a series of diffraction-limited, gray-
world images were simulated and noise was added,

dDLðu; vÞ ¼
�X

λ
f λðu; vÞ

�
�
�X

λ
sDL;λðu; vÞ

�
þ nðu; vÞ;

ð14Þ

with similar noise statistics as the aberrated images.
The multi-frame Wiener–Helstrom filter provides an
SNR benefit according to the number of frames being
used. Since the diffraction-limited images have no
phase diversity, just three frames were simulated,
each with a different noise realization, for each
SNR level. This allows for a comparable SNR benefit
from the multi-frame Wiener–Helstrom filter as the
aberrated diverse images would achieve.
The reconstructed, aberrated, gray-world images

were then compared to the reconstructed, diffraction-
limited, gray-world images by means of a normalized
root mean squared error (NRMSE) metric that is in-
variant with image translation [18].

4. Results

A. Phase Estimation

Figure 4 shows the results for the Strehl ratio for
three SNRs. Focus diversity exhibits expected beha-
vior giving the best performance for one to two waves
of focus diversity. Piston diversity shows a different
behavior. As the amount of diversity increases, the
phase estimation goes through a cycle. At integer
values of the center wavelength of the band, the pis-
ton diversity performs very poorly, because at integer
wavelength values there is little diversity, unless the
spectral bandwidth is very large. In these simula-
tions, the bandwidth was a modest 10%. However,
piston diversity performs well for non-integer num-
bers of wavelengths. At half-integer values of the
center wavelength a slight decrease in performance
is seen due to the fact that for small bandwidths
there are effectively only two diversity images, one
in-focus and one with only a half wave of diversity.
For these examples, at the optimum diversity value
for each type of diversity, focus diversity performed
better than SAPPD for low SNR, but SAPPD per-
formed better at high SNRs.

B. Computational Burden

Figure 5 shows the number of iterations required be-
fore the algorithm reached its exit criteria. The algo-
rithm typically stops iterating when there is no

Fig. 4. (Color online) Phase estimation results in terms of Strehl
ratio: (a) average pixel SNR of 20, (b) SNR 74, (c) SNR 170. Vertical
axis shows Strehl ratio, horizontal axis is the peak-to-valley
amount of diversity in units of waves. Each data point is an aver-
age of 25 trials (5phase realizations × 5noise realizations); error
bars show a single standard deviation.
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significant change in either the error metric value or
parameters being estimated. This corresponds to
finding a minimum value of the objective function,
which may or may not be the global minimum. For

both types of diversity, the algorithm took fewer
iterations when phase estimation was poor. This
may indicate that the algorithm was getting trapped
in a local minimum and that restarting the algorithm
with a different initial guess might be beneficial.

Fig. 5. (Color online) Number of iterations before algorithm
reaches exit criteria: (a) average pixel SNR of 20, (b) SNR 74,
(c) SNR 170. Vertical axis shows the number of iterations, horizon-
tal axis is the peak-to-valley amount of diversity in units of waves.
Each data point is an average of 25 trials; error bars show a single
standard deviation.

Fig. 6. (Color online) Normalized RMS error between recon-
structed aberrated object and reconstructed diffraction-limited ob-
ject: (a) average pixel SNR of 20, (b) SNR 74, (c) SNR 170. Vertical
axis shows NRMSE, horizontal axis is the peak-to-valley amount
of diversity in waves. Each data point is an average of 25 trials;
error bars show a single standard deviation.
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Overall, sub-aperture piston phase diversity took
fewer iterations than conventional focus diversity.

C. Object Estimation

Figure 6 shows the normalized root mean squared
error in the reconstructed objects. For phase diver-
sity at an integer number of waves of the center
wavelength, where the phase estimate is poor,
SAPPD gives a poor object reconstruction. However,
SAPPD gives a good object reconstruction nearer to
half-integer waves of diversity, and the error does not
appear to increase with the amount of diversity since
the suppression of the OTF does not significantly
change with the magnitude of the piston diversity.
In comparison, the OTF becomes increasingly sup-
pressed as quadratic phase diversity is increased.
Overall, when both types of diversity yield a good re-
construction, the NRMSE is comparable.
Figure 7 shows an example reconstruction for an

SNR of 74 using SAPPD. Figure 7(a) shows the
gray-world image reconstructed using the phase esti-
mated from the phase diversity algorithm using sub-
aperture piston diversity values of ½−1:5; 0; 1:5�λ, in
good agreement with the diffraction-limited, gray-
world, reconstructed image shown in Fig. 7(b). For
comparison, Fig. 7(c) shows the zero-diversity aber-
rated imagery that was used as input to the phase
diversity algorithm; the reconstructed images are
greatly improved over the best measured image.

5. Summary

We introduced a new method of implementing phase
diversity on segmented and multi-aperture systems
that utilizes control of the individual segments or
sub-apertures. Instead of adding defocus phase to
each diversity image, a subset of the segments or
sub-apertures was pistoned with respect to the
others to introduce the diversity. A series of Monte
Carlo simulations was run to compare sub-aperture
piston phase diversity to conventional focus phase di-
versity. In each case, performance was compared for
varying amounts of diversity and varying levels
of SNR.
It was shown that focus diversity generally esti-

mates the phase better than SAPPD for low SNR,
with the reverse being true for high SNR. Piston
phase diversity performed well when non-integer va-
lues of the center wavelength are chosen for the
amount of diversity. In practice one could select this
favorable amount of diversity. SAPPD uniformly re-
quired substantially less computation before reach-
ing a minimum value of the error metric than
focus diversity. Finally, both focus diversity and
SAPPD provide comparably good object reconstruc-
tions when the phase estimation is also good.
SAPPD proves to be a useful type of phase diversity

for segmented andmulti-aperture systemswhere pis-
toning of sub-apertures is allowable. Futureworkwill
explore the use of segment tip and tilt as the diversity
function, as most segmented systems include these
degrees of freedom. SAPPD may be especially useful

as a risk reduction technique for systems if the pri-
mary focus diversity mechanism fails.

This work was funded by a Graduate Student Re-
search Fellowship sponsored by NASA Goddard
Space Flight Center.

Fig. 7. Example reconstructed images: (a) reconstructed gray-
world image using phase estimate from phase diversity algorithm,
(b) reconstructed gray-world diffraction-limited image, (c) original
aberrated, zero-diversity image used as input to phase diversity
algorithm. All images are shown on same color scale; SNR 74.
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