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The twin-image problem in phase retrieval is characterized by the simultaneous occurrence of features from the
original object and its inversion about the origin (twin image). This problem can occur in reconstructions for which
the object support is centrosymmetric or loose, and in severe cases it can greatly hinder image quality. In this paper
we examine this problem and find that it arises when the retrieved Fourier-domain phase is divided into sets of
regions, some of which reconstruct the object while others the twin. We examine sample reconstructions that
present the twin-image problem to different extents and find that, even when the twin-image problem is not
visually evident, it can exist in small regions of the retrieved Fourier phase. The reduced-support constraint
approach is shown to be effective in escaping stagnation caused by the twin-image problem. © 2012 Optical
Society of America

OCIS codes: 100.5070, 100.3010, 110.7440, 070.0070.

1. INTRODUCTION
Phase retrieval algorithms are able to recover the phase of a
coherent wave given an adequate measurement (or measure-
ments) of its intensity distribution and some a priori known
information about the wave. Compared to conventional ima-
ging, phase retrieval techniques offer a great relaxation of
experimental requirements at the expense of increased com-
putations and have found important applications. For exam-
ple, in optical wavefront measurement, the aberrations of
a wavefront can be recovered without the need of a well-
calibrated interferometer [1–4].

Phase retrieval also provides a route to perform coherent
lensless imaging for cases where a suitable imaging optic or
holographic reference wave cannot be used [5]. The object of
interest is illuminated with a coherent wave, the transmitted
(or backscattered) field propagates, often to the far field, and
the intensity of the resulting field is measured with an inten-
sity detector array. At optical wavelengths, this allows high-
resolution imaging using a conformal, lightweight imaging
system whose axial thickness is not increased with increasing
numerical aperture [6,7], and at x-ray wavelengths it allows
imaging small specimens with high resolution without the
need of imaging optics [8–10]. Lensless imaging, by measuring
the intensity of an x-ray diffraction pattern, is often referred to
as coherent diffractive imaging (CDI). In both optical and
x-ray applications, the intensity is typically measured in the
far-field regime, and the object and measurement plane are
related, to a good approximation, by a Fourier transform
(FT) [11].

In practice we approximate the propagation to the far field
by the discrete FT. The problem is then to recover the (in gen-
eral complex-valued) object, f �x; y�, from its Fourier intensity,
jF�u; v�j2, where

F�u; v� � jF�u; v�j exp�iϕ�u; v��
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or equivalently to retrieve the Fourier phase, ϕ�u; v�, from its
magnitude, jF�u; v�j. For x-ray CDI, an object support con-
straint, i.e., a set of points, S, outside of which the object is
known to be zero,

f �x; y� � 0; ∀ �x; y�∉ S; (2)

is commonly used in the reconstruction. Phase retrieval
algorithms that use this constraint and are reasonably robust
to stagnation have been developed and successfully used
[12–15]. If a nonnegativity constraint can be used, the latter-
mentioned algorithms are also robust against having a loose
support constraint, i.e., a support constraint larger than the
true support. However, when the object is complex valued,
reconstruction with a loose support is more difficult [6,16–18].
For cases when the support constraint is not known a priori,
it can be estimated from the object’s autocorrelation [19–21],
which is obtained directly from the intensity measurement, or
it can be iteratively refined [10]. When the support is esti-
mated, it typically results in an upper bound on the support
rather than the true object support; hence, in practical situa-
tions one must often deal with a loose support constraint.

Image reconstruction by phase retrieval using a support
constraint suffers from a few inherent ambiguities that arise
from the loss of the phase in the Fourier plane. For example, a
change in the transverse position of the object would only
cause the addition of a linear phase in the measurement
(Fourier) plane. Because the phase in the Fourier domain
is lost in the measured intensity, there is no information
about the absolute transverse position of the object. The
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reconstructed image will be bounded by the support con-
straint, and if we were to translate the support prior to recon-
struction, the reconstructed image will also be translated.

Another inherent ambiguity arises if the object has a cen-
trosymmetric support. Notice that the object, f �x; y�, and its
twin, f ��−x;−y�, have the same Fourier intensity, since the FT
of f ��−x;−y� is

F��u; v� � jF�u; v�j exp�−iϕ�u; v��: (3)

If the support is centrosymmetric, then both fit inside the sup-
port, and either one is a valid solution of the phase retrieval
problem. This is true even for a noncentrosymmetric support
if the object and its twin both fit inside a loose support con-
straint. Because of this inherent ambiguity, and because image
quality is not hindered (they appear the same except for a 180°
rotation), reconstruction of either f �x; y� or f ��−x;−y� is con-
sidered successful for phase retrieval. Notice that this
ambiguity is similar to that of off-axis holography [11,22].
Aside from the translation and twin-image ambiguity, it is
thought that phase retrieval in two or higher dimensions is
usually unique [23].

The twin-image problem in phase retrieval, earlier de-
scribed by Fienup and Wackerman [24], is a stagnation mode
that is characterized by the simultaneous appearance of fea-
tures of the upright and twin images. This problem can occur
when the object support is centrosymmetric or when both the
object and twin can fit inside the support, and for severe cases
it can significantly hinder image quality.

The twin-image problem is a persistent stagnation mode;
i.e., continuing with iterations or randomly perturbing the re-
trieved phases rarely leads to escaping it, and the frequency
with which it appears depends not only on the shape of the
support but also on the object. It commonly appears when
attempting reconstruction of objects that have an approxi-
mately centrosymmetric support. The latter can occur in
x-ray CDI, for example, when reconstructing images of cells,
viruses or other biological specimens [9,25,26]. It should be
noted that a linear combination of the upright and twin images
does not satisfy the Fourier intensity measurement [24] and
until now, the nature of the twin-image problem remained
not fully explained.

The twin-image problem can be avoided if one has the
ability to fabricate an object having a noncentrosymmetric
support. Alternatively, making a multiplicity of measurements
after a known change in the experimental configuration
(diversity of measurement) has also shown to reduce or elim-
inate this problem. Examples of the latter are focus diversity
[1,3], piston diversity for segmented mirrors [4], and trans-
verse translation diversity [27–29]. In many cases, however,
it is not possible to control the object support, or it is imprac-
tical to physically obtain a diversity of measurements, or the
object may move or change before diverse measurements
can be made. Hence, it remains important to understand the
twin-image problem.

In this paper we show that the twin-image problem arises
because complementary regions in the Fourier domain recon-
struct either the upright or twin image. As the iterations
progress, the Fourier domain divides into two types of re-
gions: in some, the phase ϕ�u; v� associated with F�u; v� and
f �x; y� is approximately retrieved, whereas in others −ϕ�u; v�,
associated with F��u; v� and f ��−x;−y�. We illustrate this

phenomenon and demonstrate the effectiveness of a techni-
que to overcome it.

2. NUMERICAL SIMULATIONS
We have performed a numerical simulation to illustrate the
twin-image problem. The amplitude and phase of a complex-
valued object, contained in a circular support of 120 pixels
diameter and embedded in a 256 × 256 array, are shown in
Figs. 1(a) and 1(b), respectively. We purposely chose a com-
plex-valued object having a centrosymmetric support, since
that case is more prone to stagnation than a real-valued, non-
negative object or one having a nonsymmetric support.
Making the complete extent of the support less than half of
the computational window ensures that the Fourier intensity
is at least Nyquist sampled. The magnitude and phase of the
object FT are shown in Figs. 1(c) and 1(d), respectively. The
Fourier magnitude shown in Fig. 1(c), along with knowledge
of the object support (the circular shape), is the input to the
phase retrieval algorithm. The solution sought by the phase
retrieval algorithm is the object in Figs. 1(a) and 1(b) or
equivalently the Fourier phase, ϕ�u; v�, shown in Fig. 1(d).

For the reconstruction, we used a combination of the
hybrid input–output (HIO) and error-reduction [12] versions
of the iterative transform algorithm (ITA). For one series of
iterations, we performed 45 iterations of HIO with β � 0.7 to
explore the solution space followed by five iterations of
error reduction to help the current reconstruction settle
down. We performed 20 series of iterations (for a total of
1000 iterations) to give the algorithm plenty of time to either
find a solution or to stagnate.

Because of its centrosymmetric support, this particular
object was conductive to the twin-image problem. From 20
reconstructions performed from different random starting

Fig. 1. Object (a) magnitude and (b) phase; Fourier (c) magnitude
and (d) phase. Because of its large dynamic range, the magnitude
is displayed in (c) raised to the 1=5 power. Phase is shown from
−0.5 to 0.5 rad in (b) and from −π to π in (d).
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guesses, two were found to exhibit a pronounced twin-image
problem, 15 showed a moderate problem (the object or its
twin is substantially dominating over the other), and only
three achieved successful reconstructions where the twin-
image problem was not discernable. This classification was
done by inspection of the reconstructions and the degree of
symmetry they exhibited. Figures 2(a), 5(a), and 8(a) (below)
show examples of what were classified as pronounced, mod-
erate, and not visually discernable twin-image problems,
respectively. Here, when we speak of a reconstruction (a re-
constructed image), we mean the stagnated output image
from the algorithm, which is known to be imperfect because
there is imperfect agreement with the Fourier magnitude or
with the object’s support constraint.

A. Example with Pronounced Twin-Image Problem
The reconstruction shown in Fig. 2(a) exhibits a pronounced
twin-image problem, having a symmetry that does not exist in
the original object magnitude, Fig. 1(a). Not even the coarse
features are easily recognizable.

The Fourier phase error, ϕ̂�u; v� − ϕ�u; v�, of the recon-
struction with respect to the ideal image is shown in Fig. 2(c).
This was obtained by subpixel registering the reconstruction
to the ideal image [30], removing a global phase difference,
and subtracting their Fourier phases. The same procedure
was repeated for the ideal twin image, f ��−x;−y�, to obtain
the Fourier phase error of the reconstruction with respect
to the twin image, ϕ̂�u; v� � ϕ�u; v�, shown in Fig. 2(d). Notice
that this procedure requires knowledge of the ideal image and
is thus only available for numerical simulations.

The Fourier phase error with respect to the upright image,
Fig. 2(c), exhibits regions that are very smooth and regions
where the phase error appears random from one pixel to
the next. The smooth regions correspond to areas where the
phase error is low, and thus a reasonable reconstruction of the
Fourier phase, ϕ, was achieved. The Fourier phase error with
respect to the twin image, Fig. 2(d), also exhibits both smooth
regions, where the negative of the Fourier phase −ϕ is ap-
proximately recovered, and random regions. Notice that the
smooth regions in Figs. 2(c) and 2(d) are approximately com-
plementary. Also notice that disjoint smooth regions of the
Fourier phase error can have a different global phase constant
or a linear phase term between them.

As these results suggest, the twin-image problem is ex-
plained by the division of the Fourier data into regions, some
of which reconstruct the upright image, whereas others recon-
struct the twin image. Figure 2(b) shows the regions in the
Fourier domain that reconstruct either the upright (bright
red) or twin image (blue) for the reconstruction shown in
Fig. 2(a). These areas were obtained by comparing the nor-
malized root-mean-square error (NRMSE) of the reconstruc-
tion with respect to both F�u; v� and F��u; v� in a small
pixel subset of the Fourier data. In general, a reconstructed
FT G�u; v� and the ideal F�u; v� [or F��u; v�] may have a global
(piston) or linear phase terms (corresponding to image trans-
lations) between them that should not be included as part of
the error, so we computed a version of the NRMSE that is
invariant to these terms:

ε2 � min
α;x0;y0

P
u;v

��αG�u; v� exp h−i2π�ux0M � vy0
N

�i
− F�u; v�

��2
P

u;vjF�u; v�j2
;

(4)

which, using Parseval’s theorem, can be expressed in the
image domain as [31]

ε2 � min
α;x0 ;y0

P
x;yjαg�x − x0; y − y0� − f �x; y�j2P

x;yjf �x; y�j2
; (5)

where α is an unknown complex-valued constant and �x0; y0�
are unknown translations. This minimization can be solved by
calculating the peak of a cross correlation [31], which can be
done to subpixel accuracy with an efficient approach [30].

The NRMSE, as given in Eq. (4) but with the sum restricted
to a 5 × 5 pixel subset of the FT, was computed for the recon-
struction with respect to both F�u; v� and F��u; v�. If the
NRMSE with respect to the upright image is smaller than that
computed with respect to the twin image, then the central
pixel of the subset was considered to reconstruct the upright
image. For cases where the NRMSE with respect to the twin
image was smaller than that with respect to the upright image,
the central pixel was considered to reconstruct the twin
image. If neither of the NRMSEs was smaller than 0.5, then
the recovered phase at the central pixel was considered
erroneous—it reconstructs neither the upright nor the twin
image [dark regions in Fig. 2(b)].

To verify that complementary regions of the Fourier do-
main are reconstructing either the upright image or the twin
image, Fig. 3 shows the results of filtering the ideal image and
the reconstruction in the Fourier domain using the regions
shown in Fig. 2(b). Figure 3(b) was obtained by computing

Fig. 2. (Color online) Image reconstruction exhibiting a pronounced
twin-image problem. (a) The stagnated image magnitude; the Fourier
phase errors with respect to (c) the upright ideal image, f �x; y�, and
(d) the twin image, f ��−x;−y�, and (b) regions of the Fourier domain
that reconstruct either the upright image (bright red), the twin image
(blue), or neither (black) after 1000 iterations. Phase error is shown
from −π to π radians in (c) and (d). The evolution of the regions with
iteration number is shown in Media 1.
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the FT of the reconstruction, shown in Fig. 2(a), setting to zero
all pixels that fall outside of the Fourier regions that recon-
struct the upright image [bright red regions in Fig. 2(b)],
and then computing the inverse FT. For comparison purposes,
the ideal image was filtered the same way and is shown in
Fig. 3(a). Notice that a good agreement is obtained and that,
although the complete reconstruction shows a very pro-
nounced twin-image problem, this is not the case where only
the bright red regions in the FT are included in the filtered
reconstruction.

Figure 3(d) shows the result obtained by filtering the recon-
struction in a similar way, but only using the regions that re-
construct the twin image, i.e., the blue regions in Fig. 2(b). In
this case the filtered version of the reconstruction, Fig. 3(d), is
inverted with respect to the equivalently filtered version of the
ideal image, Fig. 3(c). This supports our statement that the
twin-image problem is explained by complementary regions
in the Fourier domain reconstructing features of either the
upright or twin image.

To monitor the progress of the reconstructions, we used
three metrics: the support error E, the invariant NRMSE of
the reconstruction versus the ideal image ε, and the fractional
energy of upright and twin image present in the reconstruc-
tion. Of these metrics, only the support error, defined by

E2 �
P

�x;y�∉S jg�x; y�j2P
x;yjg�x; y�j2

; (6)

is available without prior knowledge of the solution.
Figure 4(a) shows the support error versus iteration num-

ber for the reconstruction shown in Fig. 2(a). Notice that,
during the first 45 iterations, of each series of 50, the support
error may increase on account of the ability of the HIO algo-
rithm to escape local minima. In the last five iterations of each

series of 50, the error-reduction algorithm rapidly decreases
the support error, allowing the reconstruction to settle.

Figure 4(b) shows the NRMSE of the reconstruction versus
iteration number. This was computed using Eq. (5) by regis-
tering the ideal image and the reconstruction to within 1=15 of
a pixel [30]. Because either the upright or twin images are con-
sidered successful reconstructions, the NRMSE was com-
puted between the reconstruction and both f �x; y� and
f ��−x;−y� and the minimum of these was considered to be
the NRMSE of the reconstruction.

The Fourier regions were computed as indicated above
every 10 iterations during the reconstruction. To monitor
the twin-image problem, the sum of the object Fourier inten-
sity (after normalizing it to have unit energy) was taken after
filtering using the computed Fourier regions, thus obtaining
the fraction of energy that is present in the upright and twin
images. Figure 4(c) shows the fractional energy of the upright
(solid curve) and twin image (dashed curve) versus iteration
number. Notice that the fractional energy of the upright image
remains in a somewhat narrow band throughout the recon-
struction. This indicates that, from the early iterations, the
reconstruction suffered from the twin-image problem to a con-
siderable extent, and that, even after 1000 iterations, the ITA
was unable to escape this very persistent stagnation mode.

Inspection of the regions versus iteration number for this
reconstruction (Media 1) shows that the regions form early

Fig. 3. Fourier filtering of the ideal image and the reconstruction
shown in Fig. 2(a) using the Fourier regions shown in Fig. 2(b). Filter-
ing of the (a) ideal image and (b) reconstruction using the bright red
Fourier regions. Filtering of the (c) ideal image and (d) reconstruction
using the blue Fourier regions.
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Fig. 4. (Color online) (a) Support error for the reconstruction shown
in Fig. 2(a) versus iteration number. (b) NRMSE of the reconstruction
with respect to the ideal image versus iteration number. (c) Energy
fraction of the reconstruction versus iteration number for the Fourier
regions that reconstruct the upright image (solid curve) and the
twin image (dashed curve). The sum of the two energy fractions is
indicated by a dotted curve in (c).
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in the reconstruction and remain somewhat fixed throughout
the iterations. Every 50 iterations, the dark regions (regions of
erroneous reconstruction) are reduced because of the few
error-reduction iterations. The latter gives the video a charac-
teristic pulsating appearance.

B. Example with a Moderate Twin-Image Problem
A sample reconstruction, from a different random starting
guess, for which the twin-image problemwas consideredmod-
erate, is shown in Fig. 5(a). Reconstructions with this visual
quality were the most frequent (15 out of 20) for this particular
object. In this particular reconstruction, the twin image vi-
sually dominates, and the twin-image problem is considered
moderate because it appears less symmetric than that shown
in Fig. 2(a) and the general shape of the object can be distin-
guished better. The Fourier phase errors with respect to the
upright and twin images are shown in Figs. 5(c) and 5(d), re-
spectively. The Fourier regions, computed as described
above, are shown in Fig. 5(b). For this reconstruction, the sup-
port error, the NRMSEwith respect to the ideal image, and the
energy fraction in the Fourier regions are shown in Fig. 6. The
error metrics shown in Figs. 6(a) and 6(b) are somewhat lar-
ger than those in Fig. 4, indicating that the reconstruction
shown in Fig. 5(a) is worse than that shown in Fig. 2(a), even
though the latter appears more symmetric. The relative energy
fraction is also worse in Fig. 6(c) than in Fig. 4(c). All these
metrics indicate that, although visually the reconstruction
shown in Fig. 5(a) appears less symmetric than that shown
in Fig. 2(a), the latter is a slightly better reconstruction
from a squared-error point of view. Visual inspection of the
apparent symmetry of the reconstruction is, in this case, not
necessarily the best way to estimate or compare the severity
of the twin-image problem. Conversely, the energy fraction of
the reconstruction is an indicator of the presence of the twin-
image problem but does not always correlate well with

perceived image quality. Exploring alternative metrics to
quantify the image quality impact of the twin-image problem,
for example by excluding the central pixels of the FT (which
may skew the results as further discussed below), would be
valuable for further understanding this problem. As discussed
in Section 3, in the future it would also be useful to develop
techniques that can identify the twin-image problem without
requiring the true solution so that this problem can be diag-
nosed in real-world applications.

Notice that, while the twin image appears to visually
dominate the reconstruction, the relative energy fraction
[Fig. 6(c)] indicates that the upright image has more energy
than the twin image. This counterintuitive result can be ex-
plained by two facts. (1) Although the area of the Fourier re-
gions that reconstructs the twin image (blue) is evidently
larger than the area of the regions that reconstruct the upright
image [the ratio is about 3=2 judging from Fig. 5(b)], the very
central region of the Fourier data is predominantly recon-
structing the upright image. Because we are reconstructing
a weak phase object, the intensity of the pixels near the cen-
tral region of the FT is orders of magnitude greater than at the
pixels that correspond to middle- and high-frequency compo-
nents, thereby explaining the greater energy of the upright
image for this reconstruction. (2) Notice in Fig. 5(b) that
the Fourier regions that reconstruct the twin image have a
very good coverage of the middle spatial frequencies. These
frequencies are crucial for reconstructing visually appealing
edges. Because of this, the sharp edge that is present in the
object appears inverted in the reconstruction. This explains
why from visual inspection we might conclude that the twin

Fig. 5. (Color online) Same as Fig. 2 but for an image reconstruction
exhibiting a moderate twin-image problem. The evolution of the
regions with iteration number is shown in Media 2.
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Fig. 6. (Color online) Same as Fig. 4, but for the reconstruction
shown in Fig. 5(a).
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image dominates the reconstruction in Fig. 5(a), whereas the
energy ratio indicates the opposite.

Upon examination of the Fourier regions throughout the
iteration process, for this particular random starting guess,
we found that the central pixels consistently reconstruct
the upright image (Media 2). The regions in the Fourier do-
main appear in the early iterations, and, although they remain
relatively static, it is evident that some twin-image regions
(blue) connect over time to form a larger region. As we will
see later, this latter procedure can eventually lead to an accep-
table solution of the phase retrieval problem. In this case,
however, the reconstruction stagnated.

The reconstruction, shown in Fig. 5(a), was filtered using
the Fourier regions shown in Fig. 5(b) in a form analogous
to that shown in Fig. 3. The filtered reconstructions, using
the Fourier regions that reconstructed the upright and twin
images, are shown in Figs. 7(b) and 7(d), respectively. Notice
that Fig. 7(d) has most of the object hard edges and details,
while Fig. 7(b) is much smoother on account of the missing
middle spatial frequencies.

C. Example with a Not-Discernable Twin-Image Problem
Finally, in Fig. 8(a) we show a reconstruction example where
the twin-image problem could not be discerned upon visual
inspection. Figures 9(a) and 9(b) show that the support error
and the NRMSE are better than those of the previous recon-
structions, and Fig. 9(c) shows that, from early in the iteration
process, most of the energy in the reconstruction corresponds
to the upright image. However, upon examination of the Four-
ier phase error with respect to the upright and twin images,
shown in Figs. 8(c) and 8(d), respectively, we realize that this
reconstruction is not exempt from the twin-image problem.
Because the Fourier regions that reconstruct the twin image
are confined to a portion of high spatial frequencies that have
much less energy, the visual impact of the twin-image artifacts
is very subtle.

Upon inspecting the evolution of the regions with respect to
the iteration number, we notice that the regions that recon-
struct either the upright or twin images are formed early in

Fig. 7. Same as Fig. 3, but for the reconstructed image shown in
Fig. 5(a).

Fig. 8. (Color online) Same as Fig. 2 but for an image reconstruction
where the twin-image problem cannot be detected visually. The evo-
lution of the regions with iteration number is shown in Media 3.
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Fig. 9. (Color online) Same as Fig. 4 but for the reconstruction
shown in Fig. 8(a).
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the reconstruction process and that the success of the re-
construction relies heavily on the ability of these regions to
connect to each other and form larger regions (see Media 3).
Because disconnected regions can be out of phase with one
another, the quality of the reconstruction is affected if the
regions are separated.

Despite its good visual quality, for this reconstruction not
all of the higher spatial frequencies were accurately recov-
ered. The reconstruction is stagnated at a point that is much
closer to the solution, and, although it cannot be seen from
visual inspection of the reconstruction, this stagnation is
caused by the twin-image problem as seen in Figs. 8(b)–8(d).
Upon inspecting the other two reconstructions that visually
appeared exempt from the twin-image problem, we found
similar results; i.e., all of the reconstructions exhibited the
twin-image problem to at least a small extent.

The Fourier regions that characterize this stagnation mode
can be very persistent with iterations but change with differ-
ent starting guesses. To assess the consistency of retrieved
phases, it is then important to compare reconstructions from
different random starting guesses, especially for objects that
are conducive to the twin-image problem as described in
Section 1.

3. IDENTIFYING THE TWIN-IMAGE
PROBLEM
The methods for identifying the twin-image problem and find-
ing the Fourier regions for the reconstructions described in
the previous sections require knowledge of the solution to
the phase retrieval problem and are thus only available for
numerical simulations. In a real-world reconstruction, the
metrics available for analysis are the support error and con-
sistency between reconstructions from different starting
guesses. The question arises of how to identify whether our
solution suffers from the twin-image problem.

A possible method for identifying the twin-image problem is
to take two reconstructions, generated from two different ran-
dom starting guesses, and select the one with the lowest sup-
port error as a reference. Register this reference with the
second reconstruction (to remove a linear phase between
them in the Fourier domain) and remove a constant global
phase factor between them; do the same with the twin image
of the second reconstruction. The smoothness of the retrieved
Fourier phase differences can give an indication of the twin-
image problem. If either of the Fourier phase differences is
smooth everywhere, this would be an indication that the re-
constructions are free of the twin-image problem. In this test,
the twin-image problem would be characterized by the ap-
pearance of smooth and random regions that appear comple-
mentary when comparing upright with twin images, much like
the regions that appear in Figs. 2(c) and 2(d). It should be
noted that the regions identified in this way will not directly
separate regions that reconstruct upright or twin image, but
rather will indicate the coincidence of regions of the reference
and second reconstruction that are being compared. This test
would fail if the Fourier regions of different reconstructions
match by chance, but because the reconstructions are started
from different random starting guesses, it is unlikely that
they would have exactly the same Fourier regions. In the nu-
merical example examined for this paper, we found different

Fourier regions for each reconstruction from a different
starting guess.

Furthermore, this test will only work with already good
individual reconstructions. And although it could indicate the
presence of the twin-image problem in at least one of the re-
constructions, it cannot give direct information as to which of
these regions reconstructs either the upright or twin images in
either reconstruction. Further development of techniques to
address this issue is still required.

4. ESCAPING THE STAGNATION
A method for overcoming the twin-image problem in phase
retrieval is the reduced-area support constraint method, de-
scribed in [24]. In this method, the object support mask is re-
placed with a noncentrosymmetric mask that is a subset of the
original support. After a few iterations of the reconstruction
algorithm, the temporary mask is replaced by the original
mask and iterations continue.

Using the same random starting guess as for the reconstruc-
tion shown in Fig. 5(a), we performed 200 iterations of the ITA
(series of 45 HIO followed by five of error reduction). The re-
construction after 200 iterations is shown in Fig. 10(a), and the
Fourier regions that reconstruct either the upright or twin im-
age are shown in Fig. 10(b). Notice that the twin-image pro-
blem is present in this reconstruction. After iteration 200, the
circular support with 60 pixel radius was replaced by a semi-
circle obtained by halving the original support in the x direc-
tion. The reconstruction result and Fourier regions after 10
iterations of the HIO with this reduced support are shown
in Figs. 10(c) and 10(d), respectively.

The reduced-support constraint introduces a strong pertur-
bation on the estimation of the Fourier phase, which allows
the algorithm to escape this very persistent stagnation mode.
Notice how the Fourier regions after the perturbation show
that the phase estimation is now inaccurate throughout the
Fourier window. The success of the technique relies on the
fact that the perturbation by the reduced-support method
tends to favor either the upright or the twin image over the
other. We applied the reduced-area method after only 200
iterations because stagnation by the twin-image problem was
consistently found to be established early in the reconstruc-
tion. Even though for some cases further iterations gradually
improved the results, this typically required many more
iterations.

After the 10 HIO iterations, the reduced support was re-
placed with the original support constraint, and we performed
35 HIO iterations followed by five of error reduction. The re-
construction and Fourier regions after the first 10 HIO itera-
tions with the original support are shown in Figs. 10(e) and
10(f), respectively. Notice that, after only these 10 iterations,
the upright image heavily dominates over the twin image. Sub-
sequent iterations were performed by alternating 45 iterations
of HIO with five of error reduction. The final reconstruction,
after a total of 1000 ITA iterations, shown in Fig. 11(a), has a
considerably increased quality as compared to Fig. 5(a).
Although no twin-image problem is noticeable by visual in-
spection of the reconstruction, the Fourier phase errors with
respect to the ideal upright and twin images, shown in
Figs. 11(c) and 11(d), respectively, show that the division into
Fourier regions is still present. This problem, however, is even
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less than those obtained with the lucky starting guesses (one
of which is shown in Fig. 8).

The support error, NRMSE, and energy fraction of the
Fourier regions are shown in Figs. 12(a)–12(c), respectively.
Notice that the reduced-support method (at iteration 200) con-
siderably increases the support error and the NRMSE, but
then after the original support is reinstated, these error me-
trics quickly drop and eventually settle. Subsequent iterations
improve the results, but this reconstruction is still affected by
a slight but persistent twin-image problem that is not visually
discernable, keeping the NRMSE from going to zero.

We applied the reduced-support method, as described
above, to reconstructions using the same 20 starting guesses
(for the previously quoted 20 reconstructions). For all these
reconstructions, we obtained good results, similar to those
shown in Fig. 11, but with Fourier regions located in dif-
ferent portions of the Fourier window. Furthermore, they all
converged to the upright image, which is a consequence of
the choice of orientation of the reduced support. If the
reduced support is inverted through the origin, then all the

reconstructions converge to the twin image, which is also con-
sidered a successful reconstruction. This was a great improve-
ment over the conventional reconstruction with series of HIO

Fig. 11. (Color online) Same as Fig. 5, from same starting guess but
using the reduced-support method in iteration 200. The evolution of
the regions with iteration number is shown in Media 4.

200 400 600 800 1000
0

0.05

0.1(a)

(b)

(c)

Iteration

E

200 400 600 800 1000
0

0.2

0.4

Iteration

ε

200 400 600 800 1000
0

0.5

1

Iteration

E
ne

rg
y 

fr
ac

tio
n

Fig. 12. (Color online) Same as Fig. 4, but for the reconstruction
shown in Fig. 11, using the reduced-support method. The final support
error was E � 2.1 × 10−3.

Fig. 10. (Color online) (a) Stagnated reconstruction after 200 itera-
tions and (b) its Fourier regions. (c) Reconstruction after 10 iterations
using the reduced-support method and (d) its Fourier regions.
(e) Reconstruction after reinstating the original support constraint
and performing 10 more iterations and (f) its Fourier regions. Regions
of the far field that reconstruct either the upright or twin image are
shown in bright red or blue, respectively, in (b), (d), and (f).
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and error reduction alone, where (as previously quoted) 17
out of 20 reconstructions were found to have a moderate
or severe twin-image problem.

We should note that the success of the reduced-support
technique is highly dependent on the object, as discussed
in [24]. In our case, the success was driven by the fact that
the object had energy preferentially in one half of the support.
The performance of this method will be decreased for objects
that more uniformly fill the support.

Combining reconstructions from independent starting
guesses can also be effective in suppressing or diminishing
the twin-image problem as well as other stagnation modes.
Registration and averaging of reconstructions is already
widely used and has the advantage of suppressing spatial fre-
quencies with large phase variations among reconstructions.
Comparing the Fourier intensity of this averaged reconstruc-
tion to the measurement provides a tool to diagnose the
repeatability of the phase recovery at each spatial frequency
[9,10]. Other methods of selectively combining information in
the Fourier domain from reconstructions of moderately good
quality include the voting and the patching methods [6,24].

5. SUMMARY AND CONCLUSIONS
The twin-image problem is a persistent stagnation mode in
phase retrieval, characterized by the simultaneous appear-
ance of features of the image and its complex-conjugated
centrosymmetrical inversion (twin image). This problem
can occur when the image sought and its twin both fit inside
the support constraint, and in severe cases it can significantly
hinder image quality.

In this paper, we demonstrated, through numerical simula-
tions, that this problem occurs when the reconstructed
Fourier domain divides into regions in the early iterations
of the reconstruction. Some of these Fourier regions recon-
struct the upright image, while others reconstruct the twin
image. The location and size of the regions varies with the ran-
dom initial guess. We have also provided guidelines toward
identifying the twin-image problem from reconstructions from
different random starting guesses, and we have briefly de-
scribed strategies to escape this stagnation.

Additionally, we have found that, for reconstructions of
good visual quality for which the twin-image problem was not
visually discernible, this problem may still be present to a
small extent. Although for these cases where the impact on
image quality is subtle, it still affects the retrieval of the phases
at high spatial frequencies, thus affecting the reconstruction
of fine-resolution features. The importance of understanding
the twin-image problem comes from the natural symmetry ex-
hibited by objects for many applications, including some sam-
ples of significant interest for x-ray CDI, such as biological
specimens, which could be prone to this stagnation mode.
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